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Background: Abdominal aortic aneurysm (AAA) is a serious life-threatening

vascular disease, and its ferroptosis/cuproptosis markers have not yet been

characterized. This study was aiming to identify markers associated with

ferroptosis/cuproptosis in AAA by bioinformatics analysis combined with

machine learning models and to perform experimental validation.

Methods: This study used three scRNA-seq datasets from different mouse

models and a human PBMC bulk RNA-seq dataset. Candidate genes were

identified by integrated analysis of scRNA-seq, cell communication analysis,

monocle pseudo-time analysis, and hdWGCNA analysis. Four machine learning

algorithms, LASSO, REF, RF and SVM, were used to construct a prediction model

for the PBMC dataset, the above results were comprehensively analyzed, and the

targets were confirmed by RT-qPCR.

Results: scRNA-seq analysis showed Mo/MF as the most sensitive cell type to

AAA, and 34 cuproptosis associated ferroptosis genes were obtained. Pseudo-

time series analysis, hdWGCNA and machine learning prediction model

construction were performed on these genes. Subsequent comparison of the

above results showed that only PIM1 appeared in all algorithms. RT-qPCR and

western blot results were consistent with sequencing results, showing that PIM1

was significantly upregulated in AAA.

Conclusion: In a conclusion, PIM1 as a novel biomarker associated with

cuproptosis/ferroptosis in AAA was highlighted.
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1 Introduction

Abdominal aortic aneurysm (AAA) is a potentially fatal disease

characterized by high morbidity and mortality in the event of aortic

rupture. In the past 20 years, there have been major advances in

surgical and endovascular repair techniques for AAA. However,

drug-based treatments are still scarce, highlighting a real need for a

deeper understanding of the molecular mechanisms involved in

AAA formation (1). The main pathological features of AAA include

capillary smooth muscle degeneration and death, of note, the

accumulation of inflammatory cells is also an important feature

(2, 3). The inflammatory process plays an integral role in AAA and

exerts influence on many determinants of aortic wall remodeling.

Monocytes-macrophages include promonocytes in the bone

marrow, monocytes in peripheral blood, and macrophages (MF) in

tissues. MF are derived from monocytes in the blood, and monocytes

are derived from precursor cells in the bone marrow (2, 4, 5). A

deeper understanding of monocytes in the peripheral blood and MF

will help improve our understanding of the role of these cells in the

immune environment of the disease and make it possible to design

new macrophage-targeted therapies (6). However, this part of the

research is still not very clear in AAA so far.

Metal ions are important mediators of cellular processes, like

regulation of cell death, and their abnormal concentration levels can

cause destructive effects in cells. Ferroptosis is an iron-dependent

programmed cell death. Excessive accumulation of intracellular iron

leads to the accumulation of lipid peroxides, which induce

programmed cell death (7, 8). Disorders of iron metabolism are

closely related to AAA, leading to extensive research on iron-

dependent toxicity (9–11). Like iron ions, copper ions also play a

role in cell death. High levels of intracellular copper can cause

cytotoxicity, also known as cuproptosis (12, 13). This death

mechanism is controlled by copper ions and caused by their

direct participation in the tricarboxylic acid cycle pathway,

leading to protein aggregation and proteotoxic stress response

(13). Less studies have reported the potential role of cuproptosis

in the prediction of AAA (14). Moreover, the mechanisms behind

cuproptosis-associated AAA and its potential link to ferroptosis

remain the subject of ongoing investigation.

Here, in this study, we aimed to identify biomarkers based on

cuprotosis-related ferroptosis genes in AAA. Comprehensive

bioinformatics analysis and machine learning models found that

among cuprotosis-related ferroptosis genes, PIM1 (Pim-1 proto-

oncogene, serine/threonine kinase) was significantly upregulated in

all in vitro models and patient PBMCs. In addition, our

experimental results confirmed that the gene and protein

expression levels of PIM1 were also in a significant upregulation
Abbreviations: AAA, Abdominal aortic aneurysm; MF, macrophages; SMCs,

smooth muscle cells; DCs, dendritic cells; WGCNA, Weighted gene co-

expression network analysis; UMAP, Uniform manifold approximate

projection; DEGs, differently expressed genes; GO, Gene ontology; KEGG,

Kyoto Encyclopedia of Genes and Genomes; PPI, Protein-protein interaction;

GSEA, Gene set enrichment analysis; LASSO, Least absolute shrinkage and

selection operator; RFE, Recursive feature elimination; RF, Random forest;

SVM, Support vector machine.
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trend. Our findings may help improve the personalized treatment

and prognosis assessment of AAA.
2 Methods and materials

2.1 Data acquisition

In this study, we collected mouse single-cell sequencing data

from three different AAA models, including CaCl2-induced

(GSE164678), elastase-induced (GSE152583), and Ang II-induced

(GSE221789) models (15–17). We obtained PBMC bulk RNA

transcriptome data from seven patients and seven donors (18).

After merging and removing abnormal samples, 13 samples were

finally included for analysis. Detailed sample collection information

is shown in Supplementary Table S1.
2.2 Data processing workflow

For single-cell datasets, we used the widely validated Seurat’s (R

package, V4.4.0) canonical correlation analysis (CCA) integrated

dimensionality reduction pipeline (19). First, we filtered the

individual data with a filtering threshold of nFeature_RNA > 200,

50000 > nCount_RNA > 1000 and percent.mt < 10. Next, we used

the FindIntegrationAnchors function to identify anchors between

different datasets and used the IntegrateData function for CCA

integration. Subsequently, the top 20 PCs were used for UMAP

dimensionality reduction and resolution = 0.3 was used for cluster

identification. For cell type identification, we used classical marker

genes for different cell types.

For PBMC bulk RNA transcriptome data, we used the principal

components analysis (PCA) analysis of DESeq2 (R package,

V1.42.1) to filter samples, and we eliminated one AAA sample

because the characteristics of this sample were consistent with those

of the donor (20).
2.3 Cell sensitivity analysis

To identify the cell types most affected by AAA, we performed a

cell sensitivity analysis using Augur (R package, V1.0.0). The AUC

feature value was calculated using calculate_auc function, with the

input being the constructed Seurat object. The codes refer to https://

github.com/neurorestore/Augur.
2.4 Cell-cell communication analysis

The CellChat package (R package, V1.6.1) was used to construct

the intercellular communication network (21). We constructed

cellchat objects between the control and AAA samples to better

compare and visualize them. The ligand receptor database is

provided by the software package.
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2.5 Identification of differently
expressed genes

The schemes for identifying DEGs in single-cell data and bulk

RNA-seq data are slightly different. For single-cell data, we used the

FindMarkers function of the Seurat software package for

identification (19), with a selection threshold of |log2FC| > 0.25

and p < 0.05. For bulk RNA-seq, the DESeq2 software package was

used for identification (20), with a selection threshold of |log2FC| >

0.5 and p < 0.05 (22).
2.6 Function enrichment analysis

In order to explore the functional status of gene sets and select

subsequent signal targets as much as possible, we used

clusterProfiler (R package, V4.10.1) to perform functional

enrichment analysis, including gene ontology (GO), kyoto

encyclopedia of genes and genomes (KEGG), gene set enrichment

analysis (GSEA) and Reactome Pathway enrichment (23). Terms

with p < 0.05 were considered significantly enriched. We used

aPEAR (R package, V1.0.0) for some of the visualizations and

ggplot2 (R package, V3.5.1) for the rest (24).
2.7 Identification of cuproptosis associated
ferroptosis genes

To identify the interrelated cuproptosis associated ferroptosis

genes in AAA, we obtained ferroptosis genes and cuproptosis from

the Ferropoptosis Database (FerrDb, V2, http://www.zhounan.org/

ferrdb/current/) (25). Then, we used Hmisc (R package, V5.1-2) to

calculate the Pearson correlation between cuproptosis genes and

ferroptosis genes. The Pearson correlation coefficient is widely used

to measure the degree of correlation between two variables. Its value

is between -1 and 1. >0 indicates a positive correlation, and <0

indicates a negative correlation. In this study, we defined |r| > 0.8 as

a strong correlation, and we considered |r| > 0.8 and p < 0.05 to be a

significant correlation, that is, cuproptosis associated ferroptosis

genes.
2.8 Construction of protein-protein
interaction network

To characterize the relationships of cuproptosis genes, we

performed PPI analysis and visualization using the STRING

(V12.0, https://string-db.org/cgi/input.pl?sessionId=0kGn9YYW

1ES0&input_page_active_form=multiple_identifiers) database.

The input was all cuproptosis genes.
2.9 Construction of pseudo-time
developmental trajectories

To investigate transcriptional signatures that regulate cell fate

transitions, we performed pseudo-time developmental trajectories
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construction using monocle (R package, V2.24.0) (26). We first

constructed the monocle_cds object of monocytes and

macrophages, then used the reduceDimension function for

trajectory construction and the orderCells function for cell

sorting. Notably, the BEAM statistical analysis model was used

for cell fate trajectory differential analysis.
2.10 High dimensional weighted gene co-
expression network analysis

WGCNA is widely used to identify the relationship between

gene modules and phenotypes (27, 28). In high-dimensional data,

such as scRNA-seq, it is difficult to achieve due to the characteristics

of the data. The development of hdWGCNA (R package, V0.3.03)

software makes it possible to run single-cell datasets (29). Our data

object is the single-cell expression matrix of monocytes and

macrophages. The relevant analysis code refers to the software

tutorial (https://smorabit.github.io/hdWGCNA/).
2.11 Different machine learning algorithms
identify candidate biomarkers

The screening of clinical biomarkers is the foundation for the

early stage of clinical application transformation. In order to

identify key biomarkers from massive sequencing data, we used

four different machine learning algorithms, including least absolute

shrinkage and selection operator (LASSO), recursive feature

elimination (RFE), random forest (RF) and support vector

machine (SVM). Of note, all machine learning methods were

tested on PBMC bulk RNA transcriptome data (18).

The LASSO model was established using the cv.glmnet function

of the glmnet (R package, V4.1-8), and the parameters were set as

type.measure = ‘mse’, nfolds = 5 and alpha = 1. Then, the minimum

lambda value was used as a reference to determine the optimal

parameters.

The RFE model was established using the rfe function in caret

(R package, V6.0-94), with parameters set as metric = ‘Accuracy’,

sizes = 1:(length(candidate.gene)-2).

rfeControl = control, and 10-fold cross validation was used.

The RF model was established using the randomForest function

in randomForest (R package, V4.7-1.1), with parameters set as

importance=T, proximity=T, ntree= optionTrees.

The SVMmodel was built using the svmRFE function in e1071 (R

package, V1.7-13), with parameters set as k = 5, halve.above = 100.
2.12 RT-qPCR

RT-qPCR was used to measure gene expression levels in PBMC

and the steps were as described in our previous publication (30). In

a short, gene was amplified and quantitatively analyzed after reverse

transcription. The method of 2−DDC was used to obtain the fold

change. GAPDH was the housekeeping gene. The gene primers was

in the Supplementary Table S2.
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2.13 Western blot for detecting the
expression of protein

Western Blot was used to measure protein expression levels in

PBMC and the steps were as described in our previous publication

(30). Briefly, cells were lysed with enhanced RIPA lysis buffer and

proteins were obtained and then denatured at high temperature.

Next, SDS-PAGE electrophoresis and antibody incubation (Abcam,

ab300453, the dilution ratio = 1:1000) were performed. Finally,

protein chemiluminescence was performed and photos. ImageJ

software was selected to calculate protein gray value.
2.14 Statistical analysis

Three independent replicates were performed in all biological

experiments and the data were visualized as mean ± SD; Student’s t

test was used to identify the differences between AAA and normal

using Graphpad Prism 8.0 software. * indicates p < 0.05, compared

with the control group.
3 Results

3.1 Single-cell landscape of AAA under
different models

We collected three different datasets to study the single-cell

landscape in AAA. A series of quality control and integration

analyses showed that we integrated samples from different groups

well tomeet the needs of downstream analysis (Supplementary Figure

S1A). Next,14,089 cells were divided into 17 cell clusters and

annotated into 8 cell types (Supplementary Figure S1B), including

5,746 smooth muscle cells (SMCs, marker genes were Acta2, Tagln

and Myh11), 4,609 Fibroblasts (marker genes were Col1a1, Col3a1

and Dcn), 2,394 monocytes and macrophages (Mo/MF, marker genes

were Lyz2, Cd68 and C1qb), 491 dendritic cells (DCs, marker genes

were Col1a1, Col3a1 and Dcn), 291 Endothelials (marker genes were

Pecam1, Vwf and Kdr), 267 T cells (marker genes were Cd3g and

Cd28), 153 B cells (marker genes were Cd79a, Cd79b andMs4a1), and

1,38 Neutrophils (marker genes were S100a8 and S100a9)

(Figures 1A, B; Supplementary Figure S1C). We then performed

cluster analysis on the expression of top 5 marker genes in different

cell types (Figure 1C). UMAP was used to display the dimensionality

reduction distribution of different cell types in different samples

(Figure 1D). Subsequently, we observed the proportion of different

cell types in different samples, and further used bar charts to visualize

the cell types in different groups. The results showed that the

proportion of SMC in AAA was significantly reduced, while Mo/

MF and DCs were significantly increased in AAA (Figures 1E, F). Of

note, we used the AUGUR algorithm to calculate cell sensitivity, and

the results showed that Mo/MF was the most sensitive to AAA,

followed by SMC and DCs (Figure 1G). This result was consistent

with the statistical proportion of cell types. The above results showed

that the proportion of SMCs decreased in AAA, which may be the
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result of massive apoptosis of SMCs (31). In addition, Mo/MF and

DCs increased significantly, which may be related to their

participation in inflammatory response (2). Since Mo/MF are the

most sensitive cells, we included them in the subsequent analysis.
3.2 Cell-cell communication landscape of
AAA under different models

After integrated analysis of different AAA-induced models, it

was found that in AAA, the intensity and frequency of intercellular

communication were significantly enhanced, especially between

SMC, Mo/MF, Fibroblast and Endothelial (Figures 2A, B). We

then compared the differences in different signaling pathways

between AAA and normal groups and found that GDF, ANGPT,

and CD39 only appeared in AAA, while CD23, CEACAM, etc. only

appeared in the normal group (Figure 2C). Since Mo/MF are AAA-

sensitive cells and SMC loss is the main pathological feature of

AAA, we observed the communication between these two types of

cells. The results showed that TNF-a (Tnf-Tnfrsf1a) and TGF-b
(Gdf15-Tgfbr2) signals were significantly enhanced in AAA

(Figure 2D). There is also strong communication from

endothelial cells to Mo/MF. Interestingly, the data showed that

upregulation of TNF-a (Tnf-Tnfrsf1a) and TGF-b (Gdf15-Tgfbr2)

signals was also observed in Mo/MF-Endoithelial (Supplementary

Figure S2A). In addition, we observed the communication between

TNF-a and TGF-b signals among different cell types throughout

the sample, and the results showed that TNF-a and TGF-b
signaling were overall enhanced in AAA (Figures 2E, F).
3.3 Transcriptional landscape of Mo/MF
under different models

In the CaCl2-induced (GSE164678) model, we obtained a total

of 1,482 DEGs, of which 944 were downregulated and 538 were

upregulated (Figure 3A). GO results showed that these genes may

be involved in ‘lymphocyte differentiation’ (Figure 3B). KEGG

pathways showed that these genes play a role in regulating

‘apoptosis’ , ‘TNF-a signaling pathway ’ , ‘cell cycle ’ and

‘ferroptosis’ (Figure 3C). For elastase-induced (GSE152583)

model, there were 4,595 DEGs, and most of them were

upregulated, with 4,408 (Figure 3D). The GO annotation of these

genes showed that they might be involved in ‘RNA splicing’ and

‘mRNA processing’ (Figure 3E), and the KEGG pathway

enrichment showed that the ‘PI3K-AKT signaling pathway’,

‘apoptosis’ , ‘cell cycle’ , ‘TNF-a signaling pathway ’, and

‘ferroptosis’ signaling pathway were significantly enriched

(Figure 3F). For Ang II-induced (GSE221789) model, a total of

3209 DEGs were observed (Figure 3G), and their GO results showed

that they might be involved in the ‘cytokine-mediated signaling

pathway’ (Figure 3H). At the same time, the KEGG functional

enrichment entries showed enrichment of ‘apoptosis’, ‘TNF-a
signaling pathway’ , and ‘ferroptosis ’ signaling pathway

(Figure 3I). These results suggest that ferroptosis may be involved

in regulating the progression of AAA.
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3.4 Comparative analysis of Mo/MF under
different AAA models

To further investigate the transcriptional signatures of Mo/MF

under different induction models to better understand the

mechanism of AAA, we first compared the differences in DEGs

under different models, and the results showed that there were 617

shared genes (Figure 4A). The GO enrichment of these genes

showed that they might be involved in the ‘TNF-a supurfamily
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cyttokine production’ (Figure 4B). In addition, the functional

enrichment results suggested that the ‘TNF-a signaling pathway’

and ‘ferroptosis’ signaling pathway were significantly enriched

(Figure 4C). Next, we compared the differences in different

KEGG signaling pathways, and the results showed that 67 shared

signaling pathways were significantly enriched in different models,

such as apoptosis, ferroptosis, etc. (Figure 4D). Interestingly, GSEA

showed that the apoptosis signaling pathway was significantly

activated in AAA under different models (Figure 4E). Subsequent
FIGURE 1

The landscape of AAA in a single-cell resolution. (A) UMAP plots show the cell distribution and number of different cell types included in the analysis
under the three AAA models. (B) Violin plots show the expression characteristics of marker genes in different cell types (C) Heatmap showing the top
5 genes in different cell types. (D) UMAP plots show the distribution of cell types in different samples. (E) The distribution ratio of different cell types
in each sample. (F) The bar graphs show the distribution statistics of different cell types under AAA and Con. Statistics were performed using
Student’s T test, ** represents p < 0.01. (G) The circular histogram shows the sensitivity of different cell types to AAA, calculated by Augur. AAA1
means CaCl2-induced model, AAA2 means elastase-induced model and AAA3 means Ang II-induced model.
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GO comparative analysis revealed 1,806 common terms

(Figure 4F), and GSEA showed that cell death signals and cell

killing signals were significantly activated in AAA, while cell

population proliferation signals were significantly inhibited

(Figure 4G). These results again highlight the role of ferroptosis

signaling in AAA.
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3.5 Identification of cuprotosis associated
ferroptosis genes in Mo/MF

Since the above results repeatedly suggested the role of

ferroptosis in AAA, and taking the crosstalk between cuprotosis

and ferroptosis into consideration, we attempted to identify the
FIGURE 2

The cellular communication between SMC and Mo/MF is altered in AAA. (A) The bar graph shows the communication frequency (left) and strength
(right) of all cell types in different groups. (B) The network diagram shows the frequency of cell communication for each cell type in different groups.
(C) The stacked bar chart shows the differences in each signaling pathway under different groups. (D) The bubble chart shows the differential
communication signals between Mo/MF and SMC in different groups. The left side shows the up-regulated signals in AAA, and the right side shows
the down-regulated signals. e and f, Network diagram showing the differences in TNF-a (E) and TGF-b (F) signaling in different groups.
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cuprotosis associated ferroptosis genes. We first explored the PPI

network of cuptosis genes themselves. The results showed that

PDHA1, DLAT, DLD, PDHB, LIPT1 and SIRT2 had strong

interactions (Figure 5A). Reactome pathway enrichment results

showed that these cuprotosis genes were involved in ‘protein

lipoylation’ and ‘pyruvate metabolism’ (Figure 5B). Next, Pearson

correlation analysis was performed to obtain the cuprotosis-

ferroptosis gene pairs in AAA, among them, there were 169

negatively correlated (r < -0.8, p< 0.05) and 960 positively

correlated (r > 0.8, p< 0.05) gene pairs. Of note, 1129 gene pairs

contain 487 cuprotosis-associated ferroptosis genes (Figure 5C;

Supplementary Table S3). To narrow down the candidate range,

we compared these 487 cuprotosis-associated ferroptosis genes with
Frontiers in Immunology 07
the Mo/MF shared DEGs in different models and obtained 34

candidate genes for subsequent analysis (Figure 5D).
3.6 Developmental trajectories of
cuprotosis-associated ferroptosis
genes in Mo/MF

To investigate whether cuprotosis-associated ferroptosis genes

regulate Mo/MF fate decisions, we performed developmental

trajectory construction. The results showed that during Mo/MF

development, two fate-determination events occurred and all cells

were divided into five states (Figures 6A, B). Next, we observed the
FIGURE 3

The transcriptional dynamics of Mo/MF were altered under different models. (A) The volcano plot shows the DEGs of Mo/MF under CaCl2-induced
model, the DEGs screening threshold was |log2FC| > 0.25 and p < 0.05. (B) The GO enrichment analysis results of DEGs, p < 0.05 was considered
significantly enriched. (C) The KEGG enrichment analysis results of DEGs, p < 0.05 was considered significantly enriched. D-F, DEGs (D) and related
GO (E) and KEGG (F) enrichment analysis results under the elastase-induced model. (G–I), DEGs (G) and related GO (H) and KEGG (I) enrichment
analysis results under the Ang II-induced model.
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distribution of AAA cells in the trajectory and counted the

proportion of AAA cells in different states to determine which

cell fate determination period affects the functional state of Mo/MF,

that is, to explain the driving factors of AAA (Figures 6C, D). The

results showed that the proportion of AAA cells was high around

the cell fate 2 period, indicating that this stage was driven by AAA.

Elucidating the transcriptional dynamics of this fate will help reveal

the regulatory mechanism of AAA. Subsequently, we visualized the

expression signatures of candidate cuprotosis-associated ferroptosis

genes on the developmental trajectory, and the results showed that

33 genes were involved in fate trajectory construction, indicating

that ferroptosis is indispensable for AAA progression (Figure 6E).

Importantly, we explored the transcriptional signatures that

regulate cell fate 2 and revealed four distinct sets of genes

involved in driving cell fate 2, including several cuprotosis-

associated ferroptosis genes, such as Pim1, Ftl1, and Cd38

(Figure 6F). We investigated the functional characteristics of

genes in different datasets and the results showed that the C1
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gene set was involved in the ‘IL17 signaling pathway’, ‘ferroptosis’,

and ‘apoptosis’. The C2 gene set was also involved in the’ IL17

signaling pathway’ and ‘apoptosis’ (Figure 6G). The above results

show the key role of ferroptosis-related genes in the regulation of

Mo/MF fate.
3.7 Using hdWGCNA to identify candidate
cuprotosis-associated ferroptosis genes

WGCNA is an analysis algorithm that effectively screens key

genes, and we performed hdWGCNA in Mo/MF to identify drivers

of AAA. In order to construct a scale-free network, we screened the

b value, and the results showed that the most appropriate value was

b = 12 (Figure 7A). Then, we divide the genes into modules, and the

hierarchical clustering numbers show the modules to which

different genes belong (Figure 7B). 11 modules are obtained, and

we use different colors to represent the modules (Figure 7C). We
FIGURE 4

Comparative analysis of Mo/MF differences under different models. (A) The Venn diagram showing the comparative analysis of differentially
expressed genes in Mo/MF under different models. (B, C) The GO (B) and KEGG (C) enrichment results of common DEGs in different models, p <
0.05 was considered significantly enriched. (D) The Venn diagram shows the comparative analysis of KEGG pathways in different models. (E) GSEA
results showed the status of the Apoptosis signaling pathway under different models. (F) The Venn diagram shows the comparative analysis of GO
terms in different models. (G) GSEA results showed the status of the cell death, cell killing and cell population proliferation signaling pathway under
different models. AAA1 means CaCl2-induced model, AAA2 means elastase-induced model and AAA3 means Ang II-induced model.
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further studied the expression characteristics of hub genes within

the module and found that these hub genes were cell type specific.

In Mo/MF, Cxcl2, Cd83, Pim1 and other hub genes were highly

expressed (Figure 7D). Interestingly, we found that different

modules have different correlations, such as the yellow module is

significantly positively correlated with the pink module, while the

red module is negatively correlated with magenta (Figure 7E). This

result suggests that different modules drive different biological

events, and that there is crosstalk and antagonism between

different modules. Moreover, we explored the relationship

between different modules and different phenotypes. The results

showed that the yellow module was significantly overexpressed in

AAA (Figure 7F). We further observed the hub genes within this

module and found that Pim1, Cd83 and others were highly

connected (Figure 7G). Of note, we constructed a cuprotosis-

associated ferroptosis genes regulatory network and discovered

five key factors, including Pim1, Jdp2, Zfp36, Cd38 and

Parp14 (Figure 7H).
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3.8 Transcriptional signature of PBMCs
in AAA

Themain purpose of this study was to screen effective biomarkers

of cuprotosis-associated ferroptosis genes. Given the difficulty in

manipulating tissues, we sought to consider the characteristics of

these candidate genes in PBMCs, which are more easily accessible and

manipulatable in the clinic. We included PBMC data from 7 donors

and 6 AAA patients, and PCA analysis showed that they had obvious

transcriptional distinction (Figure 8A). 5,165 DEGs were obtained,

and the heat map showed their expression characteristics (Figures 8B,

C). Functional enrichment analysis showed that DEGs were involved

in a large number of inflammatory signaling pathways, such as ‘TNF-

a production’, ‘IL-6 production’. ‘IL-1 production’ (Figure 8D).

Furthermore, we analyzed the relationship between DEGs and

uprotosis-associated ferroptosis genes, and the results suggested

that they had five overlaps, namely Capg, Pgd, Pim1, Pkm and

Slc25a37 (Figure 8E).
FIGURE 5

Identification of cuproptosis-associated ferroptosis genes in AAA. (A) The PPI network shows the interactions among cuprotosis genes. (B) The bar
graph shows the Reactome Pathway of cuproptosis genes. (C) The volcano plot shows the correlation between candidate ferroptosis genes and
cuproptosis genes. (D) The Venn diagram showing the relationship between candidate ferroptosis genes and DEGs. AAA1 means CaCl2-induced
model, AAA2 means elastase-induced model and AAA3 means Ang II-induced model.
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3.9 Multiple machine learning models
combined with bioinformatics to identify
key markers

Machine learning models are a good method for selecting

biomarkers. Next, we used four machine models, including

LASSO, REF, RF and SVM, to select biomarkers in a PBMC

transcriptome data from AAA. We used 34 cuproptosis associated
Frontiers in Immunology 10
ferroptosis genes as features (Figure 5D), and used AAA and

normal as predictive target variables to build the model.

According to the LASSO model, four genes were identified as

candidate genes, including PIM1, PLIN2, TXNRD1 and NDRG1

(Figures 9A, B). REF obtained five candidate genes, including PIM1,

PLIN2, VEGFA, NDRG1 and SLC25A37 (Figure 9C). RF pick out

ten candidates, including PIM1, PKM, IRF7, PARP14, PLIN2,

CAPG, ENO1, TXN, PER1 and TCF4 (Figure 9D). The accuracy
FIGURE 6

Construction of pseudo-development trajectories of Mo/MF cells. (A, B) The pseudo-time trajectories of Mo/MF show different fate trajectories
(A) and different cell states (B). (C) Distribution of different groups under pseudo-time trajectory. (D) The stacked bar graphs show the distribution
patterns of different groups in different cell states. (E) Expression trends of candidate cuproptosis-associated ferroptosis genes under pseudo-
temporal trajectories. (F) The heat map shows the gene expression trends before and after cell fate 2. (G) The KEGG enrichment analysis of gene
sets with different patterns in the heatmap.
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and error rate in the SVM model showed that 33 genes were the

most suitable (Figures 9E, F). Significantly, we considered all the

data, including three bioinformatics analysis methods and four

machine learning algorithms, and finally obtained a candidate
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gene, namely PIM1 (Figure 9G). As expected, PIM1 was

significantly overexpressed in AAA in all sequencing data, which

strongly suggested the potential of this gene as a biomarker

(Figure 9H). To verify the expression characteristics of PIM1 in
FIGURE 7

Construction of WGCNA in Mo/MF at the single-cell level. (A) Free-scale network topology analysis for different soft threshold powers. The black
circle shows the optimal threshold chosen. (B) Hierarchical clustering numbers show the modules to which genes belong. (C) The genes in each
module ranked by kME that iseigengene-based connectivity. (D) The heat map shows the expression characteristics of hub genes in different cell
types. (E) Correlation analysis between different modules. (F) The dot plot shows the expression patterns of different modules under different groups.
(G) Co-expression network of the top 25 genes in the yellow module. (H) Co-expression network of cuproptosis-associated ferroptosis genes in
Mo/MF.
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patient PBMCs, we used RT-qPCR and protein immunoblotting to

verify it at the RNA and protein levels. Excitingly, our experimental

results suggest that PIM1 is significantly overexpressed in AAA,

both at the RNA and protein levels (Figures 9I, J).
4 Discussion

Currently, the only treatment options for AAA are surgery and

endovascular repair. Unfortunately, conservative treatment options

are lacking (1, 32). Emerging evidence suggests that two newly

discovered programmed cell death, cuproptosis and ferroptosis,

play crucial roles in the progression of AAA and show promise as

effective future treatments for AAA (14, 33–35). However, studies

exploring genes associated with cuprotosis and ferroptosis in AAA
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are lacking. Therefore, it is crucial to focus on potential prognostic

studies on the link between cuprotosis and ferroptosis in AAA.

To select appropriate cell types for research, we first analyzed the

differences in cell types in different AAA models. Consistent with

previous studies, we found that SMCs were significantly reduced in

AAA, which can be explained by the pathological characteristics of

extensive apoptosis of SMCs in AAA (15–17, 36). The AUGUR

algorithm suggests that Mo/MF cells are most affected by AAA,

which may be related to the inflammatory response in AAA (2, 5).

The functional enrichment results of DEGs in different models

suggested that ferroptosis was significantly enriched, and the

common DEGs of different models also showed enrichment for

ferroptosis, which suggests that ferroptosis plays a role in driving

AAA (33). Based on the above reasons, we studied cuprotosis-

associated ferroptosis gene features in Mo/MF.
FIGURE 8

Analysis of transcriptional differences in PBMCs in AAA. (A) PCA analysis shows the top2 PCs under different groups. (B) The volcano plot shows the
distribution of DEGs, and the DEGs screening threshold was |log2FC| > 0.5 and p < 0.05. (C) The heat map showing the expression characteristics of
DEGs. (D) KEGG enrichment results of DEGs. (E) The Venn diagram showing the comparative analysis of DEGs and cuproptosis-associated
ferroptosis genes. AAA1-6 means different sample.
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The construction of pseudo-temporal developmental

trajectories provides a means to study cell fate determination

(26). Our results found that among the genes driving Mo/MF

changes in AAA, there are shadows of uprotosis-associated

ferroptosis genes. Consistent with previous studies, our results

suggest that ferroptosis drives AAA progression and that

inflammatory responses occur extensively in Mo/MF at the AAA

cell fate stage, which is characterized by the enrichment of the TNF-

a signaling pathway. (5, 34, 37). The rise of hdWGCNA has

broadened the perspective of single-cell data analysis and

provided the possibility for better mining of candidate genes (29).

A total of five candidate genes were obtained, including Pim1, Jdp2,

Zfp36, Cd38 and Parp14. Currently, studies have reported that the

expression level of CD38 is positively correlated with the diameter
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of the abdominal aorta and that the lack of CD38 in SMCs can

inhibit the progression of AAA (38, 39).

Back to our topic, screening for effective AAA biological targets,

considering the difficulty in obtaining samples in the clinic, we

attempted to study the characteristics of candidate genes in PBMCs

to more quickly advance our results to clinical translation.

Monocytes in PBMCs, as the source of MF, can reflect the

characteristics of MF in tissues to a certain extent (2, 4, 5).

Consistent with previous reports, we found that PBMCs in AAA

underwent a substantial inflammatory response (18, 37). Our cross-

analysis revealed five candidate genes, including Capg, Pgd, Pim1,

Pkm and Slc25a37. Previous studies have reported that different

expression forms of PKM affect the progression of AAA (40). These

data suggest that the genes we selected have the potential to become
FIGURE 9

Analysis of transcriptional differences in PBMCs in AAA. (A) and (B) LASSO regression analysis was performed in PBMC data using candidate
cuproptosis-associated ferroptosis genes. The minimum value was defined based on 10-fold cross validation, where the best l yielded 4
cuproptosis-associated ferroptosis genes (A). Coefficient curves were plotted according to (log l) sequence and lambda value (B). (C) The REF
model generated five candidate cuproptosis-associated ferroptosis genes. (D) The top 10 cuproptosis-associated ferroptosis genes generated by RF
model evaluation. (E, F) Under the SVM model, the line graph shows the accuracy (E) and error of different genes (F). (G) The Venn diagram shows
the comparative analysis of candidate cuproptosis-associated ferroptosis genes obtained by screening with different bioinformatics algorithms and
machine models. (H–J) The expression characteristics of PIM1 were examined by sequencing (H), RT-qPCR (I) and western blot (J). AAA1 means
CaCl2-induced model, AAA2 means elastase-induced model and AAA3 means Ang II-induced model.
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biomarkers. Machine learning models have been widely used in

predicting biomarkers and building prognostic models (41, 42).

Four different machine learning methods, LASSO, RFE, RF and

SVM, were selected to predict AAA markers, with candidate genes

ranging from 4 to 33. This result shows that different machine

learning models have different predictive effects (43).

A single bioinformatics analysis algorithm and machine

learning model is not sufficient to screen effective biomarkers. We

conducted a comprehensive comparison of all analysis methods,

and excitingly, we obtained a potential biomarker, PIM1 (Pim-1

proto-oncogene, serine/threonine kinase), which was obtained in all

analyses. PIM1 is a proto-oncogene that encodes a serine/threonine

kinase that is primarily involved in cell cycle progression, apoptosis,

transcriptional activation, and general signal transduction pathways

(44, 45). Due to its critical functions, it has been extensively studied

as a therapeutic target in cancer, but there is a lack of reports on its

research in AAA. Interestingly, a recent report showed that it could

regulate macrophage infiltration and polarization in the tumor

microenvironment to enhance anti-PD-1 therapy response (45),

which showed its effect on macrophages and also suggested that it

might affect macrophages in AAA and thus regulate AAA

progression. Indeed, PIM1 has been reported as a marker for

pulmonary hypertension (46). These results strongly suggest that

PIM1 may serve as an effective biomarker for AAA. To verify it, we

characterized the gene and protein expression patterns of AAA in

PBMCs of AAA patients. As expected, PIM1 was significantly

upregulated in AAA. In a conclusion. PIM1 as a novel biomarker

associated with cuproptosis/ferroptosis in AAA was highlighted.

We have to admit that the current study also has some

limitations. This study is a hypothesis-driven study based on

scRNA-seq or bulk RNA-seq data. Although we have verified the

expression pattern of PIM1 in AAA through experimental schemes

and confirmed it as an effective biomarker. However, its biological

function in AAA has not yet been determined in this study. In

future studies, the study of the biological function of PIM1 needs to

be strengthened.
5 Conclusions

In summary, the combined results of our bioinformatics and

machine learning models highlighted PIM1 as a valid biomarker for

AAA, which was validated by RT-qPCR and western blot.
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SUPPLEMENTARY FIGURE 1

Supporting for Figure 1. (A, B)UMAP plots show the distribution of samples (A)
and seurat_clusters (B) under the three AAA models. (C) UMAP profiles of

annotated cell types for each sample.
SUPPLEMENTARY FIGURE 2

Supporting for Figure 2. (A) The bubble chart shows the differential

communication signals between Mo/MF and endothelial in different groups.

The left side shows the up-regulated signals in AAA, and the right side shows
the down-regulated signals.
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