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Association of artificial
intelligence-based immunoscore
with the efficacy of
chemoimmunotherapy in
patients with advanced
non-squamous non-small cell
lung cancer: a multicentre
retrospective study
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Jiayi Shen1,2,3,7†, Wenjuan Ma1,2,3,4†, Huaqiang Zhou1,2,3,5,
Yuxiang Ma1,2,3,5, Yaxiong Zhang1,2,3,5, Wenfeng Fang1,2,3,5,
Yuanyuan Zhao1,2,3,5, Shaodong Hong1,2,3,5, Jianhua Zhan1,2,3,5,
Xue Hou1,2,3,5, Hongyun Zhao1,2,3,5, Yan Huang1,2,3,5, Bingdou He6,
Yunpeng Yang1,2,3,5* and Li Zhang1,2,3,5*

1State Key Laboratory of Oncology in South China, Guangzhou, China, 2Collaborative Innovation
Center for Cancer Medicine, Guangzhou, China, 3Guangdong Provincial Clinical Research Center for
Cancer, Guangzhou, China, 4Department of Intensive Care Unit, Sun Yat-sen University Cancer
Center, Guangzhou, China, 5Department of Medical Oncology, Sun Yat-sen University Cancer Center,
Guangzhou, China, 6Bio-totem Pte Ltd, Suzhou, China, 7Department of Anesthesiology, Sun Yat-sen
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Purpose: Currently, chemoimmunotherapy is effective only in a subset of

patients with advanced non-squamous non-small cell lung cancer. Robust

biomarkers for predicting the efficacy of chemoimmunotherapy would be

useful to identify patients who would benefit from chemoimmunotherapy. The

primary objective of our study was to develop an artificial intelligence-based

immunoscore and to evaluate the value of patho-immunoscore in predicting

clinical outcomes in patients with advanced non-squamous non-small cell lung

cancer (NSCLC).

Methods: We have developed an artificial intelligence–powered immunoscore

analyzer based on 1,333 whole-slide images from TCGA-LUAD. The predictive

efficacy of the model was further validated in the CPTAC-LUAD cohort and the

biomarker cohort of the ORIENT-11 study, a randomized, double-blind, phase 3

study. Finally, the clinical significance of the patho-immunoscore was evaluated

using the ORIENT-11 study cohort.

Results: Our immunoscore analyzer achieved good accuracy in all the three

cohort mentioned above (TCGA-LUAD, mean AUC: 0.783; ORIENT-11 cohort,

AUC: 0.741; CPTAC-LUAD cohort, AUC: 0.769). In the 259 patients treated with

chemoimmunotherapy, those with high patho-immunoscore (n = 146) showed
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significantly longer median progression-free survival than those with low patho-

immunoscore (n = 113) (13.8 months vs 7.13 months, hazard ratio [HR]: 0.53, 95%

confidence interval [CI]: 0.38 – 0.73; p < 0.001). In contrast, no significant

difference was observed in patients who were treated with chemotherapy only

(5.07 months vs 5.07 months, HR: 1.04, 95% CI: 0.71 – 1.54; p = 0.83). Similar

trends were observed in overall survival.

Conclusion: Our study indicates that AI-powered immunoscore applied on

LUAD digital slides can serve as a biomarker for survival outcomes in patients

with advanced non-squamous NSCLC who received chemoimmunotherapy.

This methodology could be applied to other cancers and facilitate

cancer immunotherapy.
KEYWORDS

NSCLC, immunotherapy, artificial intelligence, pathology, immunoscore
Introduction

Lung cancer, stands as the most prevalent cancer globally,

responsible for approximately one in eight cancers globally (1).

Despite significant advancements in lung cancer treatment, the

prognosis for non-small cell lung cancer (NSCLC) patients remains

poor, because most cases are diagnosed at an advanced stage (2, 3).

Immune checkpoint inhibitors (ICIs) have changed the paradigm of

NSCLC management, proven to be superior in survival outcomes

compared with chemotherapy in patients diagnosed with advanced

non-squamous NSCLC (4–6). Our previous study has also shown

that chemo-immunotherapy could significantly improve the

survival of non-squamous NSCLC in first-line therapy, with

tolerable toxicity (7, 8). Although the response rate of chemo-

immunotherapy in first-line therapy for non-squamous NSCLC is

encouraging, the proportion of patients who could gain long-term

survival benefits is still limiting; therefore more accurate predictive

biomarkers are required (8, 9). Although biomarkers like PD-L1

expression and tumor mutation burden (TMB) have been shown to

help predict immunotherapy efficacy, their effectiveness is also

limited by the overlap between responders and non-responders,

underscoring the necessity for more reliable biomarkers to guide

clinical decisions (10–12).

In recent years, artificial intelligence (AI), especially machine

learning (ML) and deep learning (DL) approaches, has shown

considerable promise in improving the prediction of

immunotherapy outcomes in NSCLC (13). AI-driven analysis of

imaging data has made it possible to identify predictive biomarkers

that correlate with immunotherapy responses. For instance, AI

systems could extract subtle imaging features from noninvasive

radiomic scans and quantify them by correlating imaging data with

PD-L1, thus allowing for accurate prediction of PD-L1 status (14).

Unlike traditional biopsies, AI-driven models offer a noninvasive

solution, overcoming challenges of inter-tumor heterogeneity and
02
providing more robust and unbiased PD-L1 scoring (15).

Additionally, AI models, such as the TMBRB model, have been

developed to predict the efficacy of ICIs in NSCLC by assessing

TMB (16). Beyond radiomics, AI applications extend to

pathological images, enabling the prediction of PD-L1 and TMB

expression levels (17). Overall, AI-based imaging and predictive

models are revolutionizing the personalized treatment of NSCLC,

particularly in predicting the efficacy of immunotherapy, by offering

more accurate and individualized predictions that inform clinical

decision-making.

The tumor immune microenvironment (TIME), an intricate

and dynamic ecosystem, is a critical determinant of both the cancer

progression and response to immunotherapy (18). The TIME can

either promote or inhibit anti-tumor immune responses, depending

on the balance between immune-stimulatory and immune-

suppressive elements within the microenvironment (19, 20).

Recently, several AI-based approaches have been developed to

analyze the TIME and quantify the immune infi ltrate

composition within tumors (21, 22). These approaches showed

the potential to allow for a more full and unbiased evaluation of the

TIME in comparison with standard approaches.

One of our previous studies has shown that Estimation of

STromal and Immune cells in Malignant Tumors using

Expression data (ESTIMATE) algorithm, which takes advantage

of the unique properties of the transcriptional profiles of cancer

samples to infer tumor cellularity and the infiltrating stromal and

immune cells (23), could help to identify NSCLC patients who

respond to chemoimmunotherapy. However, the application of

gene signatures as biomarkers in clinical practice is challenging

because their assessment is costly and inconvenient. Recent

research has indicated the promise of pathomics to predict gene-

based signatures (24, 25). However, the use of pathomics

in identifying subsets of patients with NSCLC who are

likely to benefit from chemo-immunotherapy has been less
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explored. Therefore, we investigated whether a pathomics-based

ESTIMATE immunoscore could serve as a biomarker for

chemoimmunotherapy in patients with advanced non-squamous

NSCLC. We aimed to determine whether the AI-based

immunoscore could predict response to treatment and clinical

outcomes, such as progression-free survival (PFS) and overall

survival (OS).
Methods

Study design and participants

The workflow of the study is displayed in Figure 1. Whole slide

images (WSIs) from the The Cancer Genome Atlas Lung

Adenocarcinoma (TCGA-LUAD) collection were used as training

data, including both formalin-fixed paraffin-embedded (FFPE) and

frozen section (FS) slides. FS slides were converted to FFPE style

using the AI-FFPE method. We obtained a total of 1,333 WSIs from

TCGA-LUAD and divided them into three folds for training and

cross-validation. This dataset comprises adult patients with primary

lung adenocarcinoma in the USA. The inclusion criteria were listed

as followed (1): availability of digital Hematoxylin and Eosin

(H&E)-stained histological slides from formalin-fixed paraffin-

embedded (FFPE) samples (2); availability of gene expression

profiling results based on RNA sequencing. Among the 585

patients in the entire series, 70 cases (11.97%) were excluded due
Frontiers in Immunology 03
to unavailability of whole-slide images from FFPE material or RNA

sequencing data, resulting in the inclusion of 515 patients. External

testing used cohorts from CPTAC-LUAD and ORIENT-11 study.

The ORIENT-11 cohort was reanalyzed for survival analysis to

validate therapy prediction efficacy. In the ORIENT-11 cohort, the

immunochemotherapy group received sintilimab, an anti–

programmed death-1 antibody, in combination with pemetrexed

and platinum (cisplatin or carboplatin), while the control group

received a placebo with pemetrexed and platinum (cisplatin or

ca rbop l a t in ) . De t a i l ed me thods wer e de s c r i b ed in

Supplementary Materials.
Image preprocessing

We dichotomized the ESTIMATE immune scores into high and

low based on the median value of the TCGA-LUAD cohort (https://

bioinformatics.mdanderson.org/estimate/) and applied it to both

CPTAC-LUAD cohort and ORIENT-11 cohort (26). A weakly

supervised multiple instance learning (MIL) approach was used to

classify WSIs into high or low immune scores. Tissue regions were

identified using thresholding, and image tiles were extracted at 20X

and 10X magnifications. Features were encoded using the Phikon

model and combined into a 1536-dimensional vector for each tile

(27). We then used the Local self-attention graph-based

transformer MIL method (LA-MIL) method for training, focusing

on local attention among neighboring tiles (28). The model was
FIGURE 1

Workflow of the study. We developed the patho-immunoscore model with use of whole-slide scanned histology images and ESTIMATE-
Immunoscore as the labels (determined by RNA sequencing) from TCGA-LUAD public data. The model was validated in two external series of
surgical samples and lung biopsies, respectively. The predictive value of patho-immunoscore for chemoimmunotherapy was subsequently tested in
the ORIENT-11 cohort. TCGA-LUAD, The Cancer Genome Atlas Lung Adenocarcinoma data collection; MIL, multiple instance learning.
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trained using the AdamW optimizer, a learning rate of 2e-05, for 20

epochs. For the two external validation sets, the results from the

three-fold cross-validation were aggregated using mean pooling to

reduce the likelihood of misleading attention weight outcomes.
Assessment of ESTIMATE score in the
validation cohort

ESTIMATE leverages the distinctive characteristics of cancer

sample transcriptional profiles to deduce the composition of tumor

cellularity along with the presence of stromal and immune

infiltrates (26). To validate the accuracy of our patho-

immunoscore model, we calculated the ESTIMATE score in the

CPTAC-LUAD cohort and the ORIENT-11 biomarker cohort. The

RNA-seq FPKM data were retrieved from Linkedomics data portal

(https://www.linkedomics.org/data_download/CPTAC-LUAD/).

For bulk RNA sequencing of the ORIENT-11 study, the detailed

protocols were displayed in Supplementary methods. RNA was

extracted from tumor samples that were procured via core biopsy.

Libraries were constructed using NEBNext Ultra II Directional

RNA Library Prep Kit for Illumina. The sequencing was

performed on the NovaSeq 6000 platform (Illumina). Gene

expression data from the CPTAC-LUAD and ORIENT-11

cohorts were normalized by computing the transcripts per million

(TPM) values. Then, we used the Immuno-Oncology Biological

Research (IOBR) R package to calculate the ESTIMATE score (29).
Assessment of PD-L1 protein levels
through immunohistochemical staining

For the ORIENT-11 cohort, immunohistochemical analysis for

the PD-L1 protein was performed on the baseline tumor specimens,

which had been fixed with formalin and embedded in paraffin. The

22C3 pharmDx assay kit from Agilent Technologies was utilized,

and the test was carried out at a centralized laboratory in Shanghai,

China. We used the Tumor Proportion Score (TPS) to measure the

expression level of PD-L1 in the tumor. This score reflects the

proportion of tumor cells that display partial to full membrane

staining for the protein, regardless of the staining intensity, as a

percentage of the total viable tumor cells.
Relationship between the patho-
immunoscore and antigen
presentation pathway

Building on our previous findings from the ORIENT-11 trial,

where RNA sequencing data was used to establish the MHC class II

antigen presentation pathway as a predictive biomarker for cancer

immunotherapy (30), we further explored its relationship with the

patho-immunoscore to identify the potential mechanisms of the

predictive power of PIS in NSCLC immunotherapy. Similarly, we

employed RNA sequencing to analyze the expression levels of 15

MHC class II-related genes (HLA-DMA, HLA-DMB, HLA-DOA,
Frontiers in Immunology 04
HLA-DOB, HLA-DPA, HLA-DPB1, HLA-DQA1, HLA-DQA2,

HLA-DQB1, HLA-DQB2, HLA-DRA, HLA-DRB1, HLA-DRB3,

HLA-DRB4, HLA-DRB5), which have been shown to highly

corelated with NSCLC immunotherapy outcomes (30). To create

a consistent, comparable measure across different genes, each gene’s

expression was first normalized using z-scores, after which their

averaged expression levels were calculated to reflect the overall

activity of the MHC class II pathway (30). This approach allowed us

to assess the association between antigen presentation and the

patho-immunoscore more comprehensively, without being

influenced by the absolute differences in expression levels among

the 15 genes.
Outcomes and statistical analysis

To assess the accuracy of patho-immunoscore models, receiver

operating characteristic (ROC) curves, the area under the ROC

curve (AUROC) and confusion matrix were used. The Kaplan-

Meier method estimated median survival and created survival

curves. Comparisons of PFS and OS between groups were

conducted using hazard ratios (HRs) and 95% confidence

intervals (CIs) obtained from the Cox regression model, with

differences between groups in PFS or OS determined by the log-

rank test. A multivariate Cox proportional hazards model was

employed to analyze the interaction between treatment and

patho-immunoscore, adjusting for age, gender, PD-L1 expression,

BMI and smoking history. All statistical analyses were performed

with R version 4.4.1 (R Core Team, Vienna, Austria), and a two-

sided p-value was calculated.
Results

Study design and patient characteristics of
the development cohort

The study design was displayed in Figure 1. We initially trained

our model utilizing the publicly available TCGA-LUAD dataset. A

total of 515 patients were included, and their main clinical, and

pathological characteristics are summarised in the table

(Supplementary Table 1). In the TCGA-LUAD cohort, 277

(53.79%) patients were female and 238 (46.21%) were female. The

median age of diagnosis for the 496 patients with available data was

66 years (IQR,59–73). Race distribution of the patients was as

follows: White, 388 (86.41%) of 449 with available data; Asian, 8

(1.78%); Black or African American, 52 (11.58%); and American

Indian or Alaska Native, 1 (0.23%).
Prediction accuracy of the patho-
immunoscore model

The model was trained using a three-fold cross-validation

approach. The accuracy of the model was assessed by calculating

the Area Under the Curve (AUC) for each fold. The results showed
frontiersin.org
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that the model achieved an AUC of 0.776 in Fold 1, 0.746 in Fold 2,

and 0.827 in Fold 3 (Figure 2A), achieving a mean AUC of 0.783 in

the TCGA-LUAD cohort. These findings demonstrated the model’s

robust predictive performance and reliability. The model’s

predictive efficacy was further validated in the CPTAC-LUAD

cohort and the biomarker cohort of the ORIENT-11 study, a

randomized, double-blind, phase 3 trial. Significantly, the external

datasets exhibited variances from the development cohort

concerning ethnic backgrounds, sampling methods, and

staining procedures.

The first validation dataset included 106 patients treated by

surgical resection in the CPTAC project (Supplementary Table 2).

The samples were obtained from patients diagnosed with LUAD

who underwent surgical resection without receiving any

neoadjuvant therapy. The CPTAC-LUAD cohort comprised 68

(64.15%) male patients and 38 (35.75%) female patients. Different

from the TCGA-LUAD cohort, the majority of the CPTAC-LUAD
Frontiers in Immunology 05
cohort were Asian or Han Ethnicity (59/103 with available data,

57.28%), with Caucasian or European Ethnicity accounting for

38.83% (40/103). Other ethnicities like Black, White, Hispanic

account for 3.9% (4/103).

Given that biopsy is the major sample source for patients with

advanced non-squamous NSCLC, we proceeded to validate the

accuracy of our patho-immunoscore model in the ORIENT-11

cohort, an external dataset that only included biopsies. In the

ORIENT-11 study, 397 participants diagnosed with stage IIIB-IV

non-squamous NSCLC were enrolled and randomly assigned to the

chemoimmunotherapy groups (n = 266) and chemotherapy groups

(n = 131). A total of 387 participants have available H&E pathology

slides that are compliant with quality control and were finally

included in this study (Supplementary Table 3), among whom

166 patients have available RNAseq data, including 110 patients

treated with chemoimmunotherapy and 56 patients treated with

chemotherapy only. All the participants in the ORIENT-11 cohort
FIGURE 2

Prediction of Patho-immunoscore with deep learning. (A) The receiver operating characteristic (ROC) curves for the weakly supervised multiple
instance learning model’s predictions of the patho-immunoscore in the TCGA-LUAD dataset. The model underwent three-fold cross-validation to
assess its predictive performance, with each fold providing an independent evaluation. (B, C) Hematoxylin-eosin stained section (B) and the
corresponding prediction heatmap (C) from a case within the development series test set are depicted, where high patho-immunoscore areas are
marked in red and low patho-immunoscore areas in blue, with the model’s predictions scaled to a range of 0 to 1 (D, E). Patches with high (D) and
low (E) patho-immunoscore values: immune cell enrichment is observed in regions of high patho-immunoscore.
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were Asian, among whom 92 (23.77%) patients were female and 295

(76.23%) patients were male.

Our immunoscore analyzer demonstrated robust accuracy

across the two validation cohorts, with an AUC of 0.741 in the

ORIENT-11 cohort, and an AUC of 0.769 in the CPTAC-LUAD

cohort, respectively (Supplementary Figure 1). The confusion

matrices of these models were displayed in Supplementary

Figure 2. These results underscore the potential of our

immunoscore analyzer as a reliable tool for predictive modeling

in non-squamous NSCLC. Of note, the pathological examination of

image patches that were predicted to have high ESTIMATE

immunoscore values (high PIS values) revealed a notable presence

of immune cells (Figures 2B–E).
Patho-immunoscore and clinical outcome

For the ORIENT-11 cohort, the baseline clinical characteristics,

PFS and OS were well balanced between pathomics-evaluable

population and intent-to-treat cohorts (Supplementary Tables 3, 4
Frontiers in Immunology 06
and Supplementary Figure 3). Besides, the baseline clinical

characteristics were balanced between chemoimmunotherapy

group and chemotherapy group. Among the 387 individuals in

the ORIENT-11 cohort included in our study, the median follow-up

for progression-free survival was 13.9 months, with an IQR of 13.7

to 14 months. For overall survival, the median follow-up time was

31.2 months, with an IQR ranging from 30.8 to 32 months. Of these,

214 patients (55.3%), had tumors that were rated as high PIS, while

173 patients (44.7%), were noted to have low PIS tumors.

In a cohort of 259 patients treated with chemoimmunotherapy

(combo group), those with a high patho-immunoscore (n=146)

exhibited significantly longer progression-free survival (PFS)

compared to those with a low patho-immunoscore (n=113), with

median PFS times of 13.8 months versus 7.13 months, respectively

(Figure 3A, hazard ratio [HR]: 0.53, 95% confidence interval [CI]:

0.38 – 0.73; p < 0.001). To determine if PIS serves as a universal

indicator of patient outcomes in NSCLC or as a distinctive

biomarker for predicting responses to chemoimmunotherapy, we

examined the efficacy of first-line chemotherapy regimens in the

chemotherapy group of ORIENT-11 study. Conversely, among
FIGURE 3

The relationship between patho-immunoscore and survival outcome in the ORIENT-11 cohort. (A) Progression-free survival for combination
therapy-treated patients according to the status of patho-immunoscore. (B) Overall survival for combination therapy-treated patients according to
the status of patho-immunoscore. (C) Progression-free survival for chemotherapy-treated patients according to the status of patho-immunoscore.
(D) Overall survival for chemotherapy-treated patients according to the status of patho-immunoscore.
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patients treated with chemotherapy alone, there was no significant

difference in PFS between the high patho-immunoscore and low

patho-immunoscore groups, with median PFS times of 5.7 months

(95% CI: 4.73 months – 7.00 months) versus 5.7 months (95% CI:

4.90 months – 6.93 months), respectively (Figure 3C, HR: 1.04, 95%

CI: 0.71 – 1.54; p = 0.83).

Similarly, the overall survival (OS) was significantly longer in

the combo group for patients with a high PIS compared to those

with a low PIS, with median OS times of 31.43 months (95% CI:

23.47 months – not reached) versus 19.40 months (95% CI: 15.33

months – 25.47 months), respectively (Figure 3B, HR: 0.65, 95% CI:

0.47 – 0.89; p < 0.001). In the chemotherapy-only group, there was

no significant difference in OS between the high and low PIS groups,

with median OS times of 17.30 months (95% CI: 9.23 months –

20.67 months) versus 14.27 months (95% CI: 10.6 months – 22.07

months), respectively (Figure 3D, HR: 0.97, 95% CI: 0.64 – 1.47;

p = 0.88).

Furthermore, multivariate regression analyses were conducted to

evaluate the PIS alongside other clinical characteristics. Considering

that only one case of baseline BMI data was not available in the
Frontiers in Immunology 07
combination group, we adopted the listwise deletion strategy and

included 258 cases in the multivariate regression analyses for the

combination group (31). In the combination group, a significant

correlation was observed between the PIS and improved PFS (HR =

0.54, 95% CI: 0.38–0.75, p < 0.001) as well as OS (HR = 0.68, 95% CI:

0.49–0.95, p = 0.025) (Figures 4A, B). Considering the PIS and

additional clinical factors, no significant link was found between PD-

L1 and PFS (HR = 0.76, 95% CI: 0.54–1.08, p = 0.125). Nevertheless,

patients with positive PD-L1 expression (TPS ≥ 1%) appeared to gain

more overall survival benefits from chemoimmunotherapy compared

to those with negative PD-L1 expression (HR = 0.66, 95% CI: 0.47–

0.94, p = 0.022). Underweight patients, in contrast to those of normal

weight, exhibited reduced overall survival benefits from

chemoimmunotherapy (HR = 2.05, 95% CI: 1.09–3.83, p = 0.025).

Additionally, age and ECOG status were found to be influential in

predicting the overall survival of patients undergoing

chemoimmunotherapy (Figure 4B). Conversely, in the

chemotherapy group, no significant association was identified

between the PIS and survival outcomes, nor with other clinical

factors mentioned earlier (Figures 4C, D).
FIGURE 4

Multivariate Cox regression analyses of survival outcomes in the ORIENT-11 cohort. (A) Forest plot showing multivariate Cox regression analysis of
the effect of patho-immunoscore and other clinical characteristics on PFS of patients who received combination therapy in the ORIENT-11 cohort.
(B) Forest plot showing multivariate Cox regression analysis of the effect of patho-immunoscore and other clinical characteristics on OS of patients
who received combination therapy in the ORIENT-11 cohort. (C) Forest plot showing multivariate Cox regression analysis of the effect of patho-
immunoscore and other clinical characteristics on PFS of patients who received chemotherapy in the ORIENT-11 cohort. (D) Forest plot showing
multivariate Cox regression analysis of the effect of patho-immunoscore and other clinical characteristics on OS of patients who received
chemotherapy in the ORIENT-11 cohort. BMI, body mass index; CI, confidence interval; ECOG, Eastern Cooperative Oncology Group; HR, hazard
ratio; PD-L1, programmed death-ligand 1; PFS, progression-free survival; OS, overall survival.
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Combination of PD-L1 and
patho-immunoscore

Further, we explored whether the combination of PD-L1 and

PIS could help us find patients who would gain more survival

benefit from chemoimmunotherapy. As shown in Figure 5A, no

matter whether PD-L1 was positive or negative, patients with high

PIS tended to have significantly longer PFS than those with low PIS

in the combo settings (Figure 5A, p < 0.05). In those who have low

PIS, the PFS of patients with positive PD-L1 expression was

numerically longer than patients with negative PD-L1 expression

in the combo settings (Figure 5A, p = 0.093). Interestingly, we found

that patients with positive PD-L1 expression tended to gain more

overall survival benefit from chemoimmunotherapy even though

the PIS were low (Figure 5B, p = 0.009). In contrast, neither PD-L1
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nor PIS was associated with the survival outcomes of patients who

received chemotherapy only (Figures 5C, D).
Patho-immunoscore correlated with
MHC-II

In our prior investigation within the ORIENT-11 study, we

observed a link between the activity of the MHC class II antigen

presentation mechanism and the benefits observed in terms of

progression-free survival (PFS) and overall survival (OS) for the

treatment combination (30). In this study, we further examined the

association between MHC class II antigen presentation and the PIS,

using the CPTAC cohort as well as the ORIENT-11 cohort, as

depicted in Supplementary Figure 4. Notably, patients with high PIS
FIGURE 5

Survival outcomes of the combination group and chemotherapy group stratified by the status of PD-L1 expression and patho-immunoscore level.
(A) Kaplan-Meier analysis of PFS grouped by PD-L1 status and patho-immunoscore level in the combo group of the ORIENT-11 cohort. (B) Kaplan-
Meier analysis of OS grouped by PD-L1 status and patho-immunoscore level in the combo group of the ORIENT-11 cohort. (C) Kaplan-Meier
analysis of PFS grouped by PD-L1 status and patho-immunoscore level in the chemotherapy group of the ORIENT-11 cohort. (D) Kaplan-Meier
analysis of OS grouped by PD-L1 status and patho-immunoscore level in the chemotherapy group of the ORIENT-11 cohort. OS, overall survival;
PD-L1, programmed death-ligand 1; PFS, progression-free survival; Combo, combination therapy of immunotherapy and chemotherapy.
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exhibited higher MHC class II antigen presentation activity (P <

0.05), suggesting that high PIS is associated with activated

immunity and “hotter” tumor immune microenvironment.
Discussion

Our previous study has shown that patients with both high PD-

L1 expression and high ESTIMATE immune score tended to gain

more survival benefit from chemotherapy plus immunotherapy

(23). However, RNA sequencing is not convenient and cost-

effective in routine clinical practice. Therefore, in this study, we

developed a pathomics-based immunoscore model using data from

TCGA. By leveraging pathomics from whole-slide images, our

immunoscore analyzer demonstrated robust predictive accuracy

across three independent cohorts (TCGA-LUAD, ORIENT-11, and

CPTAC-LUAD). Further, our multicentre retrospective study

highlights the significant potential of an AI-powered

immunoscore in predicting the efficacy of chemoimmunotherapy

for patients with advanced non-squamous NSCLC. As far as we

know, this study is one of the first to assess a genomic signature

biomarker with pathomics data in non-squamous NSCLC, and the

fi r s t t o v a l i d a t e t h e r e l a t i v e p r ed i c t i v e v a l u e f o r

chemoimmunotherapy in a phase III randomized controlled trial

cohort. In addition, using patients receiving chemotherapy as

control, our study suggested that patho-immunoscore could serve

as a predictive biomarker for immunotherapy instead of a

prognostic biomarker for advanced NSCLC patients.

Over the past few years, multiplex tissue imaging methods have

provided in-depth profiling of the tumor microenvironment (TME)

for patients (32–36). However, their extensive cost has restricted

their broad application in clinical practice (37). Conversely, HE-

stained pathology slides offer a cost-effective and accessible

alternative, commonly found in pathology laboratories. These

slides harbor extensive data related to the TME, which can be

deciphered through the application of artificial intelligence (38). By

utilizing the AI in HE-stained slides to generate the PIS status, our

study offers a reliable, repeatable pre-treatment predictor of ICIs

treatment, thereby facilitating the clinical application of

personalized management for patients diagnosed with advanced

non-squamous NSCLC. In previous pathomics analyses, the main

emphasis has been on the density and space distribution of tumor-

infiltrating lymphocytes (TILs) (39–42). For example, the Hover-

Net system was a neural network system that was capable of

segmenting and classifying nuclei across various cancers,

facilitating detailed single-cell analysis of tumor cells, stroma cells,

and lymphocytes fromH&E slides (43). Pioneering large-scale TME

characterization from H&E slides was initiated by Abousamra and

colleagues, who cataloged the prevalence and spatial arrangement of

tumor-infiltrating lymphocytes (TILs) in 23 distinct cancer types

(44). Further, Sehhoon Park and colleagues developed an AI–

powered spatial analyzer for TILs in NSCLC (41). This tool can

identify three immune phenotypes (IPs): inflamed, immune-

excluded, and immune-desert. These IPs are correlated with the

response to ICIs in patients diagnosed with NSCLC, potentially

optimizing treatment selection in clinical practice for advanced
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NSCLC. Similarly, another study conducted by Rakaee et al. also

revealed that machine-learning-based TILs assessment could be a

valuable tool for predicting the response to ICI therapy in NSCLC

patients, particularly in those with PD-L1 negative status (42).

Although these methods are invaluable, they are impeded by the

requirement for meticulous annotations provided by expert

pathologists, a procedure that is inherently laborious and

resource-intensive. To counteract these constraints, various

research teams have suggested employing weakly-supervised deep

learning models. These models are capable of accomplishing diverse

computational pathology tasks, including tumor subtyping and

outcome prediction, without the need for precise region or pixel-

level annotations (25, 45–47). Similar to these studies, our study

adopted a weakly supervised multiple instance learning (MIL)

approach to train the patho-immunoscore model (48). Despite

the inherent risk of overfitting in deep learning models, our

research excels in its broad external validation. Our model has

been put to the test in various settings, including different centers,

diverse staining protocols, and ethnicities. In addition, the fixed

threshold applied to the model showed possible clinical

implementation potential for individual patient categorization

since the results are encouraging.

The current clinical practice often relies on PD-L1 expression,

TMB and Microsatellite instability (MSI) as biomarkers to predict

immunotherapy efficacy (49–53). However, the prediction efficacies

of these biomarkers are still limited. Our patho-immunoscore

model, which integrates comprehensive histological and immune

microenvironment data, offers a more nuanced and potentially

more accurate prediction of chemoimmunotherapy efficacy. This

advantage is particularly evident in our study, where the patho-

immunoscore provided significant stratification of patient

outcomes, independent of PD-L1 status.

Despite the promising results, our study has several limitations.

As a retrospective analysis, the findings require prospective

validation to confirm their clinical utility. The variability in

sample processing and staining across different cohorts may

introduce biases, although our model’s robust performance across

diverse datasets mitigates this concern to some extent. Additionally,

while our study focused on non-squamous NSCLC, further research

is needed to determine the patho-immunoscore’s applicability to

squamous cell carcinoma and other histological subtypes. Finally,

efforts should be made to improve the interpretability of the

ensemble model. We have conducted TME analysis pertaining to

model predictions and found that patho-immunoscore was

correlated with MHC-II pathway activation. However, we have

not explored the correlation between pathomics features and

molecular mechanisms. Future investigations aimed at

comprehending the underlying mechanisms of these pathomics

features and their performance will aid in establishing causal patho-

immunogenomic relationships, thereby unraveling the biological

intricacies that drive ensemble prediction.

In conclusion, our study provides compelling evidence that an

AI-powered immunoscore based on pathomics can serve as a robust

biomarker for predicting the efficacy of chemoimmunotherapy in

patients with advanced non-squamous NSCLC. Despite the

limitations posed by the lack of further clinical dataset validation,
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the model’s performance within the phase-III randomized

controlled trial cohort for advanced non-squamous NSCLC

provides compelling evidence of its potential to improve patient

selection for immunotherapy. This approach not only enhances our

ability to personalize cancer treatment but also opens new avenues

for the application of AI in oncological research and clinical

practice. By improving the precision of treatment selection, the

patho-immunoscore holds the potential to significantly impact

patient outcomes and advance the field of cancer immunotherapy.
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