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Cardiovascular and cerebrovascular diseases have surpassed cancer as

significant global health challenges, which mainly include atherosclerosis,

myocardial infarction, hemorrhagic stroke and ischemia stroke. The

inflammatory response immediately following these diseases profoundly

impacts patient prognosis and recovery. Efficient resolution of inflammation is

crucial not only for halting the inflammatory process but also for restoring tissue

homeostasis. Efferocytosis, the phagocytic clearance of dying cells by

phagocytes, especially microglia and macrophages, plays a critical role in this

resolution process. Upon tissue injury, phagocytes are recruited to the site of

damage where they engulf and clear dying cells through efferocytosis.

Efferocytosis suppresses the secretion of pro-inflammatory cytokines,

stimulates the production of anti-inflammatory cytokines, modulates the

phenotype of microglia and macrophages, accelerates the resolution of

inflammation, and promotes tissue repair. It involves three main stages:

recognition, engulfment, and degradation of dying cells. Optimal removal of

apoptotic cargo by phagocytes requires finely tuned machinery and associated

modifications. Key molecules in efferocytosis, such as ‘Find-me signals’, ‘Eat-me

signals’, and ‘Don’t eat-me signals’, have been shown to enhance efferocytosis

following cardiovascular and cerebrovascular diseases. Moreover, various

additional molecules, pathways, and mitochondrial metabolic processes have

been identified to enhance prognosis and outcomes via efferocytosis in diverse

experimental models. Impaired efferocytosis can lead to inflammation-

associated pathologies and prolonged recovery periods. Therefore, this review

consolidates current understanding of efferocytosis mechanisms and its

application in cardiovascular and cerebrovascular diseases, proposing future

research directions.
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1 Introduction

Cell death and turnover are continuous processes essential for

maintaining physiological equilibrium across all human organs. Even

under healthy conditions, the human body undergoes the turnover of

over one million cells per second primarily through programmed cell

death, known as apoptosis. Efferocytosis, the phagocytic removal

and recycling of dying cells by specialized phagocytes at

specific sites, is pivotal in this cellular clearance process (1).

Furthermore, efferocytosis assumes critical significance in various

pathophysiological contexts such as acute myocardial infarction and

transient middle cerebral artery occlusion, prevalent in cardiovascular

and cerebrovascular diseases (2–4). Upon injury, extensive cell death

leads to the release of damage-associated molecular patterns

(DAMPs), triggering localized inflammatory responses (5, 6).

Concurrently, dying cells release signals that recruit phagocytes (7)

to the injury site, facilitating the clearance of dying cells and DAMPs

to mitigate inflammation and restore homeostasis (8). Following the

engulfment and recycling of dying cells, phagocytes contribute to the

resolution of inflammation by releasing anti-inflammatory cytokines

while dampening the secretion of pro-inflammatory cytokines. This

underscores efferocytosis as a pivotal process in regulating

inflammatory responses and facilitating tissue repair (9, 10).

Cardiovascular and cerebrovascular diseases, such as stroke and

atherosclerosis, represent significant global health challenges

characterized by altered blood flow dynamics and vascular
Frontiers in Immunology 02
morphological changes, coupled with inflammation. In this

context, efferocytosis has emerged as a focal point in

contemporary research aimed at understanding its mechanistic

underpinnings and its impact on the pathophysiology of

cardiovascular and cerebrovascular diseases (11, 12). Therefore,

this review consolidates current insights into the mechanisms of

efferocytosis and its implications for cardiovascular and

cerebrovascular diseases.
2 Mechanisms of efferocytosis

Efferocytosis plays a pivotal role in tissue repair and

homeostasis by orchestrating the recognition, engulfment, and

digestion of dying cells (Figure 1) (13). Optimal uptake of

apoptotic cargo by phagocytes necessitates a finely tuned

phagosomal machinery and requisite modifications. Following the

recognition of apoptotic cells (ACs), phagocytes undergo a series of

morphological and functional adaptations. These include the

suppression of pro-inflammatory cytokine secretion, potentiation

of anti-inflammatory cytokine production, acceleration of

inflammation resolution, and facilitation of tissue repair

processes. Efficient clearance of dying cells not only resolves

inflammation but also contributes decisively to the restoration of

tissue and organ homeostasis (14). Consequently, enhancing any of

these facets presents potential avenues to improve efferocytosis and
FIGURE 1

Steps in efferocytosis. ① Recognition phase: Following tissue injury, cells at the injury site undergo various programmed cell death pathways, notably
apoptosis, ferroptosis, pyroptosis, and necroptosis, with apoptosis being the most prominent. During apoptosis, dying cells release chemokines
termed “find-me” signals, which serve to recruit efferocytes to the injury site. ② Engulfment phase: Membrane proteins on dying cells interact with
corresponding receptors on phagocytes, facilitating the regulation of efferocytosis; these membrane proteins are collectively referred to as “eat-me”
signals or “don’t eat-me” signals. ③ Degradation phase: Upon recognition and engulfment of dying cells, the process of subsequent degradation
commences. This process involves the maturation of the phagosome, its transformation into a phagolysosome, and the subsequent breakdown and
digestion of the engulfed dying cells. Created with BioRender.com.
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mitigate inflammatory responses. Subsequent sections will delve

into the molecular intricacies and therapeutic strategies targeting

each phase of efferocytosis.
2.1 Recognition of dying cells: “Find-me”
signals and “Eat-me” signals

Following tissue injury, cells at the injury site undergo various

programmed cell death pathways, notably apoptosis, ferroptosis,

pyroptosis, and necroptosis, with apoptosis being the most

prominent (15). During these programmed cell death pathways,

dying cells release chemokines termed “Find-me” signals, which

serve to attract phagocytes to the injury site. Additionally,

membrane proteins on dying cells interact with corresponding

receptors on phagocytes, facilitating the regulation of

efferocytosis; these membrane proteins are collectively referred to

as “Eat-me” signals (14).

After injury and apoptosis, cellular membranes undergo

rupture and release soluble signals that function in dual

capacities: firstly, as chemokines directing phagocytes towards

apoptotic cells; and secondly, in priming phagocytes for

engulfment by modulating their cytoskeletal dynamics and

enhancing the expression of engulfment receptors and digestive

machinery. These “find-me” signals encompass chemokines (e.g.,

CX3CL1 (16) also known as fractalkine), lipids [e.g., LPC (17)], and

nucleotides (e.g., ATP and UTP). During early apoptosis, apoptotic

cells release CX3CL1, which binds to CX3CR1 on phagocytes and
Frontiers in Immunology 03
guides them to the periphery of apoptotic cells (1). LPC, an initial

“find-me” signal, binds to G-protein-coupled receptor G2A to

induce efferocytosis, with ATP-binding cassette transporter 1

(ABCA1) expressed by apoptotic cells also facilitating LPC release

(18). Sphingosine 1-phosphate (S1P), synthesized in a caspase-

dependent manner, is abundantly released post-apoptosis and

engages S1P receptors on phagocytes to promote efferocytosis

(19, 20). Both LPC and S1P serve as apoptosis-specific “Find-me”

signals. During apoptosis, caspase-3 cleavage activates calcium-

independent phospholipase A2, which synthesizes LPC from

phosphatidylcholine. Additionally, some apoptotic cells

upregulate S1P mitogen-activated protein kinases SPK1 and

SPK2, phosphorylating sphingosine to produce S1P (Figure 2)

(21). Binding of S1P to S1P receptor (S1PR) on macrophages

fosters an autocrine signaling loop involving hypoxia-inducible

factor-1a (HIF-1a), erythropoietin (EPO), EPO receptor, and

peroxisome proliferator-activated receptor-a (PPARa), which

upregulates receptors for dying cells (22). Nucleotides (ATP/

UTP) also act as chemokines, promoting recruitment of

phagocytes via binding to P2X or P2Y receptors following

cleavage of the C-terminal tail of Panx1 of plasma membrane

Pannexin-1 (Panx1) channels by caspase 3/7 during apoptosis

(6, 23). These released nucleotides “prime” phagocytes for

engulfment by inducing expression of binding and engulfment

receptors such as CD11b and a5b3 integrin (24).

Upon reaching the site of injury, phagocytes encounter “eat-

me” signals displayed on the membranes of dying cells, initiating

downstream efferocytosis either directly or indirectly through
FIGURE 2

Find-me Signals. Following tissue injury, cells at the injury site undergo various programmed cell death pathways and dying cells release soluble find-
me signals to attract efferocytes. These “find-me” signals encompass chemokines such as CX3C-chemokine ligand 1 (CX3CL1) also known as
fractalkine, lipids such as sphingosine 1-phosphate (S1P) and lysophosphatidylcholine (LPC), and nucleotides such as ATP and UTP. Dying cells
release CX3CL1, which binds to CX3CR1 on efferocytes and attract them to the injury site. LPC, an initial “find-me” signal, binds to G-protein-
coupled receptor G2A to induce efferocytosis. S1P is synthesized in a caspase-dependent manner and abundantly released post-apoptosis and
engages S1P receptors on efferocytes to induce efferocytosis. Nucleotides (ATP/UTP) also act as chemokines, promoting recruitment of efferocytes
via binding to P2X or P2Y receptors. Created with BioRender.com.
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receptor interactions. These “eat-me” signals encompass

phosphatidylserine (PtdSer), calreticulin, intercellular adhesion

molecule 3 (ICAM3), and glycosylation moieties. In healthy cells,

PtdSer is predominantly localized within the inner leaflet of plasma

membranes, maintained by flippases. During apoptosis, caspase-3-

mediated inactivation of flippases and activation of XKR8-

independent scramblase activity induce rapid translocation of

PtdSer from the inner to the outer leaflet, exposing it

extracellularly for binding to phagocyte surface receptors directly

(25). These receptors include stabilins (e.g., stabilin1 and stabilin2),

T cell immunoglobulin mucin receptors (TIM family, such as TIM1,

TIM3, and TIM4), adhesion G protein-coupled receptor B1

(ADGRB1, also known as BAI1), the receptor for advanced

glycation end products (RAGE), and members of the CD300

family (CD300a and CD300b) (26, 27). Additionally, scavenger

receptor CD36 interacts preferentially with oxidized PtdSer than

non-oxidized PtdSer, enhancing phagocytic clearance of dying cells

(28). Bridging ligands act as medium molecule between apoptotic

cells and phagocytes, facilitating the binding of phagocytes to

PtdSer indirectly. For instance, TAM receptor tyrosine kinases

(TYRO3, AXL, and MerTK) recognize apoptotic cells via specific

bridging ligands like growth arrest-specific protein 6 (GAS6) and
Frontiers in Immunology 04
Protein S. GAS6 interacts with all three TAM receptors to promote

apoptotic cell binding, whereas Protein S only selectively binds to

TYRO3 and MerTK (29). Integrins, another indirect receptor,

require milk fat globule-EGF factor 8 (MFGE8) or its homologue

developmental endothelial locus-1 (DEL-1) to bind PtdSer on dying

cells (Figure 3) (30–32). Low-density lipoprotein receptor-related

protein (LRP) can engage PtdSer with the aid of the bridging

molecule beta-2-glycoprotein 1 (b2-GP1), facilitating engulfment

by phagocytes (33). Other molecules acting as molecular bridges

between apoptotic cargo and phagocytes include annexin A1 or

lipocortin-1 interacting with PtdSer, and galectin-3 (Gal-3)

interacting with MerTK (34, 35).

In addition to “eat-me” signals, dying cells also express “Don’t

eat-me” signals such as CD47 and CD24. CD47, typically expressed

on healthy cells, interacts with SIRPa on phagocytes to prevent their

engulfment. During apoptosis, CD47 on dying cells similarly engages

with SIRPa, leading to the phosphorylation of SIRPa’s cytoplasmic

domain and subsequent recruitment and activation of phosphatases

SHP1/2. These phosphatases inhibit phagocytosis by suppressing

non-muscle myosin IIA activity (36, 37). CD24, recently identified

as highly expressed on tumor cells, interacts with sialic acid binding

immunoglobulin-like lectin 10 (Siglec10) on tumor-associated
FIGURE 3

Eat-me Signals and Don’t eat-me Signals. Upon reaching the site of injury, efferocytes encounter “eat-me” signals displayed on the membranes of
apoptotic cells, initiating downstream efferocytosis either directly or indirectly through receptor interactions. PtdSer translocates from the inner to
the outer leaflet and exposes extracellularly for binding to efferocytes surface receptors directly. These receptors include stabilins such as stabilin1
and stabilin2, T cell immunoglobulin mucin receptors (TIM family) such as TIM1, TIM3, and TIM4, adhesion G protein-coupled receptor B1 (ADGRB1,
also known as BAI1), the receptor for advanced glycation end products (RAGE), and members of the CD300 family such as CD300a and CD300b.
Scavenger receptor CD36 interacts preferentially with oxidized PtdSer than non-oxidized PtdSer, enhancing phagocytic clearance of apoptotic cells.
TAM receptor tyrosine kinases (TYRO3, AXL, and MerTK) recognize apoptotic cells via specific bridging ligands like growth arrest-specific protein 6
(GAS6) and Protein S. GAS6 interacts with all three TAM receptors to promote apoptotic cell binding, whereas Protein S only selectively binds to
TYRO3 and MerTK. Integrins, another indirect receptor, require milk fat globule-EGF factor 8 (MFGE8) or its homologue developmental endothelial
locus-1 (DEL-1) to bind PtdSer on apoptotic cells. In addition to “eat-me” signals, apoptotic cells also express “Don’t eat-me” signals to inhibit
efferocytosis. CD47, typically expressed on healthy cells, interacts with SIRPa on phagocytes to prevent their engulfment. During apoptosis, CD47 on
dying cells similarly engages with SIRPa, leading to the phosphorylation of SIRPa’s cytoplasmic domain and subsequent recruitment and activation
of phosphatases SHP1/2. CD24 interacts with sialic acid binding immunoglobulin-like lectin 10 (Siglec10) on efferocytes, thereby evading
efferocytosis. CD31, as well as CD46 with class I MHC molecules, contribute to preventing engulfment under healthy and apoptotic conditions.
Created with BioRender.com.
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macrophages, thereby evading efferocytosis (38). Additionally,

homophilic interactions of CD31 on leukocytes and macrophages,

as well as CD46 with class I MHCmolecules, contribute to preventing

engulfment under healthy and apoptotic conditions (Figure 3)

(39, 40). Although targeting these anti-phagocytic receptors is an

underexplored area, it holds promise for influencing cardiovascular

and cerebrovascular inflammation pathways.
2.2 Engulfment of dying cells

Efferocytosis is a tightly regulated process that encompasses the

recognition, engulfment, and subsequent degradation of dead and

dying cells. Upon recognition of dying cells by phagocytes, the

process of engulfment and subsequent degradation commences.

This process involves the maturation of the phagosome, its

transformation into a phagolysosome, and the subsequent

breakdown and digestion of the engulfed material.

2.2.1 Uptake of dying cells
Upon recognizing dying cells, phagocytes initiate actin

remodeling in the membrane and form phagosomes through

alterations in membrane morphology, ultimately leading to

engulfment (41). Actin remodeling involves two primary

mechanisms converging on the RHO family small GTPase RAC1,

a key regulator in this process. In one mechanism, LRP1 and the

adapter protein GULP are implicated in RAC1 activation, although

the specific mechanism remains unclear (42). In another

mechanism, receptor ligation by dying cells and phagocytes

activates the guanine nucleotide exchange factor (GEF) ‘TRIO’,

which loads GTP onto the small GTPase RHOG. This activation

leads to recruitment of the engulfment and cell motility protein

(ELMO), facilitating interaction with the SH3 domain of DOCK180

(43). The resulting DOCK180-ELMO complex acts as another GEF

for RAC1, thereby activating RAC1. Activated RAC1 then promotes

localized actin polymerization, crucial for forming the actin

nucleation core necessary to coat or grasp the cargo (Figure 4A)

(44). This process involves nucleation-promoting factors from the

WASP family, including SCAR and WAVE, which recruit the

ARP2/3 complex to facilitate actin assembly (45).

2.2.2 Degradation by lysosomes
Following the formation of the phagosome, it undergoes fusion

with lysosomes, which are rich in a diverse array of proteases,

nucleases, and lipases responsible for the degradation of

phagosomal cargo (46). This fusion process is tightly regulated

and influenced by multiple steps and biochemical changes at the

phagosomal membrane. Key to the regulation of these processes are

the RAB GTPase family proteins, which cycle between an active,

GTP-bound state and an inactive, GDP-bound state. RAB proteins

interact with effector molecules that mediate various intracellular

functions, including motor-driven vesicle trafficking, vesicle fusion

events, and signaling pathways that regulate ‘RAB conversion’ and
Frontiers in Immunology 05
activation of downstream RAB GTPase family members

(Figure 4B) (47).

RAB5 plays a pivotal role in orchestrating phagosomes trafficking

and the biogenesis of early phagosomes during maturation processes.

It functions by recruiting and activating several critical effector

proteins, including early endosomal antigen 1 (EEA1), the vacuolar

fusion proteins MON1A and MON1B, and the class III

phosphatidylinositol 3-kinase VPS34, all of which are essential for

effective efferocytosis (48). Subsequently, VPS34 catalyzes the

conversion of phosphatidylinositol into phosphatidylinositol 3-

phosphate (PI3P), a key signaling lipid necessary for optimal

phagosome maturation. This catalytic activity is further facilitated

by the serine/threonine kinase VPS15, which forms a complex with

VPS34 to activate RAB5 and promote its functions in phagosome

biogenesis and trafficking (49, 50).

Early phagosomes undergo a transition to late phagosomes,

distinguished by specific biochemical markers such as the

acquisition of RAB7 and the concurrent loss of RAB5 (51). Late

phagosomes further mature through the accumulation of two key

RAB7 effector proteins: RAB7-interacting lysosomal protein (RILP)

and oxysterol-binding protein-related protein 1 (ORP1 or ORPL1).

These proteins facilitate interactions with the molecular motor

dynein-dynactin, thereby coordinating microtubule-dependent

vesicular trafficking of RAB7-positive late phagosomes (52).

Concurrently, VAMP7 and syntaxin 7 are recruited to the

phagosome membrane to form a Ca2+-dependent SNARE

complex, promoting fusion between the phagosome and

lysosome. Upon fusion, the resulting phagolysosome exhibits high

acidity (pH 4.5-5.0), which is crucial for the efficient degradation of

internalized cell corpse, facilitated by the presence of active

cathepsins within the phagolysosomal lumen (53, 54).
2.3 Modification of phagosome maturation:
LC3-associated phagocytosis

Modification of phagosome maturation through LC3-associated

phagocytosis (LAP) represents a noncanonical pathway involving

autophagy proteins, specifically the microtubule-associated protein

1A/1B light chain 3 (LC3) family (55). LC3 lipidation, critical for

autophagosome trafficking and autophagosome/lysosome fusion,

also plays a pivotal role in LAP, where the cargo primarily

comprises dying cells and pathogens, distinct from the cellular

organelles targeted in classical autophagy under intracellular stress

conditions. LAP is particularly activated in response to injury or the

phagocytosis of dying cells, in contrast to autophagy activation

mechanism. Central to LAP is its regulatory function in innate

immune cell activation subsequent to the recognition and

engulfment of dead cell cargo (56). Upon phagocytic engagement,

a phosphatidylinositol 3-kinase (PI3K) complex assembles at the

phagophore, comprising rubicon, UVRAG, beclin 1, VPS34, and

VPS15 (57). This complex phosphorylates phosphatidylinositides

(PtdIns) to generate phosphatidylinositol 3-phosphate (PI3P),
frontiersin.org
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which is crucial for the activation of reactive oxygen species (ROS)

production via NADPH oxidase-2 (NOX2). PI3P also facilitates the

recruitment and activation of the LC3 conjugation machinery

(Figure 4C). LC3 lipidation onto the phagosomal membrane

promotes rapid phagosome maturation and subsequent

phagosome-lysosome fusion, ensuring efficient clearance of dying

cells and fostering an immune-silent environment (58).
3 Efferocytosis in
cardiovascular disease

3.1 Atherosclerosis

Atherosclerotic cardiovascular diseases, such as atherosclerosis

and myocardial infarction, result in more fatalities than all types of

cancer combined. The principal pathophysiological mechanism

involves the development of atherosclerotic plaques. These

plaques originate from the accumulation of ApoB-containing

lipoproteins within the subendothelial layer of arteries, initiating
Frontiers in Immunology 06
an inflammatory response that drives leukocyte influx into the

vessel wall. Subsequently, these leukocytes undergo apoptosis and

are cleared through efferocytosis. However, as the plaque advances,

inefficient clearance of apoptotic cells leads to the accumulation of

secondarily necrotic cells within the plaque, forming the necrotic

core. These necrotic cores constitute the critical characteristic of

plaque vulnerability, increasing the risk of rupture, luminal

thrombosis, and thereby contributing significantly to the

likelihood of myocardial infarction and stroke (2, 59). Hence,

efferocytosis plays a pivotal role in resolving inflammation and

mitigating atherosclerosis (Table 1).

As atherosclerosis progresses, persistent inflammatory stimuli

lead to the cleavage of MerTK from the cell surface. This cleaved

MerTK competes with cell surface MerTK on phagocytes for

binding with GAS6 and protein S, thereby impairing efferocytosis

within the lesion. Genetically engineered mice expressing cleavage-

resistant MerTK exhibit enhanced efferocytosis and reduced

propensity for developing necrotic cores compared to control

mice (60, 86). Conversely, mice lacking or expressing an inactive

form of MerTK demonstrate increased plaque size and expanded
FIGURE 4

Engulfment and degradation of apoptotic cells. (A) Upon recognizing dying cells, efferocytes initiate actin remodeling and form phagosomes,
ultimately leading to engulfment. Actin remodeling involves two primary mechanisms converging on the RHO family small GTPase RAC1. In the first
mechanism, LRP1 and the adapter protein GULP are implicated in RAC1 activation, although the specific mechanism remains unclear. In the second
mechanism, receptor ligation by apoptotic cells and efferocytes activates the guanine nucleotide exchange factor (GEF) ‘TRIO’, which loads GTP
onto the small GTPase RHOG. This activation leads to recruitment of the engulfment and cell motility protein (ELMO), facilitating interaction with the
SH3 domain of DOCK180. The resulting DOCK180-ELMO complex acts as another GEF for RAC1, thereby activating RAC1. Activated RAC1 then
promotes the forming of the actin nucleation core which is necessary to coat or grasp the cargo. (B) Upon recognition of apoptotic cells by
efferocytes, the membrane wraps around the apoptotic and enters the cell to form early phagosome. Afterwards the early phagosome matures and
transforms into a late phagosome, distinguished by specific biochemical markers such as the acquisition of RAB7 and the concurrent loss of RAB5.
Following the formation of the late phagosome, it undergoes fusion with lysosomes, which are rich in a diverse array of proteases, nucleases, and
lipases responsible for the degradation of phagosomal cargo. Key to the regulation of these processes are the RAB GTPase family proteins, which
cycle between an active, GTP-bound state and an inactive, GDP-bound state. RAB proteins interact with effector molecules that mediate various
intracellular functions, including motor-driven vesicle trafficking, vesicle fusion events, and signaling pathways that regulate ‘RAB conversion’ and
activation of downstream RAB GTPase family members. (C) Modification of phagosome maturation through LC3-associated phagocytosis (LAP)
represents a noncanonical pathway involving autophagy proteins, specifically the microtubule-associated protein 1A/1B light chain 3 (LC3) family.
Upon phagocytic engagement, a phosphatidylinositol 3-kinase (PI3K) complex assembles at the phagophore, comprising rubicon, UVRAG, beclin 1,
VPS34, and VPS15. This complex phosphorylates phosphatidylinositides (PtdIns) to generate phosphatidylinositol 3-phosphate (PI3P), which is crucial
for the activation of reactive oxygen species (ROS) production via NADPH oxidase-2 (NOX2). PI3P also facilitates the recruitment and activation of
the LC3 conjugation machinery. Created with BioRender.com.
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necrotic core area (61, 87). Similarly, LRP1, progressively

downregulated during atherosclerosis, can also be rendered

inactive through ADAM17-mediated proteolytic cleavage akin to

MerTK (86). Macrophages in advanced lesions in both human and

murine models upregulate calcium/calmodulin-dependent protein
Frontiers in Immunology 07
kinase IIg (CaMKIIg), which suppresses the ATF6-LXRa-MERTK

pathway. Consequently, Western diet-fed Ldlr−/− mice lacking

myeloid CaMKIIg exhibit elevated macrophage MerTK

expression, improved efferocytosis, and reduced necrotic core area

in atherosclerotic lesions (62). Loss of LRP1 in hematopoietic cells
TABLE 1 Targets involved in efferocytosis in cardiovascular disease.

Molecule/
Targets

Role
in Efferocytosis

Ligands Disease Model
Impact

on Pathogenesis
Efferocytosis Reference

MerTK↓ Eat-me
GAS6/

Protein S
Ldlr–/– mice
Apoe–/– mice

plaque↑ ↓ (60, 61)

CAMKIIg↑ Ldlr–/– mice plaque↑ ↓ (62)

LRP1↓ Eat-me Apoe–/– mice plaque↑ ↓ (63, 64)

Tim-1/4↓ Eat-me Ldlr–/– mice plaque↑ ↓ (65)

SR-BI↓ Eat-me
Ldlr–/– mice
Apoe–/– mice

plaque↑ ↓ (66)

NLRP3↓
Ldlr–/– mice
Apoe–/– mice

plaque↓ ↑ (67)

PHACTR1↓ Apoe–/– mice plaque↓ ↑ (68)

CNP↑ Apoe–/– mice plaque↓ ↑ (69)

ALDH2↓ Apoe–/– mice plaque↑ ↓ (70)

CD47↑ Don’t Eat-me Apoe–/– mice plaque↑ ↓ (71)

Resolvin D1↑ Ldlr–/– mice plaque↓ ↑ (72)

PKM2↓ Ldlr–/– mice plaque↓ ↑ (73)

IL-10↑ Ldlr–/– mice plaque↓ ↑ (74)

Arg1↑ Ldlr–/– mice plaque↓ ↑ (9)

Treg↑ Ldlr–/– mice plaque↓ ↑ (75)

CFH↓ Ldlr–/– mice plaque↓ ↑ (76)

MerTK↓ Eat-me
GAS6/

Protein S
Permanent left coronary

artery ligation
myocardial infarct size↑ ↓ (77)

S100A9↓
Permanent left coronary

artery ligation
myocardial infarct size↑ ↓ (78)

Legumain↑ Experimental MI Surgery myocardial infarct size↓ ↑ (79)

Ndufs4↓
Permanent left coronary

artery ligation
myocardial infarct size↑ ↓ (80)

IL-10↑ Experimental MI Surgery myocardial infarct size↓ ↑ (81)

Sectm1a↓

Experimental MI/R Surgery

Ischemia/reperfusion-induced
cardiac injury↑

↓ (82)

MerTK↓ Eat-me
GAS6/

Protein S
Ischemia/reperfusion-induced

cardiac injury↑
↓ (83)

CD47↓ Don’t Eat-me
Ischemia/reperfusion-induced

cardiac injury↓
↑ (84)

MSCs↑
Ischemia/reperfusion-induced

cardiac injury↓
↑ (85)
Abbreviations in order of appearance: MerTK, MER Tyrosine Kinase; CAMKIIg, Calcium/Calmodulin Dependent Protein Kinase II Gamma; LRP1, LDL Receptor Related Protein 1; Tim-1/4, T
Cell Immunoglobulin And Mucin Domain Containing 1/4; SR-BI, Scavenger Receptor Class B Member 1; NLRP3, NLR Family Pyrin Domain Containing 3; PHACTR1, Phosphatase And Actin
Regulator 1; CNP, C-Type Natriuretic Peptide; ALDH2, Aldehyde Dehydrogenase 2 Family Member; CD47, Integrin Associated Protein; PKM2, Pyruvate kinase isozyme type M2; IL-10,
Interleukin-10; Arg1, Arginase 1; Treg, Regulatory T cells; CFH, Complement Factor H; S100A9, S100 calcium binding protein A9; Legumain, Asparaginyl Endopeptidase; Ndufs4, NADH,
NADH Dehydrogenase (Ubiquinone) Fe-S Protein 4; Sectm1a, Secreted And Transmembrane Protein 1; MSCs, Mesenchymal Stem Cells; GAS6, Growth Arrest Specific Protein 6; Ldlr, Low
Density Lipoprotein Receptor; Apoe, Apolipoprotein E. The symbols "↑, ↓" in "Molecule/Targets" mean the expression of these targets were increased or decreased after ICH. The symbols in
"Impact on Pathogenesis" mean the plaque size were increased or decreased. The symbols in "Efferocytosis" mean the efferocytosis after ICH were upregulated or downregulated.
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exacerbates atherosclerosis by impairing efferocytosis and

increasing lesion area and necrotic core size in high-fat diet-fed

atheroprone mice (63, 64). Additionally, blocking antibodies against

TIM1 or TIM4, which serve as ‘Eat-me signals’, promote

atherosclerosis progression by inhibiting efferocytosis within the

lesion, leading to secondary accumulation of necrotic cells and

heightened production of pro-inflammatory cytokines.

Furthermore, TIM blockade induces substantial reductions in

regulatory T cells in circulation, which otherwise stimulate

lesional efferocytosis in an IL-10-dependent manner (65).

Scavenger receptor class B member 1 (SRB1) facilitates

efferocytosis via the SRC-PI3K-RAC1 pathway, and its deletion in

macrophages results in defective efferocytosis, increased plaque size,

larger necrotic core area, and heightened inflammation in

atherosclerosis (66). Moreover, caspase 1 inhibitor VX765 could

suppress NLRP3 inflammasome assembly and atherosclerosis

progression by promoting mitophagy and efferocytosis (67).

CDKN2B, a key gene in atherosclerosis, exhibits reduced

calreticulin levels in Cdkn2b−/−Apoe−/− mice compared to controls,

contributing to increased plaque size and necrotic core area under

Western diet conditions. Notably, atherosclerotic plaques from

patients often exhibit genetic variations at the 9p21 locus, including

the CDKN2B gene, which correlate with reduced calreticulin levels

and compromised efferocytosis, thereby indicating poorer prognosis

(68). C-type natriuretic peptide (CNP) negatively correlates with

coronary atherosclerosis burden in patients by promoting an anti-

inflammatory macrophage phenotype, enhancing efferocytosis, and

reducing foam cell formation and necroptosis (69). Several genome-

wide association studies have linked intronic variants in phosphatase

and actin regulator 1 (PHACTR1) on chromosome 6p24 with

coronary artery disease (CAD) risk. The rs9349379 risk allele G,

which lowers PHACTR1 expression in macrophages, may increase

CAD risk via impaired efferocytosis, as PHACTR1 prevents myosin

light chain (MLC) dephosphorylation necessary for apoptotic cell

engulfment (68). Clinical studies highlight ALDH2 rs671 mutation as

a common risk factor for atherosclerotic cardiovascular diseases,

where macrophage ALDH2 stabilizes Rac2 to facilitate efferocytosis

and reduce atherosclerosis development. Wild-type ALDH2 interacts

directly with Rac2 to inhibit its degradation, whereas the rs671

mutant enhances Rac2 instability through increased K48-linked

polyubiquitination at lysine 123 (70).

In atherosclerotic plaques, CD47 expression is significantly

upregulated on apoptotic and necroptotic cells, contributing to

defective efferocytosis. Administration of CD47-blocking

antibodies reverses this defect, normalizes vascular tissue

clearance, and mitigates atherosclerosis in various mouse models

(71). The long non-coding RNA myocardial infarction-associated

transcript (MIAT), elevated in atherosclerosis patients, interferes

with miR-149-5p post-translational processing, thereby increasing

CD47 levels. Genetic targeting of MIAT in Apoe−/−mice decreases

CD47 expression, improves efferocytosis, and reduces plaque

necrosis (88).

Efferocytosis induces alterations in lipid mediator production

that are pivotal for inflammation resolution. Macrophages exposed

to apoptotic neutrophils or neutrophil-derived microparticles

exhibit heightened expression of specialized pro-resolving
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mediators (SPMs), such as lipoxin A4, resolvins D1, D2, and E2,

derived from long-chain fatty acids (72, 89). Concurrently, there is a

reduction in pro-inflammatory prostaglandins and leukotriene B4.

Advanced human atherosclerotic lesions demonstrate decreased

levels of SPMs compared to early-stage lesions, correlating with

impaired efferocytosis. Treatment of mice with advanced

atherosclerosis using resolving mediators enhances lesional

efferocytosis. Conversely, elevated levels of proinflammatory lipid

mediators in advanced atherosclerosis can impair efferocytosis. For

instance, 12(S)-hydroxyeicosatetraenoic acid, derived from

arachidonic acid and elevated in progressing atherosclerotic

lesions and serum of individuals with coronary artery disease,

inhibits efferocytosis in human monocyte-derived macrophages

by activating RHOA, thereby blocking phagosome internalization.

This impairment can be rectified by co-incubation with statins,

which inhibit RHOA through the blockade of isoprenylation, a

critical RHOA-activating modification (90). Macrophage

efferocytosis is intricately linked to energy metabolism. Elevated

levels of an enzyme regulating energy metabolism have been

observed in macrophages from patients with atherosclerotic

coronary artery disease. Conditional deletion of PKM2 in myeloid

cells of Ldlr-/- mice fed a high-fat Western diet for 14 weeks

upregulated LRP-1 and enhanced macrophage efferocytosis,

leading to regression of lesions in the entire aorta and aortic

sinus. Depletion of PKM2 also suppressed MCP-1, IL-1b, and IL-

12 expression, indicating inhibition of the macrophage

proinflammatory phenotype (73).

Effective efferocytosis contributes to the synthesis of IL-10,

TGF-b, and Arg-1 synthesis in atherosclerotic plaques. During

efferocytosis, macrophage ornithine decarboxylase promotes the

production of putrescine, which up-regulates IL-10 expression

through the MerTK-MAPK-ERK1/2 pathway (74). IL-10, in turn,

enhances efferocytosis in advanced atherosclerosis via the IL-10/

Vav1/Rac1 pathway (91). Effective efferocytosis also induces the

production of prostaglandin E2 (PGE2) via the CD36/ERK/Ptgs2/

COX2 pathway, and PGE2 further stimulates TGF-b synthesis,

which contributes to anti-inflammatory and pro-resolving

properties (92). Additionally, effective efferocytosis up-regulates

Arg-1 expression in macrophages, often associated with M2

polarization. Arg-1 metabolizes arginine and ornithine derived

from apoptotic cells to produce putrescine, which enhances Dbl/

Rac1-mediated engulfment of secondary apoptotic cells, thereby

sustaining efferocytosis and promoting regression of

atherosclerosis (9).

Adaptive immunity plays a pivotal role in the pathogenesis of

atherosclerosis. Regulatory T cells (Tregs) are instrumental in

attenuating proinflammatory responses and promoting resolution

of inflammation. Single-cell RNA-sequencing of immune cells

within atherosclerotic plaques has underscored the critical role of

Tregs in enhancing efferocytosis and resolving atherosclerotic

cardiovascular disease (75, 91). Cell-autonomous regulation of

complement component C3 by complement factor H (CFH)

modulates macrophage efferocytosis and impacts the progression

of atherosclerosis. In a murine model of atherosclerosis, CFH

deficiency has been shown to limit plaque necrosis in a manner

dependent on complement C3. Specifically, deletion of CFH in
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monocyte-derived inflammatory macrophages leads to

dysregulated cell-autonomous consumption of complement C3

without subsequent activation of downstream complement C5,

thereby enhancing efferocytosis capacity (76).
3.2 Myocardial injury and repair

Heart failure subsequent to myocardial infarction (MI)

continues to impose a significant burden of morbidity and

mortality. Despite pharmacological advancements such as b-
blockers and angiotensin-converting enzyme (ACE) inhibitors,

which have effectively reduced mortality rates, the residual risk of

developing heart failure post-MI remains considerable. Timely

reperfusion through thrombolytic agents or primary percutaneous

coronary intervention represents the most efficacious intervention

for MI patients. However, reperfusion of the ischemic heart can

induce additional damage, including extensive cardiomyocyte death

and subsequent cardiac inflammation. This section will thus discuss

recent research advances in efferocytosis in the context of MI

(Table 1) (82, 93).

Following myocardial injury or ischemia/reperfusion injury,

efferocytosis plays a critical role in the clearance of dying cells

and damage-associated molecular patterns (DAMPs), thereby

mitigating secondary cytokine storms and reducing inflammatory

responses. Similar to its role in atherosclerosis, MerTK activation

also facilitates efferocytosis in myocardial infarction. MerTK-

mediated clearance of apoptotic cardiomyocytes accelerates

inflammation resolution and enhances secretion of vascular

endothelial growth factor A (VEGFA), thereby promoting cardiac

repair post-injury (77). Maintaining elevated MerTK expression,

potentially through extracellular vesicles secreted by cardiosphere-

derived cells, could enhance efferocytosis efficacy and improve

outcomes following myocardial infarction (94). Moreover,

inhibiting the alarmin S100A9 may increase the population of

reparative Ly6ClowMerTKhigh macrophages, thereby further

enhancing efferocytosis and facilitating cardiac recovery (78).

As the principal phagocytes in the cardiovascular system,

macrophages play a crucial role in efferocytosis following

myocardial infarction. Cardiac resident macrophages, through the

action of legumain, contribute to cardiac repair by facilitating the

clearance and degradation of apoptotic cardiomyocytes post-

myocardial infarction (79). Additionally, mitochondrial function

in macrophages is pivotal in regulating cardiac repair processes

after myocardial injury. Deletion of mitochondrial complex I

protein Ndufs4 specifically in myeloid cells (mKO) recapitulates a

proinflammatory metabolic phenotype in macrophages and

exacerbates their response to lipopolysaccharide (LPS). Impaired

efferocytosis in mKO macrophages results in reduced expression of

anti-inflammatory cytokines and tissue repair factors, accompanied

by heightened inflammatory responses. Mitochondria-targeted

reactive oxygen species (ROS) scavenging ameliorates these

impairments, enhances myofibroblast function, and reduces post-

myocardial infarction mortality in mKO mice (80).

IL-10 is crucial in this context as an essential cytokine involved

in MI. Co-incubation of apoptotic cells (ACs) with macrophages
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stimulates an increase in oxygen consumption rate and IL-10

production in macrophages, a process mediated by fatty acid

oxidation. Fatty acids derived from apoptotic cells promote IL-10

synthesis through mitochondrial b-oxidation and regulation of

electron transport, leading to an elevated NAD+/NADPH ratio.

This heightened NAD+ level activates SIRT1, which in turn

facilitates Pbx-1 binding to the apoptotic cell response element

within the IL-10 promoter. Consequently, this cascade enhances IL-

10 expression, thereby contributing to improved cardiac repair

following ischemia/reperfusion injury (81).

Ischemia/reperfusion-induced cardiac injury represents a

significant portion of myocardial damage. Macrophage-enriched

Sectm1a plays a pivotal role in promoting effective efferocytosis to

mitigate ischemia/reperfusion-induced cardiac injury and enhance

cardiac function (82). Following ischemia/reperfusion-induced

cardiac injury, MerTK undergoes cleavage similarly to the pattern

observed in atherosclerosis in both humans and mice. The cleavage

of MerTK on resident cardiac macrophages impairs efferocytosis

and subsequent repair processes after myocardial ischemia/

reperfusion injury (83). CD47 has been demonstrated to inhibit

efferocytosis in the context of atherosclerosis. Consequently,

genetically engineered macrophages co-loaded with CD47

inhibitors, such as PEP-20, could potentially synergistically

restore efferocytosis and enhance cardiac remodeling following

myocardial ischemia/reperfusion injury (84). Mesenchymal stem

cells (MSCs) have shown considerable promise in the treatment of

cardiovascular diseases, indicating their broad therapeutic potential.

It has been established that MSC infusion can improve cardiac

function in rats following myocardial ischemia/reperfusion,

potentially through mechanisms that enhance M2 macrophage-

mediated efferocytosis of apoptotic neutrophils (85).
4 Cerebrovascular disease

4.1 Intracerebral hemorrhage

Common cerebrovascular diseases in the population encompass

ischemic stroke, intracerebral hemorrhage (ICH), and

subarachnoid hemorrhage (SAH). Following the onset of these

conditions, the efficient clearance of apoptotic cells is crucial for

preserving central nervous system (CNS) homeostasis and

facilitating recovery post-injury.

Intracerebral hemorrhage (ICH) is a severe condition

characterized by hematoma-induced mass effect. Rupture of

cerebral vessels leads to the accumulation of millions of red blood

cells (RBCs) within the brain parenchyma, forming a hematoma.

Surgical evacuation of hematoma is generally not recommended for

most ICH cases due to uncertain clinical benefits and potential

surgical complications. Hemolysis within the hematoma can

generate toxic byproducts that contribute to significant secondary

injuries and irreversible neurological deficits. Hence, promoting

rapid hematoma clearance is crucial (95, 96).

Microglia and macrophages, acting as phagocytes, are swiftly

recruited to the hemorrhage site to remove RBCs via

erythrophagocytosis, a process vital for detoxifying hemolytic
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products and fostering neurological recovery post-ICH (Table 2)

(120). Monocyte-derived macrophages (MDMs) exhibit heightened

phagocytic activity and erythrophagocytosis within the ICH-

afflicted brain. Recent research has discerned distinct roles of

brain tissue-resident microglia and MDMs in the context of

hemorrhagic brain injury. Initially, distinguishing between

macrophages and microglia in vivo was challenging due to their

shared origin and functional similarities. However, advancements

in specific cell markers and multichannel flow cytometry have

enabled researchers to differentiate these cell types. Consequently,
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researchers now refer to both microglia and macrophages

collectively as Mj (121).

Tyro3, predominantly expressed on neurons rather than Mj
within the central nervous system (CNS), contrasts with Axl and

MerTK, which are primarily expressed on Mj. In a murine model,

the transcriptional levels of Axl, MerTK, and their ligand Gas6

increase within 24 hours post-intracerebral hemorrhage (ICH), and

deficiency of Axl/MerTK impairs macrophage-mediated

erythrophagocytosis in ICH (97). Toll-like receptors (TLRs) induce

a pro-inflammatory Mj phenotype (M1), whereas Axl/MerTK
TABLE 2 Targets involved in efferocytosis in cardiovascular disease.

Molecules/
Targets

Role in
Efferocytosis

Ligands
Disease
Model

Efferocytosis Neuroinflammation
Neurological

function
Reference

Axl↑ Eat-me GAS6

Autologous blood-
injection

ICH model

↑ ↓ ↑ (97)

MerTK↑ Eat-me
GAS6/

Protein S
↑ ↓ ↑ (86)

TLR-4↑ ↓ ↑ ↓ (98)

CD36↑ Eat-me ↑ ↓ ↑ (99)

Soluble Trem2↑ ↓ ↑ ↓ (100)

CD47↑ Don’t Eat-me ↓ ↑ ↓ (101, 102)

STAT6↓ ↓ ↑ ↓ (103)

TNF-a↑ ↓ ↑ ↓ (99)

IL-10↑ ↑ ↓ ↑ (104, 105)

PPARg↑ ↑ ↓ ↑ (106)

Nrf2↑ ↑ ↓ ↑ (107)

LRRC8A↑ ↑ ↓ ↑ (108)

Irg1↓ ↓ ↑ ↓ (109)

CBS↑ ↑ ↓ ↑ (110)

Axl↑ Eat-me GAS6
Transient

MCAO model
↑ ↓ ↑ (111)

MerTK↑ Eat-me
GAS6/

Protein S
BCAS model ↑ ↓ ↑ (112)

CD47↓ Don’t Eat-me

Transient
MCAO model

↑ ↓ ↑ (113)

Trem2↓ ↓ ↑ ↓ (114, 115)

P2Y6R↑ ↑ ↓ ↑ (116)

Sig-1R↓ ↓ ↑ ↓ (117)

CD300a↓ ↑ ↓ ↑ (27)

STAT6↑ ↑ ↓ ↑ (118)

C1q↑ ↑ ↓ ↑ (7)

C3aR↑
Permanent

MCAO model
↑ ↓ ↑ (119)
Abbreviations in order of appearance: Axl, Receptor Tyrosine Kinase; MerTK, MER Tyrosine Kinase; TLR-4, Toll-like Receptor-4; CD36, Cluster of Differentiation 36, Trem2, Triggering
Receptor Expressed on Myeloid Cells 2; CD47, Integrin Associated Protein; STAT6, Recombinant Signal Transducer and Activator of Transcription 6; TNF-a, Tumor Necrosis Factor Alpha; IL-
10, Interleukin-10; PPARg, Peroxisome Proliferator-Activated Receptor Gamma; Nrf2, Nuclear factor erythroid 2-related factor 2; LRRC8A, Leucine Rich Repeat Containing 8 VRAC Subunit A;
Irg1, Immune-Responsive Gene 1; CBS, Cystathionine b-Synthase; P2Y6R, Purinergic P2Y6 receptor; Sig-1R, Sigma-1 receptor; CD300a, Cluster of Differentiation 300A; C1q, Complement C1q;
C3aR, Complement C3a Receptor. The symbols "↑, ↓" in "Molecule/Targets" mean the expression of these targets were increased or decreased after Ischemia stroke. The symbols in "Efferocytosis"
mean the efferocytosis after Ischemia stroke were upregulated or downregulated. The symbols in "Neuroinflammation" mean the neuroinflammation after Ischemia stroke were promoted or
mitigated. The symbols in "Neurological function" mean the neurological function after Ischemia stroke were improved or reduced.
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activation suppresses TLR signaling through suppressors such as

SOC1 and SOC3, promoting an anti-inflammatory Mj phenotype

(M2) (98, 122). Exogenous ligands, including recombinant Gas6, can

target Axl/MerTK-mediated erythrophagocytosis akin to approaches

used in atherosclerosis. Following ICH, Axl/Mertk undergo cleavage

from the cell membrane, generating soluble but non-functional forms

(sAxl/sMertk). These soluble forms competitively bind to

endogenous ligands (Gas6 and Pros1), thereby depleting

ligands crucial for maintaining homeostasis. Consequently,

exogenous recombinant Gas6 enhances efferocytosis and resolves

inflammation in an Axl-dependent manner following ICH (86, 97).

CD36, recognized as an ‘eat-me’ signal, exhibits elevated

transcription in microglia cultures treated with erythrocytes and

within the perihematomal region following intracerebral

hemorrhage (ICH) (123, 124). Genetic deletion or antibody

blockade of CD36 impedes erythrocyte phagocytosis by microglia.

CD36 knockout mice demonstrate delayed hematoma resolution

and exacerbated deficits compared to wild-type (WT) mice post-

ICH. Patients lacking CD36 exhibit impaired hematoma resolution

and poorer clinical outcomes. Upregulation of CD36 accelerates

erythrophagocytosis and enhances hematoma resolution (99).

Soluble Trem2 has been shown to negatively regulate

erythrophagocytosis post-ICH via CD36 receptor recycling,

mediated by reduced VPS35 (100). Similarly, CD47, ubiquitously

expressed across various cell types including erythrocytes, serves as

a ‘don’t eat me’ signal by binding to signal regulatory protein a
(SIRPa) on macrophages (Mj) to inhibit erythrophagocytosis.

Perihematomal levels of CD47 initially rise within hours post-

ICH but subsequently decline, coinciding with Mj infiltration

and erythrophagocytosis (101, 125). Intracranial injection of

CD47 knockout blood accelerates hematoma resolution and

reduces brain edema, effects attenuated by intracranial clodronate

liposome administration, a specific Mj depletion agent (102).

Furthermore, CD47 blocking antibodies significantly enhance

erythrophagocytosis and promote hematoma clearance following

ICH (126, 127).

Interleukin-4 (IL-4) serves as a canonical activator of signal

transducer and activator of transcription 6 (STAT6), and exogenous

IL-4 administration has been shown to activate STAT6 and enhance

erythrophagocytosis in intracerebral hemorrhage (ICH). STAT6

knockout (KO) mice demonstrate exacerbated outcomes

compared to wild-type (WT) counterparts in ICH models,

showing reduced responsiveness to IL-4 treatment and impaired

phagocytic capacity of red blood cells by phagocytes (103).

Transcriptomic analyses revealed diminished expression of IL-1

receptor-like 1 (ST2) in microglia/macrophages of STAT6 KO mice

post-ICH, underscoring the significance of IL-4/STAT6/ST2

signaling in hematoma resolution and functional recovery after

ICH (128). Intranasal IL-4 treatment warrants further investigation

as a potential therapeutic strategy for ICH. Moreover, the IL-4/

STAT6 axis has been observed to upregulate CD36, a scavenger

receptor critical for initiating efferocytosis, potentially through

direct binding of STAT6 to the promoter regions of the CD36
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gene (129). IL-4/STAT6 signaling also transcriptionally upregulates

anti-inflammatory cytokines such as Arg1, which are essential for

STAT6-mediated pro-phagocytic activity in Mj and sustained

efferocytosis (118). Conversely, TNF-a inhibits apoptotic cell

clearance and polarizes Mj towards a proinflammatory

phenotype, concurrently downregulating CD36 expression in

microglia and impairing erythrophagocytosis, while also

upregulating the ‘don’t eat-me’ signal CD47 in vascular smooth

muscle cells, further hindering erythrophagocytosis (99). IL-10,

known for its anti-inflammatory properties, has been reported to

promote erythrophagocytosis by regulating CD36 expression (104).

Additionally, IL-10 delivery via phosphatidylserine liposomes has

shown promise in improving erythrophagocytosis and clinical

outcomes in ICH (105).

Transcription factors within Mj are pivotal in regulating

erythrophagocytosis and recovery following intracerebral

hemorrhage (ICH). PPARg transcriptionally upregulates critical

scavenger receptors such as Axl, MerTK, and CD36, which are

essential for erythrophagocytosis (106, 124). Nrf2 serves as a

principal transcription factor protecting cells against endogenous

and exogenous stressors, and its activation has been demonstrated

to enhance erythrophagocytosis by upregulating CD36 (107). Both

PPAR g and Nrf2 also modulate the NF-kB pathway, contributing

to inflammation attenuation in ICH, thereby highlighting targeting

PPAR g and Nrf2 as promising strategies to augment hematoma

resolution (130). Bexarotene, an FDA-approved selective RXR

(retinoid X receptor) agonist used clinically in cutaneous T-cell

lymphoma, enhances the expression of PPARg-dependent genes

through RXR heterodimerizat ion, thereby improving

erythrophagocytosis and recovery in ICH (131). Recent insights

underscore the regulation of Mj phagocytosis via the LRRC8A

channel through the AMPK-Nrf2-CD36 pathway following ICH,

suggesting LRRC8A as a potential therapeutic target for enhancing

hematoma clearance (108). Itaconate, an intermediate of the

tricarboxylic acid cycle, is produced from the decarboxylation of

cis-aconitate by immune-responsive gene 1 (Irg1) within

mitochondria. Depletion of Irg1 in macrophages/microglia

diminishes erythrocyte phagocytosis, exacerbating outcomes in

ICH. Administration of sodium itaconate or 4-octyl itaconate (4-

OI) promotes macrophage phagocytosis via the Keap1-Nrf2-CD36

pathway (109). The Irg1/itaconate axis represents a potential

therapeutic target for disorders characterized by phagocytosis

deficiency, such as ICH.

In addition to the aforementioned findings, hydrogen sulfide

(H2S), a gasotransmitter, acts as an endogenous regulator facilitating

sustained phagocytosis following intracerebral hemorrhage (ICH).

Expression of the H2S synthase cystathionine b-synthase (CBS) and
CBS-derived H2S is upregulated in brain-resident phagocytic

microglia post-ICH, thereby enhancing continuous erythrocyte

phagocytosis via the CBS-H2S-complex I axis (110). Fan et al. have

developed pH-responsive pro-efferocytic nanoparticles resembling

neutrophils, designed to enhance neurological recovery by

promoting erythrophagocytosis after ICH (132).
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4.2 Ischemic stroke

Ischemic stroke represents a significant public health burden

and remains the leading cause of mortality and disability

worldwide. Apart from thrombolysis and thrombectomy during

the acute stage, effective therapeutic strategies remain limited (133).

The disruption of regional blood supply initiates an ischemic

cascade that results in neuronal dysfunction and subsequent cell

death. During the sub-acute phase, brain edema and inflammatory

responses further contribute to secondary injury processes

(134).Following ischemic stroke onset , microglia and

macrophages undergo rapid activation and recruitment to the

infarct site, promoting efferocytosis (Table 2). TAM receptors,

including Axl and MerTK, play crucial roles in enhancing

efferocytosis post-ischemic stroke (111, 112). Phagocytic processes

are initiated by exposure of “eat-me” signals on target cells or debris,

such as phosphatidylserine (PS) exposed on the membranes of

dying cells, which interacts with MFG-E8, Axl, and MerTK to

facilitate efferocytosis and mitigate injury. Additionally, the ligands

Gas6 and Protein S are involved in mediating these processes after

ischemic stroke (135). Conversely, ‘don’t eat-me’ signals can

modulate microglia and macrophage efferocytosis during ischemic

stroke. Research utilizing CD47 knockout mice indicates that

deletion of CD47 reduces brain infarction and edema during the

acute phase in the middle cerebral artery occlusion (MCAO) model

by mitigating neuroinflammation (113).

Accumulating evidence underscores the significant impact of the

Triggering receptor expressed onmyeloid cells-2 (TREM2)-activating

protein of 12kDa (DAP12) system in central nervous system CNS

disorders such as neurodegenerative diseases and stroke (136).

TREM2, initially expressed on macrophages and microglia, relies

on DAP12 as an intracellular membrane adaptor (137). Microglial

deficiency in TREM2 impedes the clearance of apoptotic neurons and

exacerbates the production of inflammatory cytokines like TNF-a
(138). Moreover, TREM2 facilitates efferocytosis of dying cells

following experimental stroke. Deficiency in TREM2 exacerbates

outcomes after ischemic stroke by diminishing efferocytosis of

dying neurons and microglia, underscoring its pivotal role over

circulating macrophages in ischemic conditions (114).

Furthermore, a high-salt diet has been shown to reduce the

efferocytic capacity of macrophages by downregulating TREM2

expression, thereby hindering the resolution of neuroinflammation

post-ischemic stroke (139). Augmenting TREM2 signaling in

monocytes/macrophages represents a promising therapeutic

approach to enhance efferocytosis and promote inflammation

resolution following stroke. Recent studies employing microscale

thermophoresis (MST), surface plasmon resonance (SPR), and

liquid chromatography-tandem mass spectrometry (LC-MS/MS)

have revealed sphingosine-1-phosphate (S1P) as a novel ligand for

TREM2, which targets the TREM2-DAP12 complex to promote

microglial efferocytosis and protect against ischemic brain

injury (115).

P2 purinoceptors play a significant role in the pathogenesis of

ischemic stroke. These receptors are categorized into two families:

ionotropic receptors (P2X) and metabotropic receptors (P2Y). The

P2Y6 receptor expressed on microglia is activated by UDP released
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from dying neurons, initiating microglial efferocytosis to clear

apoptotic cells. Upon activation by UDP, P2Y6 receptors induce

actin cytoskeleton rearrangement, forming filopodia-like

protrusions that facilitate the engulfment of cellular debris (140).

Expression of P2Y6 receptors in microglia increases following

transient middle cerebral artery occlusion (tMCAO), and

inhibition of P2Y6 receptors with the antagonist MRS2578

suppresses microglial phagocytosis of cell debris, thereby

exacerbating neurological deficits (116). In addition to the P2Y6/

UDP signaling pathway, neuronal injury leads to ATP or ADP

release, which recruits microglia to the site of injury through P2Y12

receptors (141). Post-ischemic stroke, P2Y12-mediated chemotaxis

of microglia plays a critical role in maintaining blood-brain barrier

(BBB) integrity (142). Sigma-1 receptor (Sig-1R) is a chaperone

protein that modulates diverse cellular functions, including cell

death, autophagy, apoptosis, neuronal differentiation, and

neuroinflammation. Depletion of Sig-1R markedly impairs the

phagocytic activity of macrophages and microglia, resulting in

exacerbated brain damage and neurologica l defici ts .

Mechanistically, Sig-1R-mediated efferocytosis relies on Rac1

activation, and specific binding pockets responsible for Sig-1R

interactions have been identified (117). CD300a, has a long

cytoplasmic region that contains immunoreceptor tyrosine-based

inhibitory motifs (ITIMs) akin to SIRPa, also enhances

efferocytosis by infiltrating myeloid cells and ameliorates neuronal

deficit after ischemic stroke via blocking by its neutralizing

antibody (27).

Macrophages play a pivotal role in the phagocytic clearance of

deceased neurons following ischemic stroke. Robust transcriptomic

alterations occur in monocytes/macrophages infiltrating the post-

stroke brain. These changes include significant upregulation of

numerous efferocytosis-related genes within brain macrophages.

Transcriptomic analyses further reveal that PPARg and STAT6 act

as potential upstream regulators that shape the pro-efferocytic and

inflammation-resolving transcriptome of macrophages in the post-

stroke brain, akin to their roles observed in intracerebral

hemorrhage (ICH) (143). Members of the STAT family are

critical in regulating the functional state of microglia/

macrophages, with the STAT6/Arg1 axis identified as a key

signaling mechanism for phenotypic modulation in the context of

ischemic stroke. Activation of the STAT6/Arg1 axis promotes

efferocytosis by microglia/macrophages and contributes to

inflammation resolution in mouse models of stroke (118).

In addition to the previously discussed non-specific and

standard receptors, adaptive immunity also plays a pivotal role in

the pathogenesis of ischemia stroke. Complement components C1q

and C3 play significant roles in inducing efferocytosis through their

interaction with dying cell surfaces. C1q is widely distributed in the

central nervous system (CNS), including neutrophils, microglia,

and a subset of interneurons. Following ischemic stroke, activation

of the complement system leads to increased C1q levels, which

enhance microglial efferocytosis by binding to apoptotic cells and

neuronal blebs, thereby protecting the CNS (7). C3 is activated and

cleaved by C3 convertase into C3a, a small protein that recruits

immunocytes and modulates immune responses through

interaction with its receptor, C3aR (144). Intracortical
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1485222
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhang et al. 10.3389/fimmu.2024.1485222
administration of the complement C3 receptor antagonist

trifluoroacetate has been shown to modulate microglial responses

and attenuate neuronal death following brain injury (119). C3b, a

product of C3 cleavage, facilitates the clearance of dying cells and

modulates adaptive immune responses. Modification of

glycoproteins or glycolipids represents a prominent strategy to

regulate efferocytosis induced by C1q and C3. Desialylation of

glycoproteins or glycolipids enhances recognition by C1q, thereby

promoting efferocytosis. Conversely, sialic acid modification of

glycoproteins or glycolipids acts as a ‘don’t eat-me’ signal by

preventing binding of complement C1q and C3b, thereby

modulating the clearance of dying cells (145).
4.3 Subarachnoid hemorrhage

Subarachnoid hemorrhage (SAH) is a relatively common cause

of stroke, with an annual incidence of approximately 6-7 cases per

100,000 individuals, predominantly affecting those under 55 years

of age. Despite accounting for only 5% of all stroke cases, SAH

exhibits a high initial mortality rate, reaching up to 67% in the first

few months. Recent studies have highlighted the crucial role of

efferocytosis in early brain injury (EBI) following SAH (146). SAH

triggers the upregulation of Axl and its ligand Gas6. Administration

of recombinant Gas6 (rGas6) has been shown to enhance

efferocytosis, reduce inflammation, and mitigate SAH-induced

blood-brain barrier (BBB) breakdown and neurological deficits

through the Axl/Rac1 signaling pathway (97). Although the

influence of other efferocytosis-related molecules on EBI after

SAH remains less explored, many of these molecules are known

to regulate neuroinflammation, which can be alleviated through

efferocytosis (147). Consequently, they represent potential targets

for future therapeutic interventions.
5 Concluding remarks

Cardiovascular and cerebrovascular diseases impose significant

burdens on both patients and society owing to their unfavorable

prognostic outcomes. Inflammation assumes a pivotal role in these

conditions, whereas efferocytosis represents a potent mechanism for

resolving inflammation and maintaining homeostasis. In recent

years, scholarly attention has been directed towards investigating

the mechanisms and exploring drug discovery avenues related to

efferocytosis in cardiovascular and cerebrovascular diseases. Despite
Frontiers in Immunology 13
considerable advancements, significant challenges persist in

developing methods that substantially enhance the prognosis of

patients afflicted with cardiovascular and cerebrovascular disease.

Nevertheless, efferocytosis and its underlying mechanisms continue

to constitute a pivotal area for future research, offering potential to

markedly improve the prognosis of patients with cardiovascular and

cerebrovascular disease.
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