
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Gang Tian,
Sichuan Province Engineering Technology
Research Center of Molecular Diagnosis of
Clinical Diseases, China

REVIEWED BY

Yuchao Zhang,
Shanghai Institutes for Biological Sciences
(CAS), China
Sicheng Wan,
Southwest University, China

*CORRESPONDENCE

Renquan Zhang

zhangrenquanayfy@163.com

Aman Xu

xuaman@ahmu.edu.cn

†These authors contributed equally to this
work and share first authorship

RECEIVED 21 August 2024

ACCEPTED 19 December 2024
PUBLISHED 09 January 2025

CITATION

Xu J, Sadiq U, Zhao W, Xia H, Liu Y, Zhang R
and Xu A (2025) Integrated single-cell RNA
sequencing reveals the tumor heterogeneity
and microenvironment landscape during liver
metastasis in adenocarcinoma of
esophagogastric junction.
Front. Immunol. 15:1484234.
doi: 10.3389/fimmu.2024.1484234

COPYRIGHT

© 2025 Xu, Sadiq, Zhao, Xia, Liu, Zhang and Xu.
This is an open-access article distributed under
the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

TYPE Original Research

PUBLISHED 09 January 2025

DOI 10.3389/fimmu.2024.1484234
Integrated single-cell RNA
sequencing reveals the tumor
heterogeneity and
microenvironment landscape
during liver metastasis in
adenocarcinoma of
esophagogastric junction
Junrui Xu1†, Ussama Sadiq1†, Wangruizhi Zhao1, Hengbo Xia1,
Yiwei Liu2, Renquan Zhang2* and Aman Xu1*

1Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, China,
2Department of Thoracic Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, China
Background: Adenocarcinoma of the esophagogastric junction (AEGJ) is a highly

aggressive tumor that frequently metastasizes to the liver. Understanding the

cellular and molecular mechanisms that drive this process is essential for

developing effective therapies.

Methods: We employed single-cell RNA sequencing to analyze the tumor

heterogeneity and microenvironmental landscape in patients with AEGJ liver

metastases. This approach enabled us to characterize the diverse cell

populations involved in the liver metastatic process.

Results: Our analysis revealed a significant involvement of fibroblasts and mural

cells in AEGJ liver metastasis. We identified a specific fibroblast type in AEGJ liver

metastasis and observed distinct gene expression patterns between

adenocarcinoma of the esophagogastric junction and other stomach

adenocarcinomas. Our study demonstrated high expression of the SFRP2 gene

in pericyte cells during the liver metastasis of AEGJ. The incorporation of GEO,

TCGA, and immunofluorescence staining of SFRP2 expression enhanced our

study. High expression of SFRP2 in pericytes may influence vascular stability and

angiogenesis through the Wnt pathway.

Conclusion: Our study provides novel insights into the cellular interactions and

molecularmechanisms that underlie AEGJ liver metastasis. Targeting the identified

subtype of fibroblasts or influencing SFRP2 gene expression in pericytes may offer

new therapeutic strategies for combating this aggressive tumor.
KEYWORDS

single-cell RNA sequencing, adenocarcinoma of esophagogastric junction, liver
metastasis, tumor heterogeneity, tumor microenvironment
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2024.1484234/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1484234/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1484234/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1484234/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1484234/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1484234/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1484234/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2024.1484234&domain=pdf&date_stamp=2025-01-09
mailto:zhangrenquanayfy@163.com
mailto:xuaman@ahmu.edu.cn
https://doi.org/10.3389/fimmu.2024.1484234
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2024.1484234
https://www.frontiersin.org/journals/immunology


Xu et al. 10.3389/fimmu.2024.1484234
1 Introduction

Adenocarcinoma of the esophagogastric junction (AEGJ) is a

malignant tumor located at the junction of the lower esophagus and

the gastric cardia. Although AEGJ is commonly classified with

stomach adenocarcinoma (STAD) in clinical trials (1), it differs

significantly from STAD in terms of epidemiology, etiology, and

pathological characteristics (2–4). Globally, the incidence of AEGJ

is increasing annually, whereas the incidence of STAD in other

regions is significantly decreasing (5–8). Due to its specific

anatomical location and unique biological characteristics, AEGJ

exhibits higher malignancy and a worse prognosis (9).

The liver is the most common site of hematogenous metastasis

in gastric adenocarcinoma (10). Liver metastasis is a significant

cause of morbidity and mortality in gastric cancer. A population-

based cohort study in the US and China indicates that AEGJ is more

prone to liver metastasis than STAD in other regions (21.4% vs.

11.8%, p < 0.05) (11, 12). This may be related to its anatomical

proximity to the liver’s blood supply and its greater proliferative and

invasive capabilities (13, 14). This research also indicates that,

compared to distal STAD, AEGJ patients are often diagnosed at a

later stage of the disease, experience earlier liver metastasis, and

have poorer prognoses (15). Although researchers generally believe

that “the unique biological characteristics of AEGJ make it more

likely to metastasize to the liver compared to STAD in other

regions,” the underlying mechanisms of AEGJ liver metastasis

remain insufficiently elucidated, limiting innovations in new

treatment methods to improve the prognosis of AEGJ patients.

Recently, single-cell RNA sequencing (scRNA-seq) has become

widely used to investigate the cellular and molecular mechanisms of

malignant tumors (16–18). By identifying critical cell subtypes and

cell-cell interactions, scRNA-seq enables a detailed analysis of the

evolutionary trajectories of tumor cells during growth and

metastasis, thereby uncovering key molecular drivers and

metastasis-related signaling pathways (19, 20). Previous scRNA-

seq studies on STAD have reported the developmental trajectories

of STAD cells undergoing peritoneal, lymph node, and liver

metastases, identifying subtypes with varying malignant biological

behaviors (21–23). Studies have shown that specific cell subtypes

play crucial roles in shaping the tumor microenvironment of STAD,

influencing tumor growth and metastasis (24). However, to date,

few studies have reported differences in metastasis-related single-

cell transcriptomes among STAD from different regions or explored

the potential cellular and molecular mechanisms of AEGJ liver

metastasis at the single-cell level.

In this study, we aim to utilize scRNA-seq to thoroughly explore

the molecular characteristics of AEGJ liver metastasis, identify cell

populations associated with liver metastasis and their functional

states, and investigate potential early detection biomarkers and

novel therapeutic targets. By enhancing our understanding of the

AEGJ liver metastasis process, we hope to contribute to the

development of more effective therapeutic strategies, ultimately

improving the prognosis and quality of life for patients with AEGJ.
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2 Materials and methods

2.1 Patient and sample collection

This study included 12 cases of AEGJ patients diagnosed at the

Departments of General Surgery and Thoracic Surgery at the First

Affiliated Hospital of Anhui Medical University. Detailed

communications were conducted with all patients or their

guardians prior to the experiment, and all provided written

informed consent for sample collection and data analysis. All

experimental procedures were approved by the Ethics Committee

of the First Affiliated Hospital of Anhui Medical University. Based

on the NCCN guidelines and several studies conducted in Japan and

Europe (8, 25, 26), we established the criteria for resectable AEGJ

liver metastasis: the depth of tumor invasion at the AEGJ primary

site must be ≤T4a stage, lymph node metastasis must be within the

scope of D2 lymph node dissection, and the size of a single

metastatic lymph node must be ≤3 cm. The patient must be in an

oligometastatic state with one to three metastases confined to the

same liver lobe, with no invasion of the hepatic portal or major

blood vessels. Additionally, the patient must be able to tolerate

hepatectomy, as assessed by liver reserve function. Following

rigorous preoperative assessment and the acquisition of written

informed consent, two cases of operable AEGJ patients with liver

metastasis were included. Postoperative primary AEGJ tissue

samples and adjacent normal tissue samples were collected for

single-cell RNA sequencing (scRNA-seq). Additionally,

postoperative primary AEGJ samples and adjacent normal tissue

samples were collected from another ten patients. The collected

specimens were stored in liquid nitrogen and fixed in formalin-fixed

paraffin-embedded (FFPE) for subsequent experimental analyses.
2.2 Tissue dissociation and single-cell
suspension preparation

Fresh tumor and normal tissues were cut into approximately

2-3 mm³ pieces in DMEM medium containing 10% fetal bovine

serum (SH30406.05; HYCLONE). The tissues were transferred to a

gentleMACS C tube (130-096-334; Miltenyi Biotec) containing an

enzyme solution (130-095-929; Miltenyi Biotec), tightened, and

digested at 37°C in a tissue processor (130-096-427; Miltenyi

Biotec). The mixture was then filtered through a 40 mm cell

strainer (352340; BD) to collect the cell suspension. After

centrifugation of the filtered cell suspension, the supernatant was

discarded, and red blood cells were lysed using a red blood cell lysis

solution (8570396; QIAGEN). Dead cells and debris were removed

using the Dead Cell Removal Kit (130-090-101; Miltenyi Biotec).

The cells were washed with PBS (10010-031; GIBCO) and

resuspended in an appropriate volume. A hemocytometer was

then used to count and assess the cells, resulting in a single-

cell suspension.
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2.3 Library construction and single-
cell sequencing

Following the manufacturer’s instructions, single-cell resolution

immunome measurements and gene expression analyses were

performed using the MGI1SEQ-2000RS high-throughput

sequencing kit (1000012554; MGI). In brief, the prepared single-

cell suspension was adjusted to a cell density of 1000 cells/mL. Ten
microliters of the cell suspension were placed into a 200 mL PCR

tube, followed by the addition of 10 mL of 0.4% trypan blue dye. The

treated cell sample was then added to a CYTO C-Chip

hemocytometer for microscopic examination to calculate cell

concentration, viability, and clumping rate. Qualified samples

should exhibit an ideal cell viability greater than 90%, with a

minimum of no less than 80%, and a clumping rate not

exceeding 15%. The Next GEM Chip G was loaded, and an

appropriate volume of cell suspension with a concentration of

approximately 1000 cells/μL was added to each channel, ensuring

that the number of cells per sample was no less than 10,000. The

mixture was then further combined with barcode gel beads on the

Chromium Controller (10x Genomics). After the reverse

transcription reaction, cDNA amplification was performed for 11

cycles using a thermal cycler (S100; Bio-Rad, USA). Using the

amplified cDNA as a template, TCR fragments were subsequently

enriched. The sequencing libraries for cDNA and TCR were

constructed separately according to the manufacturer ’s

instructions. These libraries were sequenced using a gene

sequencer (MGISEQ-2000; MGI) with a paired-end sequencing

strategy of 150 bp.
2.4 Retrieval and process of scRNAseq data

A unique molecular identifier (UMI) count matrix from public

single-cell RNA-seq data of two adjacent non-tumor normal

samples (NC) and five tumor samples (two AEGJ, two Body, one

Antrum) in 24 STAD patients was downloaded from GSE206785

( h t t p s : / /www . n c b i . n lm . n i h . g o v / g e o / q u e r y / a c c . c g i ?

acc=GSE206785). The UMI count matrix was converted into a

Seurat object using the R package Seurat (version 4.0.4) (27). Cells

with UMI counts < 500, fewer than 200 detected genes, or more

than 10%mitochondrial-derived UMI counts were classified as low-

quality cells and subsequently removed. Genes detected in fewer

than five cells were removed for downstream analyses (https://

ngdc.cncb.ac.cn/gsa-human/browse/HRA002336).
2.5 scRNA-seq data preprocessing

After quality control, the UMI count matrix was log-

normalized. The top 2,000 variable genes were then used to create

potential anchors using the Find Integration Anchors function in

Seurat. Subsequently, the Integrate Data function was employed to
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integrate the data. To reduce the dimensionality of the single-

nucleus RNA sequencing (snRNA-seq) dataset, principal

component analysis (PCA) was performed on the integrated data

matrix. Using the Elbow Plot function in Seurat, the top 50 principal

components (PCs) were utilized for downstream analysis. The main

cell clusters were identified using the Find Clusters function

provided by Seurat, with the resolution set to default (res = 0.6).

Finally, the cells were clustered into 10 major cell types. Finally, the

cells were clustered into 10 major cell types. To identify the cell type

for each cluster, gene markers were detected for each cell cluster

using the Find Markers function in the Seurat package (v4.3.0). Cell

types were then annotated using “ScType” tools (28) with

previously published marker genes (29). Additionally,

“CellCall”revealed integrated intercellular communication

networks, combining ligand-receptor dialogue and intracellular

transcription factor dynamics.
2.6 Comparison dendrograms

To conduct a phylogenetic analysis of the various cell

subpopu la t ions wi th in the scRNA-seq da ta se t , the

BuildClusterTree function from the Seurat R package was utilized.

To visualize our results, the ggtree R package was employed (30).
2.7 Differential gene expression analysis

Differentially expressed genes (DEGs) were identified using the

Find Markers/Find All Markers function from the Seurat package

(one-tailed Wilcoxon rank sum test; p-values were adjusted for

multiple testing using the Bonferroni correction). For the

computation of DEGs, all genes were examined for an expression

difference of at least 0.2 on a natural log scale, with an adjusted p-

value of less than 0.05.
2.8 Pseudotime trajectory analysis
by monocle2

Monocle2 (v2.26.0) (31) was used on epithelial cells to uncover

the pseudotime trajectory. Dimensionality reduction and trajectory

analysis were conducted using the standard workflow with

default parameters.
2.9 Retrieval and process of TCGA data

The TCGA-STAD project data for 26 distal metastasis samples

and 5 lymphatic metastasis samples, including gene expression

profiles and clinical information, were downloaded from the GDC

database (https://portal.gdc.cancer.gov/projects).
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2.10 Reads alignment and differentially
expressed gene analysis

Gene expression levels were evaluated using FPKM (fragments

per kilobase of exon per million fragments mapped). DESeq2

(v1.30.1) software was used to perform differential gene

expression analysis using the read count file (32). DESeq2 was

also used to analyze differential expression between two or more

samples, determining whether a gene was differentially expressed by

calculating the fold change (FC) and p-value. Two important

parameters were defined: 1) FC: fold change, representing the

absolute ratio of expression change; 2) P-value: p-value. The

criteria for significant differential expression were as follows: FC ≥

1.5 or ≤ 1/1.5, and p-value ≤ 0.05.
2.11 Survival analysis

Kaplan-Meier survival analysis was conducted using the

survival package, with optimal cutoff values for different

expression cohorts (high or low) determined using the R package

“survminer” (the minimum proportion of high or low expression

groups should not be less than 0.3). A log-rank test was performed

using the survfit function to evaluate the significance of the high and

low expression groups.
2.12 Functional enrichment analysis

Protein-protein interaction data often include biologically

implausible interactions (i.e., those that are difficult to occur in

living cells). The comPPI database (https://comppi.linkgroup.hu/)

was used to filter out interacting proteins lacking mutual subcellular

localization and to identify proteins that interact with genes of

interest. A novel quantitative metric, termed the interaction score, is

introduced to reflect the likelihood of interaction.

Gene set variation analysis (GSVA) calculates the variation

score for specific gene sets in each sample using the expression

matrix, without requiring prior analysis of differences between

samples. Transforming genes into pathways enhances the

biological significance of the data and makes it more interpretable

for life phenomena. The CancerSEA database collates 14 different

functional states of tumor cells (33). The Z-score algorithm,

proposed by Lee et al., integrates characteristic gene expression to

reflect the activity of a given pathway (34). Fourteen functional state

gene sets are calculated using the Z-score algorithm in the R

package GSVA. The values of each gene set are reported

separately as Z-scores. Pearson correlations between genes and

the Z-scores of each gene set are calculated.

Download the protein expression data from the reversed-phase

protein array of the Cancer Proteome Atlas (TCPA) database

(https://www.tcpaportal.org/tcpa/). Pathway activity scores are

calculated for ten cancer-related pathways (TSC/mTOR, RTK,

RAS/MAPK, PI3K/AKT, hormone ER, hormone AR, EMT, DNA

damage response, cell cycle, and apoptosis) based on published

findings. The Spearman correlation and P-value between the target
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gene and pathway activity score are calculated using the cor

test function.

To identify functional categories of genes, Gene Ontology (GO)

terms and Kyoto Encyclopedia of Genes and Genomes (KEGG)

pathways were determined using KOBAS 2.0 (http://bioinfo.org/

kobas) (35). The hypergeometric test and Benjamini-Hochberg false

discovery rate (FDR) controlling procedure were used to define the

enrichment of each term.
2.13 Spatial transcriptomics data analysis

To explore differentially expressed genes (DEGs) in the spatially

specific tumor microenvironment of STAD, we employed

10×Genomics spatial transcriptome (ST) technology using the

GSE203612 cohort (36). The results were analyzed and visualized

to determine the expression levels and spatial distribution of JUND,

IL24, and SFRP2. Spatial transcriptomics data were processed using

the R package Seurat (v4.0.4), with functions such as RunPCA,

FindNeighbors, and FindClusters applied to cluster similar spatial

transcriptome (ST) points and perform dimensionality reduction.

An unsupervised clustering analysis of the scRNA-seq data, in

combination with hematoxylin and eosin (H&E) staining sections,

was performed to provide initial annotations for distinct clusters.

Further annotations were made using cell markers. Based on the

annotation outcomes, the cell type with the highest content in each

micro-region was identified. The SpatialDimPlot function in Seurat

was used to visualize the predominant cell composition in each

micro-region. To generate enrichment score matrices, we used the

get enrichment matrix and enrichment analysis functions from the

Cottrazm software package. The SpatialFeaturePlot function in

Seurat was then applied to visualize the expression landscapes of

genes in each micro-region and calculate the enrichment score for

each cell type. Higher enrichment scores were represented by darker

colors, indicating a higher content of that cell type in the spot.

Finally, Spearman correlation analysis was performed to assess the

correlations between cell contents across all spots, as well as

between cell contents and gene expression levels. All analysis and

visualization steps were conducted in R software, with public online

databases (https://grswsci.top/#shareTabContent) used for

additional resources.
2.14 Immunofluorescence Staining

To identify fibroblast and pericyte marker genes associated with

AEGJ liver metastasis, we conducted immunofluorescence staining

for IL24, JUND, and SFRP2 on AEGJ tumor and normal samples.

Continuous sections (4 mm thick) of tumor and normal tissues from

formalin-fixed, paraffin-embedded samples were stained according to

a standard protocol. The tissue sections were deparaffinized and

subjected to heat-induced antigen retrieval in citrate buffer at pH 6.0

for 15 minutes. After blocking with goat serum (1:10, Elabscience, E-

IR-R111), antibodies were applied: anti-DCN (mouse, 1:1000,

Proteintech, Ag6275, lot: 66847-1-Ig) for fibroblast staining and

anti-ACTA2 (rabbit, 1:100, HUABIO, ET1607-53) for pericyte
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staining. The following antibodies were used to detect the respective

proteins: anti-IL24 (rabbit, 1:100, HUABIO, ER1911-33), anti-JUND

(rabbit, 1:50, HUABIO, ET1612-92), and anti-SFRP2 (mouse, 1:750,

Proteintech, Ag18840, lot: 66328-1-Ig). After incubation overnight at

4°C, the sections were washed three times with PBS and labeled with

secondary antibodies tagged with FITC (495 nm, 1:50, Elabscience, E-

AB-1015) and Cyanine3 (554 nm, 1:50, Elabscience, E-AB-1010).

DAPI was used for nuclear staining. Images were acquired using a

Leica DMi8S confocal laser scanning microscope.
3 Results

3.1 Single-cell transcriptome profile of
AEGJ with liver metastasis

To explore the molecular characteristics and tumor

microenvironment of AEGJ liver metastasis, as well as tumor

heterogeneity and gene expression differences between AEGJ and

gastric cancer in other regions, we performed single-cell RNA

sequencing (scRNA-seq) on primary lesions and corresponding

normal tissues from two surgically resectable AEGJ cases with liver

metastasis. Additionally, we selected a publicly available scRNA-seq

dataset (GSE206785) from the GEO database, which includes data

from 2 cases of gastric body cancer, 1 case of gastric antrum cancer,

and 2 cases of AEGJ for integrated analysis (37). Figure 1

summarizes the structured workflow of our study. After quality

control and merging of self-measured and publicly downloaded

data, we obtained a single-cell gene expression profile for 23,426

cells (Figure 2A). UniformManifold Approximation and Projection
Frontiers in Immunology 05
(UMAP) was used to reduce the dimensionality of the data,

clustering the cells into 22 distinct clusters (Figure 2B). Further

data correction showed no significant differences in the number of

cell clusters across sample sources, suggesting minimal batch effects

(Supplementary Figures S1A, B).

Next, using t-distributed Stochastic Neighbor Embedding (t-

SNE) analysis and expression of typical markers from the Cell

Marker database, the 22 cell clusters were annotated into 10 distinct

cell types (Figure 2C), including: B cells (CD19, MS4A1),

Endothelial cells (CLDN5, PECAM1, RAMP2), Epithelial cells

(KRT19, MUC5AC, PGA3, PSTAD), Fibroblasts (DCN, LUN,

PDGFRA), Mast cells (KIT, TPSB2, TPSAB1), Mural cells

(ACTA2, PDGFRB, RGS5), Myeloid cells (CD14, CD68, ITGAX),

NK cells (FGFBP2, GNLY, NCR1), Plasma cells (CD79A, IGHG1),

T cells (BCL11B, CD3D, CD4, CD8A, CD8B, FOXP3, SKAP1). We

analyzed the proportions of each cell type across the samples and

found uneven distribution patterns. Supplementary Figure S1D

shows the distribution of these marker genes. Among the cell

types, fibroblasts were more abundant in both the AEGJ and

AEGJ liver metastasis groups. Mural cells also had a higher

proportion in both groups, with a significantly greater proportion

in the AEGJ liver metastasis group compared to the AEGJ group

(Figure 2D). Figure 2E shows the expression levels and distribution

of representative marker genes for each cell type and Supplementary

Figure S1C shows marker genes for each cell clusters. To compare

the uniqueness of the main cell lineages across different samples, we

constructed a phylogenetic tree (Figure 2F). A phylogenetic tree

visually represents the developmental trajectories or differentiation

routes of cells, derived from genomic sequencing and single-cell

analysis. It illustrates the relationships between different cell types,
FIGURE 1

The structured workflow of this study.
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FIGURE 2

Single-cell RNA sequencing and phylogenetic tree analysis to screen for cell subpopulations associated with AEGJ liver metastasis. (A) Uniform
manifold approximation and projection (UMAP) plot showing the clustering of different cell subsets in AEGJ liver metastasis (EGJ-liver), AEGJ (EGJ),
gastric body cancer (Body), gastric antrum (Antrum) and normal tissues (NC). (B) UMAP plot of 14,809 cells from 22 cell clusters. (C) Cell clusters
were annotated into 10 cell types by marker genes. (D) Proportions of 10 cell types across different samples. (E) Dot plot showing representative top
3 marker genes for each cell type. (F) A phylogenetic tree of major cell types across different samples.
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as well as their differentiation and developmental paths. This tree

can help analyze similarities and differences in cell differentiation

across various tumor types, as well as in different regions or

pathological subtypes of the same tumor. By identifying specific

subtypes and unique differentiation trends, the phylogenetic tree

provides valuable insights into tumor biology (38, 39).

In our analysis, we found that the developmental trajectories

and differentiation patterns of fibroblasts differed significantly

across AEGJ, gastric body, and gastric antrum. These results

suggest that different regions of gastric cancer may harbor unique

fibroblast subpopulations. Additionally, when AEGJ undergoes liver

metastasis, the developmental trajectories and differentiation routes

of its parietal cells diverge notably from those in non-metastatic

samples. This finding suggests that parietal cells may play a pivotal

role in influencing liver metastasis in AEGJ.
3.2 Subpopulations and transcriptome
landscape of fibroblast in different samples

Fibroblasts are known for their high plasticity within the tumor

microenvironment (40). To investigate whether specific fibroblast

subtypes contribute to the liver metastasis process in AEGJ and

whether fibroblast heterogeneity influences the molecular

differences across gastric cancer sites, we re-clustered the

fibroblasts in the analyzed dataset, resulting in 8 distinct clusters

(Figure 3A). We then examined the distribution of these fibroblast

clusters across different samples. Cluster F0 was present in all tumor

samples, while F1 was most abundant in gastric body samples,

showing a higher proportion than in other STAD regions or normal

tissues. Cluster F3 exhibited a higher proportion in gastric antrum

and normal tissues compared to other tumor sites. F4 was

exclusively found in AEGJ samples, with its proportion

significantly elevated in AEGJ liver metastasis compared to non-

metastatic AEGJ samples. Clusters F2 and F6 were more abundant

in normal tissues than in tumor samples (Figure 3B).

We performed clustering analysis based on the expression levels of

characteristic genes for each of the 8 fibroblast clusters, highlighting the

top five characteristic genes in the figure. Notably, cells within the same

cluster exhibited a certain degree of similarity in the expression of these

marker genes (Figure 3C). Gene ontology (GO) functional enrichment

analysis of these characteristic genes revealed distinct biological

processes associated with each cluster. F0 and F3 were primarily

enriched in processes related to cell adhesion, collagen fiber

formation, extracellular matrix organization, and cell migration. F1

was enriched in immune and inflammatory response pathways, while

F2 was associated with processes such as inhibition of cell proliferation

and RNA polymerase II activity. F4 showed enrichment in biological

processes such as cell differentiation, collagen fiber organization, cell

development, and cell adhesion (Figure 3D).

To examine site-specific differences in characteristic genes in AEGJ

and STAD, we conducted differential expression analysis of all

fibroblast characteristic genes in tumor and normal tissue groups

(Figure 4A). We then compared the resulting differentially expressed

genes between fibroblast clusters. Characteristic genes in clusters F0, F4,

and F5 were significantly differentially expressed only in AEGJ and
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AEGJ liver metastasis samples, whereas genes in clusters F1, F2, and F3

were significantly differentially expressed across all tumor samples

(Figure 4B). Our prior phylogenetic tree analysis (Figure 2B) revealed

distinct developmental trajectories and differentiation patterns of

fibroblasts in AEGJ, the gastric body and the gastric antrum,

suggesting site-specific fibroblast subpopulations. Thus, we compared

the differentially expressed fibroblast characteristic genes across the

three tumor types. Figure 4C displays the three most significantly

differentially expressed genes in each type: FABP5, PRSS2, and XIST in

AEGJ; ALDOA, RPS4Y1, and APOO in the gastric antrum; and

ALOX5AP, TREM1, and IL1R2 in the gastric body. We conducted

functional clustering and pathway enrichment analyses on these

differentially expressed characteristic genes. The results revealed that

differentially expressed characteristic genes in AEGJ were primarily

enriched in pathways related to cell differentiation, migration, collagen

fiber organization, and oxidative phosphorylation. In contrast, the

gastric antrum and gastric body shared similarities in functional

clustering and pathway enrichment, with both enriched in immune

response and neutrophil chemotaxis pathways (Figure 4D).

Additionally, the gastric antrum was enriched in cell adhesion

pathways, while the gastric body showed enrichment in NK cell-

mediated cytotoxicity pathways. Both the gastric antrum and gastric

body were also involved in phagosome-related pathways. Furthermore,

the gastric antrum was enriched in spliceosome and cell adhesion

molecule (CAM) pathways, whereas the gastric body was enriched in

HIV-1 infection and NK cell-mediated cytotoxicity pathways

(Figure 4E). Integrating these results, we found that the characteristic

genes in cluster F4 closely matched the differentially expressed

characteristic genes of AEGJ fibroblasts, including FABP5 and XIST.

Studies have shown that FABP5 overexpression is associated with poor

prognosis in STAD patients. Elevated FABP5 expression in tumor cells

promotes gastric cancer cell proliferation and survival, driving tumor

progression (41). Fatty acid-binding protein 5 (FABP5) primarily binds

and transports long-chain fatty acids, regulating intracellular lipid

metabolism. This process is essential for cell membrane construction

and energy metabolism (42). FABP5 facilitates rapid gastric cancer cell

proliferation by promoting lipid metabolism. Additionally, FABP5

enhances gastric cancer cell migration and invasion by remodeling

the cytoskeleton and regulating extracellular matrix degradation (43).

X-inactive specific transcript (XIST) is a key long non-coding RNA on

the X chromosome, essential for X chromosome inactivation (XCI).

Research shows that XIST promotes STAD progression by targeting

miR-185 via TGF-b1 (44). Furthermore, XIST regulates STAD

progression by acting as a molecular sponge for miR-101,

modulating EZH2 expression (45). In summary, the F4 subgroup

represents a specific fibroblast subgroup in AEGJ, leading to distinct

cell differentiation characteristics and molecular profiles compared to

gastric cancers in the gastric antrum and body.
3.3 Genes expression changes in fibroblast
during AEGJ liver metastasis

F4 represents a specific fibroblast subgroup in AEGJ. Given the

observed increase in F4 fibroblasts during AEGJ liver metastasis, we

sought to identify the genes driving this expansion. We compared
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FIGURE 3

Subpopulations and transcriptome landscape of fibroblast in AEGJ liver metastasis (EGJ-liver), AEGJ (EGJ), gastric body cancer (Body), gastric antrum
(Antrum) and normal tissues (NC). (A) Uniform manifold approximation and projection (UMAP) plot showing the subtype classification of fibroblast,
and it can be divided into 7 clusters. (B) Bar charts showing the proportion of each fibroblast subtype in different samples. (C) Heatmap showing the
top 5 marker genes of each fibroblast subpopulation. (D) GO functional enrichment analysis of each fibroblast subpopulation.
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FIGURE 4

Differences in these characteristic genes in AEGJ and STAD at different sites. (A) UMAP plot showing the clustering of different fibroblasts in AEGJ
liver metastasis (EGJ-liver), AEGJ (EGJ), gastric body cancer (Body), gastric antrum (Antrum) and normal tissues (NC). (B) Differential genes were
compared between clusters of fibroblasts in different samples. (C) Expression of the three most significantly different genes in AEGJ, body and
antrum. (D, E) GO and KEGG analysis in different genes from AEGJ, body and antrum.
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the characteristic genes of F4 fibroblasts in AEGJ liver metastasis

samples with those in primary AEGJ samples, identifying four

significantly differentially expressed genes (Figure 5A).

Among these genes, JUND, S100A8, and S100A9 were

highly expressed in AEGJ liver metastasis samples, while IL24 was

predominantly expressed in primary AEGJ samples. Supplementary

Figures S2A-D illustrate the distribution of the four genes within

fibroblasts. We validated the expression of these four genes using

public GEO data, where all four showed high expression in STAD/

AEGJ tumor tissues, aligning with our single-cell sequencing

findings (Figure 5B, Supplementary Figures S2E, F). We

further confirmed the expression and distribution of these four

genes using a public gastric cancer single-cell database. In the

STAD_GSE1672972 database (Figure 5C), we observed that IL24

and JUND were enriched in the fibroblast cluster (Figures 5D, E).

S100A8 and S100A9 were enriched in dendritic cells and

macrophages (Supplementary Figures S2G, H) and showed no

significant expression differences in fibroblasts. The differential

expression of IL24 and JUND in fibroblasts within gastric cancer

tissues was consistent between our results and the public single-cell

data, whereas the results for S100A8 and S100A9 were inconsistent.

Using Cell Chat analysis, we mapped the cellular communication

landscape, showing interaction affiliations between fibroblasts (with

or without JUND/IL24 expression) and other cellular clusters

(Figures 5F, G). When evaluating interaction intensities for

JUND/IL24+/- fibroblasts across cellular groups, we found that

dendritic cells showed the strongest combined association

(Figures 5H, I). Heatmaps of directional signals for the two genes

revealed complex interactions among cell populations, with both

IL24 and JUND showing significant connections between JUND/

IL24+/- fibroblasts and MIF (Figures 5J, K).

We obtained spatial transcriptomics data for STAD patients

from the GEO database’s GSE203612 dataset to verify the

expression and distribution of IL24 and JUND (Figure 6A). We

applied strict quality control measures to the spatial transcriptomics

dataset. To accurately assess cell composition at each point on the

10×Visium slide, we used deconvolution analysis, integrating spatial

transcriptomics (ST) and single-cell transcriptomics data specific to

the cancer type. Figure 6A shows the locations of all cell types after

spatial transcriptomics deconvolution. Figures 6B and C reveal that

IL24 and JUND expression closely resembles that of fibroblasts,

suggesting these genes are primarily expressed by fibroblasts in

STAD, consistent with single-cell sequencing results. To further

validate our findings, we performed immunofluorescence staining

on AEGJ liver metastasis and non-metastatic tissues, using DCN to

label fibroblasts in tissue sections, followed by IL24 and JUND

staining. Immunofluorescence results showed that IL24 and JUND

co-localized with fibroblast markers in AEGJ tumor tissues. IL24

expression was lower in AEGJ liver metastasis than in primary

AEGJ, while JUND was highly expressed in AEGJ liver metastasis.

This pattern is consistent with our single-cell results, further

confirming that IL24 and JUND are closely associated with AEGJ

liver metastasis (Figures 6D, E).
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We analyzed the functions of IL24 and JUND. TCPA functional

protein analysis showed that in STAD/AEGJ, IL24 is negatively

correlated with the DNA damage pathway and positively correlated

with the MAPK and PI3K-AKT pathways (Figures 7A, B). JUND is

positively correlated with the RKT, MAPK, and PI3K-AKT

pathways and negatively correlated with the cell cycle. KEGG

functional enrichment analysis revealed that high IL24 and JUND

expression is enriched in focal adhesion and calcium signaling

pathways, suggesting involvement in cell-matrix interactions

(Figures 7C, D). GSVA analysis suggested that IL24 and JUND

expression is significantly positively correlated with the metastasis

process in gastric cancer (Figures 7E, F). IL24 and JUND interact

with the extracellular matrix, affecting fibroblast function and

matrix dynamics, thereby influencing AEGJ liver metastasis.
3.4 Subpopulations and transcriptome
landscape of Mural cell in different samples

Phylogenetic tree analysis revealed that the developmental

trajectory and differentiation pathway of mural cells differed

significantly in AEGJ with liver metastasis compared to non-

metastatic samples, suggesting that mural cells may be another

cell group influencing AEGJ liver metastasis. Therefore, further

analysis of mural cells is required. Mural cells, located on the blood

vessel wall, include pericytes and vascular smooth muscle cells

(vSMCs). Mural cells play a crucial role in vascular stability and

angiogenesis and are an important component of the tumor

microenvironment. In this study, we identified 1518 mural cells

and clustered them using known markers for pericytes and vascular

smooth muscle cells. We identified six clusters (Figure 8A). M0 and

M1 were present in all samples; M2 was absent in gastric antrum

samples; M4 was present only in AEGJ liver metastasis, AEGJ, and

gastric body samples; and M3 and M5 were present only in AEGJ

liver metastasis and AEGJ samples (Figure 8B). Based on

annotation, the M0 subgroup comprises pericytes, while the M1,

M3, M4, and M5 subgroups comprise vascular smooth muscle cells.

We found that marker genes for both pericytes and vascular smooth

muscle cells were present in the M2 subgroup, making it

unclassifiable as either cell type. This subgroup may represent a

mixed cell type undergoing differentiation and is temporarily

labeled as “Unknown.” Previous studies report that mural cells

can transform into fibroblasts or endothelial cells during disease

progression (46).

We conducted pseudotime analysis on mural cell subgroups,

identifying 9 cell states and several main branching trajectories

(Figure 8C). Pseudotime analysis preliminarily identified state 1 as

the starting point of mural cell development and state 8 as the

potential endpoint. Analyzing pseudotime results by mural cell

classification revealed distinct pseudotime directions for pericytes

and vascular smooth muscle cells, with a clear differentiation

trajectory for the M2 subgroup. The M2 subgroup appeared at

both the starting and ending points of pseudotime, suggesting that
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FIGURE 5

Analysis of significantly genes in F4 fibroblast in AEGJ liver metastasis. (A) Violin plot of 4 significantly differentially expressed genes in F4 subtype
between AEGJ liver metastasis and AEGJ without liver metastasis. p < 0.05. (B) IL24 and JUND genes expression in Stomach adenocarcinoma (STAD)
in GEO database (GSE54129). (C) UMAP plot showing different cell subsets in public single-cell database STAD-GSE1672972. (D, E) The expression
and distribution of JUND and IL24 in STAD-GSE1672972. (F, G) Circle plot showing the communication strength between interacting cells and
JUND/IL24+/- fibroblasts. (H, I) Outgoing and incoming interaction strength of the JUND/IL24+/- fibroblasts across cellular groups. (J, K) Heatmap
showing the overall outward and inward signaling patterns of the JUND/IL24+/- fibroblasts.
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FIGURE 6

Spatial transcriptome sequencing and immunofluorescence staining validate the significantly gene expression results in F4 fibroblasts. (A) Section
annotations of hematoxylin-eosin staining (H&E) (up) and spatial images of unsupervised clustering results (down). (B, C) The spatial maps show the
spatial expression pattern of fibroblasts and marker genes (IL24, JUND) in this study. (D, E) Immunofluorescence staining of IL24 and JUND together
with DCN (fibroblast) and DAPI (nuclei) (100 µm).
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FIGURE 7

Functional analysis of 2 significantly gene. (A, B) Pathway activity scores are calculated for 10 cancer-related pathways (TSC/mTOR, RTK, RAS/MAPK,
PI3K/AKT, hormone ER, hormone AR, EMT, DNA damage response, cell cycle, and apoptosis pathways) based on TCPA database in IL24 and JUND.
(C, D) The pathway enrichment analysis based on the KEGG gene set and the ES of each gene set is calculated, and the ES values of the gene sets
are subjected to a significance test and a multiple hypothesis test. Genes with p value less than 0.05 and adjusted p value less than 0.25 are
considered significant and are visualized. (E, F) Pearson correlation of GSVA scores between z-scores of IL24 and JUND gene expression level and
14 tumor states.
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FIGURE 8

Subpopulations and transcriptome landscape of mural cell in AEGJ liver metastasis (EGJ-liver), AEGJ (EGJ), gastric body cancer (Body), gastric
antrum (Antrum) and normal tissues (NC). (A) UMAP plot showing the clustering of 6 different mural cells in this study. (B) Bar charts showing the
proportion of each mural cells subtype in different samples. (C) Figure of mural pseudotime, and the color from red (state 1) to purple (state 8)
indicates the progression of time. (D) The GO and KEGG analysis in endpoints stata8. (E, F) 2 cancer-associated fibroblast marker genes, CTHRC1
and POSTN, were clustered in state1 and state8 in pseudotime. (G, H) Kaplan-Meier survival analysis for OS (Overall Survival) of CTHRCI and POSTN
in STAD.
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this cluster represents differentiating mural cells. To further

investigate the differentiation direction of the M2 subgroup, we

analyzed its differentiation endpoints. We first extracted M2 cells

from pseudotime endpoint state 8 for GO and KEGG enrichment

analysis, which showed GO enrichment in collagen fiber

organization (Figure 8D). KEGG analysis indicated enrichment in

protein processing and transport processes. These enrichment

results suggest that the pseudotime endpoint of the M2 subgroup

may be fibroblasts. We further analyzed differentially expressed

genes in the M2 subgroup in state 8 to identify fibroblast-related

genes. Two cancer-associated fibroblast marker genes, CTHRC1

and POSTN, were clustered here (Figures 8E, F). Previous studies

indicate that fibroblasts with high CTHRC1 and POSTN expression

are markers for gastric cancer-associated fibroblasts (24, 37). KM

survival analysis shows that patients with high expression of these

genes have poorer survival in STAD (Figures 8G, H). This suggests

that the developmental trajectory from state 1 to state 8 of the M2

subgroup may represent the transformation of mural cells into

gastric cancer-associated fibroblasts. Changes in the tumor
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microenvironment due to this differentiation process may

contribute to AEGJ progression or metastasis.
3.5 SFRP2+ pericytes participate in the
process of AEGJ liver metastasis

To further identify mural cell marker genes associated with

AEGJ liver metastasis, we compared mural cells between AEGJ liver

metastasis and non-metastasis groups, showing subgroup

distributions in Figure 9A. We compared the differentially

expressed genes between the two groups, finding that they were

mainly concentrated in M0, M1, M2, and M5, with the highest

number in the M2 subgroup. The number of upregulated

differentially expressed genes was significantly higher than that of

downregulated genes (Figure 9B). GO and KEGG analysis of all

differentially expressed genes from the comparison revealed that

upregulated genes were commonly enriched in the IL-17 signaling

pathway. M0 was enriched in gene expression regulation and the
FIGURE 9

mural cell marker genes associated with AEGJ liver metastasis. (A) UMAP analysis compared mural cells between AEGJ liver metastasis and non-
metastasis groups. (B) The differentially expressed genes between AEGJ liver metastasis and non-metastasis groups, with results showing that
differentially expressed genes mainly appeared in M0, M1, M2, and M5, with the highest number in the M2 subgroup. (C, D) GO and KEGG functional
clustering analysis of all differentially expressed genes. (E) Venn plot show the DEGs (differentially expressed genes) between our study and TCGA-
STAD. (F) SFRP2 expression was higher in AEGJ liver metastasis than in the non-metastasis group and higher in the TCGA-STAD distant metastasis
group than in the non-metastasis group and survival analysis indicated that patients with high SFRP2 expression had poorer prognosis.
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TNF signaling pathway, M1 in protein transport, M2 in protein

transport and chronic inflammation, and M5 in the inflammatory

response (Figures 9C, D). To further analyze these differentially

expressed genes (DEGs), we screened TCGA-STAD database

transcriptomic data on distant metastasis, identified DEGs, and

intersected them with group DEGs, yielding 11 DEGs (Figure 9E).

These included 8 upregulated and 3 downregulated genes. Survival

analysis of these 11 genes identified 6 significantly associated with

prognosis: CALD1, HSPH1, MAL2, MYL9, SFRP2, and TAGLN

(Supplementary Figure S3). Of these 6 genes, only SFRP2’s survival

results were consistent with its expression patterns. SFRP2

expression was higher in AEGJ liver metastasis than in the non-

metastasis group, and also higher in the TCGA-STAD distant

metastasis group compared to the non-metastasis group. Survival

analysis indicated that patients with high SFRP2 expression had a

poorer prognosis (Figure 9F).

To further validate SFRP2 expression and distribution in STAD,

we analyzed spatial transcriptome data (Figure 10A). We used

Spearman’s correlation analysis to calculate correlations between

cellular contents in all spatial transcriptomic spots, as well as

between cellular contents and gene expression levels, and

visualized the results with the linkET package (Figure 10B). The

results showed that SFRP2 expression was significantly and

positively correlated with fibroblast and endothelial cell content in

the spots, which was further verified by the single-gene spatial

transcriptome localization map (Figures 10C–E). Combined with

previous single-cell sequencing results, we further confirmed that

SFRP2 is involved in genes related to the STAD tumor

microenvironment and may participate in vascular-related tumor

functions or processes. Since mural cells are composed of pericytes

and vascular smooth muscle cells, to further determine the

subcellular localization of the SFRP2 gene in mural cells, we used

tissue immunofluorescence to detect SFRP2 expression in AEGJ

liver metastasis, AEGJ, and normal tissues, and identified the

expression localization of the SFRP2 gene in pericytes

(Figure 10F). The results showed that SFRP2 was abundantly

present in pericytes of patients in the AEGJ liver metastasis

group, significantly higher than in the non-metastasis group and

normal group, indicating that SFRP2+pericytes significantly

influence AEGJ liver metastasis.

We further analyzed the distribution of the SFRP2 gene among

different pericyte subgroups (Figure 11A). We speculate that the

SFRP2 gene may serve as a potential molecular marker for AEGJ

liver metastasis. comPPI protein interaction network suggests that

the SFRP2 gene is associated with WNT proteins (Figure 11B).

TCPA functional protein analysis indicates that in STAD/AEGJ,

SFRP2 is significantly positively correlated with epithelial-

mesenchymal transition (EMT) and negatively correlated with the

cell cycle (Figure 11C). GSVA activity analysis suggests that the

SFRP2 gene is significantly positively correlated with the metastasis

process in STAD/AEGJ (Figure 11D). We found that both the

intensity and density of cellular communication involving SFRP2+

pericytes were significantly higher in the AEGJ liver metastasis

group than in the non-liver metastasis group (Figure 11E). In the

AEGJ liver metastasis group, SFRP2+ pericytes were closely

associated with the angiogenesis-related VEGF pathway
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(Figure 11F), suggesting that SFRP2+ pericytes may play a role in

tumor angiogenesis-related pathways and mechanisms. Those

further indicate the relevance and potential role of SFRP2 in

AEGJ tumor metastasis.
4 Discussion

Adenocarcinoma of the esophagogastric junction (AEGJ) is a

highly aggressive malignant tumor of the digestive tract with a poor

prognosis and an increasing incidence worldwide. Liver metastasis

is a common distant metastasis in AEGJ, significantly impacting

patient survival rates. The mechanisms underlying AEGJ liver

metastasis remain unclear, and in-depth research into these

molecular pathways is essential for improving patient prognosis.

In this study, we conducted the first single-cell transcriptome

analysis of primary and adjacent normal tissues of AEGJ with

liver metastasis, integrating these data with public AEGJ single-cell

transcriptome datasets. This analysis identified key components of

the tumor microenvironment (TME) involved in AEGJ liver

metastasis and revealed specific cell subpopulations and molecules

associated with cancer cell extravasation. These findings advance

our understanding of AEGJ liver metastasis mechanisms and

suggest new therapeutic targets for AEGJ.

Why is AEGJ prone to hematogenous metastasis? Anatomically,

AEGJ spans both the thoracic and abdominal regions, with dual

blood return pathways from each cavity. Its proximity to the liver’s

blood supply further increases the risk of liver metastasis (47–49).

However, AEGJ liver metastasis is a complex process that cannot be

fully understood or inhibited from an anatomical perspective alone;

it requires a deeper, molecular-level analysis. In brief, cancer cells

first penetrate the basement membrane and extracellular matrix

(ECM) around the primary tumor, then enter the bloodstream

(hematogenous metastasis) or lymphatic system (lymphatic

metastasis). This process is called intravasation (50). In the

circulatory system, cancer cells interact with vascular endothelial

and wall cells, crossing vessel walls to enter new tissues—a process

called extravasation. In their new location, cancer cells must adapt

to the local microenvironment and begin to proliferate. This process

involves the tumor microenvironment, including immune cells,

fibroblasts, and the extracellular matrix. Cancer cells may induce

angiogenesis to secure essential nutrients and oxygen, promoting

tumor growth while evading immune surveillance and clearance in

their new environment (51, 52). Cancer growth in a new location

often starts as a tiny, undetectable stage known as micrometastasis.

Over time, these micrometastases gradually develop into clinically

detectable tumors, called metastatic foci. This microscopic process

involves biological mechanisms such as epithelial-mesenchymal

transition, intravasation, extravasation, immune evasion, and

multiple signaling pathways and molecules, including growth

factors, chemokines, and cell adhesion molecules. These factors

regulate the growth, survival, migration, and invasion of cancer

cells. Key pathways in cancer metastasis include epidermal growth

factor receptor (EGFR), Wnt/b-catenin, and transforming growth

factor-b (TGF-b) (53, 54).
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Currently, single-cell sequencing technology enables the

analysis of various microscopic biological processes involved in

tumor metastasis, aiding in identifying key targets and offering new

therapeutic insights (55–57). Single-cell sequencing can analyze

various stages of tumor metastasis, identify malignant cell
Frontiers in Immunology 17
subpopulations with metastatic potential, or detect cancer stem

cell populations influencing metastasis direction. Jiang et al. used

single-cell sequencing to analyze liver, peritoneal, lymphatic, and

ovarian metastasis samples from six gastric cancer patients,

identifying highly invasive malignant cell subpopulations. This
FIGURE 10

The expression analysis of SFRP2 in STAD. (A) Localization of all cells after spatial transcriptome deconvolution. (B) Spearman map of gene expression
and microenvironment components at spatial transcriptome resolution. (C) Spatial transcriptome mapping of single gene SFRP2. (D, E) Spatial mapping
of SFRP2 in fibroblast and endothelial cell partitions. (F) Immunofluorescence staining of SFRP2 expression together with PDGFR-b (mural–pericyte) and
DAPI (nuclei) (100 µm), the result show SFRP2 higher expression in AEGJ liver metastasis and lower expression in AEGJ without liver metastasis.
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FIGURE 11

The functional analysis of SFRP2 in AEGJ liver metastasis. (A) UMAP plot show the different expression of SFRP2 gene between AEGJ liver metastasis
and none metastasis. (B) Protein-protein interaction result in SFRP2 in the comPPI database. (C) Correlation between SFRP2 gene expression and
pathway level quantification of functional proteins by TCPA-RPPA sequencing. (D) GSVA activity analysis suggests that the SFRP2 gene is significantly
positively correlated with the metastasis process in STAD/AEGJ. (E) Circle plot showing the different communication strength between interacting
cells and SFRP2+/- pericyte in AEGJ liver metastasis and AEGJ none liver metastasis. (F) Intercellular signaling pathway Chord diagrams and heatmap
between SFRP2+/- pericyte and VEGF in AEGJ liver metastasis and non-liver metastasis groups.
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malignant epithelial subgroup exhibits invasive characteristics, a

tendency for intra-abdominal metastasis, and a tumor stem cell

phenotype induced by epithelial-mesenchymal transition.

Furthermore, a 20-gene signature of lymph node-derived

exhausted CD8+ T cells was identified to predict lymph node

metastasis (58). Single-cell sequencing can also analyze the tumor

microenvironment promoting metastasis, including endothelial

cells, fibroblasts, and the extracellular matrix. Wang et al.

conducted single-cell sequencing on six colorectal cancer (CRC)

liver metastasis patients, mapping the cellular landscape of CRC

and matched liver metastases. They identified cancer-associated

fibroblasts linked to CRC liver metastasis and described the

associated tumor microenvironment (59). Single-cell sequencing

can also analyze immune cell subpopulations associated with tumor

metastasis, exploring how metastatic cancer evades immune

surveillance, including analyses of T cells, B cells, and

macrophages. Elham Karimi et al. used single-cell sequencing to

analyze the immune landscape of 139 high-grade glioma and 46

brain metastasis patients, identifying immune resistance

mechanisms related to brain metastasis and differences in

immune landscapes between primary tumors and brain

metastases (60). In this study, we used single-cell sequencing to

identify an abnormally expanded fibroblast subgroup in AEGJ liver

metastasis, potentially related to IL24 and JUND gene

overexpression. This subgroup increase may alter the tumor

microenvironment in AEGJ, potentially promoting liver

metastasis. The tumor microenvironment (TME) plays a crucial

role in tumor metastasis. The TME comprises cancer cells, stromal

cells, immune cells, vascular endothelial cells, and various

extracellular matrix (ECM) components. Interactions among

these components influence tumor growth, invasion, and

metastasis. Fibroblasts, particularly cancer-associated fibroblasts

(CAFs), are crucial components of the TME that significantly

influence tumor progression and metastasis. Kalluri discussed

CAFs origin and activation, detailing how these cells undergo

phenotypic changes in response to tumor-derived signals (61).

This activation process involves complex signaling pathways,

including TGF-b and Wnt, which are crucial for CAF-mediated

enhancement of cancer cell invasion and metastasis. The study also

highlighted therapeutic strategies aimed at reprogramming or

inhibiting CAFs activity to mitigate their pro-metastatic effects.

Sahai et al. explored bidirectional communication between CAFs

and the immune microenvironment, showing that CAFs can

modulate immune cell recruitment and function within the TME.

Their findings suggest that CAFs establish an immunosuppressive

environment that promotes tumor progression and metastasis,

offering insights for developing therapies targeting both CAFs and

immune components (62).

Recent studies have shed light on the diverse roles of CAFs in

promoting gastric cancer metastasis. For example, Roges et al.

found that CAFs modulate the Wnt/PCP signaling pathway in

gastric cancer cells via the cytokine ROR2, promoting their

migration and metastasis. The Wnt/PCP co-receptor ROR2 can

be directly transferred from CAFs to gastric cancer cells, triggering

JNK signaling, actin polarization, and directional migration in these

cells (63). Zhang et al. also found that the HAPLN1 gene is
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markedly upregulated in gastric cancer CAFs. Gastric cancer cells

activate fibroblasts via the TGF-b1/Smad2/3 signaling pathway,

enhancing HAPLN1 expression to promote tumor migration and

invasion. Elevated HAPLN1 expression in CAFs enhances gastric

cancer invasion and metastasis via ECM remodeling (64). CAFs-

gastric cancer cell interactions confer greater metastatic potential on

gastric cancer cells, leading to metastasis to other sites. Lu et al.

analyzed fibroblast secretory characteristics in gastric cancer

metastasis, finding that CAFs secretion play a crucial role in

shaping the pre-metastatic tumor microenvironment. SLIT2, an

axon guidance protein produced by CAFs, promotes metastasis of

gastric cancer cell lines AGS and MKN45 by binding to the

roundabout guidance receptor 1 (ROBO1) (65). CAFs can also

interact with gastric cancer cells through adhesion pathways,

inducing their metastasis. Zhang et al. found that CPNE8

promotes STAD progression by regulating focal adhesion. This

effect can be reversed by the FAK inhibitor GSK2256098 or by FAK

knockout. Additionally, CPNE8 is strongly associated with tumor-

associated fibroblast and immune cell infiltration, with high

expression predicting poor outcomes for immune checkpoint

therapy in gastric cancer (66).

Our study found that AEGJ liver metastasis is associated with

high JUND expression and low IL24 expression in liver metastatic

fibroblasts. This correlation may involve interaction pathways

between gastric cancer cells and fibroblasts, such as focal

adhesion and calcium signaling. Activator Protein-1 (AP-1) is a

transcription factor composed of proteins from the JUN, FOS, ATF,

and MAF families. These proteins form homodimers or

heterodimers that bind specific DNA sequences to regulate gene

expression. The JUN family includes c-Jun, JunB, and JunD; c-Jun,

one of the most studied AP-1 proteins, is involved in cell

proliferation, differentiation, and apoptosis. The FOS family

includes c-Fos, FosB, Fra-1, and Fra-2. c-Fos often acts with c-

Jun, participating in cell proliferation and survival. AP-1 regulates

the expression of genes involved in key cellular processes, including

cell proliferation, apoptosis, differentiation, and immune response.

In cancer, AP-1 is a key regulator of oncogenic processes, including

tumor growth, metastasis, and therapeutic targeting (67).

Studies have shown that AP-1 promotes STAD progression by

upregu la t ing oncogenes and influenc ing the tumor

microenvironment. AP-1 modulates cytokine expression and

other factors that shape the tumor microenvironment, promoting

inflammation and immune evasion. Mitsuno et al. found that

Helicobacter pylori induced AP-1 activation and expression in

gastric cancer cells through the ERK signaling pathway.

Helicobacter pylori infection in the gastric mucosa induces IL-8,

IL-6, and TNF-a, with AP-1 binding sites in their promoter regions.

This activation subsequently triggers intracellular signaling, leading

to inflammation and immune responses (68). Another study

explored the mechanisms of hyperproliferation in Helicobacter

pylori infected gastric epithelial cells, focusing on NF-kB and AP-

1 activation. They found that this activation increases b-catenin and

c-Myc expression, key regulators of cell proliferation. AP-1

specifically contributes to gastric cancer development by

upregulat ing these oncogenic factors , promoting the

hyperproliferative state linked to Helicobacter pylori infection
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(69). Therefore, AP-1 is considered crucial in Helicobacter pylori-

induced STAD, as it induces inflammation and immune responses

in normal gastric mucosal cells. Shi et al. investigated AP-1 (JUND)

in STAD, showing that catecholamines upregulate MMP-7

expression, promoting tumor invasion and metastasis through

AP-1 activation. Their findings reveal the pathway linking stress-

related hormones to enhanced STAD progression through AP-1

activation (70).

AP-1 serves as an important initiating factor in gastric cancer

development and is crucial for its progression and metastasis. AP-1

activation increases c-Myc and b-catenin expression, both essential

for cell proliferation and survival in gastric cancer. Huang et al.

found that IL-1b-induced p38 activation activates the AP-1 binding

site in the MMP9 promoter. This activation is significantly

associated with lymph node metastasis and extramural invasion.

AP-1 facilitates tumor invasion and metastasis by regulating matrix

metalloproteinases (MMPs) and other factors (71).

IL24, part of the IL-10 cytokine family, is recognized as a tumor

suppressor with significant anti-cancer properties. IL24 is also

referred to as melanoma differentiation-associated gene 7 (mda-

7). IL24 is involved in various biological processes, primarily known

for its roles in immune response and cancer biology. IL24 selectively

induces apoptosis in cancer cells, sparing normal cells, making it an

appealing therapeutic candidate (72). IL24 selectively induces

apoptosis in a variety of cancer cell types, sparing normal cells

(73). This selective apoptosis is mediated by multiple pathways,

including JAK/STAT, p38 MAPK, and ERK (74). IL24 modulates

immune response by enhancing immune cell activity against cancer

cells. IL24 promotes secretion of cytokines that activate immune

responses against tumors (75). Additionally, IL24 increases cancer

cell sensitivity to chemotherapy and radiation, enhancing their

effectiveness (76). Studies indicate that IL24 expression is often

downregulated in STAD due to promoter hypermethylation.

Restoring IL24 expression can inhibit gastric cancer cell growth

and proliferation. IL24 induces apoptosis in gastric cancer cells by

activating apoptotic pathways and upregulating pro-apoptotic

proteins like Bax and caspase-3 (77). IL24 inhibits STAD

metastatic potential by reducing invasive capabilities. This occurs

partly through extracellular matrix modulation and inhibition of

enzymes like MMPs that facilitate invasion (78).

The formation of new blood vessels in tumor tissues and the

extravasation of cancer cells through vessel walls into other parts of the

body are critical factors in tumor metastasis. Mural cells, which form

blood vessels, play a crucial role in this process. In our study, we

identified a mural cell subpopulation linked to AEGJ liver metastasis,

and pseudotime analysis indicates that its differentiation into cancer-

associated fibroblasts is a crucial step in AEGJ livermetastasis. In AEGJ,

high SFRP2 expression in pericytes, a component of mural cells, is a key

marker for liver metastasis. This may be linked to enhanced pericyte-

mediated extravasation and the stimulation of epithelial-mesenchymal

transition in tumor cells. Mural cells, including pericytes and vascular

smooth muscle cells (VSMCs), play a vital role in maintaining vascular

stability and function (79). Pericytes cover the outer surface of

capillaries and venules, regulating vascular formation, maturation,

and homeostasis through direct contact with endothelial cells and by

secreting signaling molecules (80).
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Pericytes stabilize and mature newly formed blood vessels by

producing extracellular matrix components and secreting growth

factors like VEGF and PDGF. This stabilization is crucial for

maintaining the blood supply needed for tumor growth. However,

in the tumor microenvironment, pericyte coverage may be

irregular, leading to aberrant angiogenesis characterized by leaky

and dysfunctional blood vessels (81). These abnormal vessels not

only support tumor growth but also create a chaotic

microenvironment that promotes cancer cell invasion and

metastasis (82). Pericytes play a critical role in metastasis by

regulating tumor vasculature and the extracellular matrix. They

produce MMPs and other enzymes that degrade the extracellular

matrix, thereby facilitating tumor cell invasion (83). Additionally,

pericytes contribute to forming a supportive niche for cancer stem

cells, which are essential for tumor initiation, progression, and

resistance to therapy (84). The ability of pericytes to remodel the

matrix and interact with cancer stem cells highlights their

importance in the metastatic cascade (85).

Secreted Frizzled-Related Protein 2 (SFRP2) is a key regulator of

the Wnt signaling pathway. It binds to Wnt proteins, blocking their

interaction with Frizzled receptors and inhibiting the activation of

the Wnt signaling pathway. The Wnt signaling pathway plays a

crucial role in cell proliferation, differentiation, and migration. Its

abnormal activation is strongly linked to the occurrence and

progression of various cancers (86). SFRP2 acts as a tumor

suppressor, and many studies have shown that SFRP2

downregulation occurs due to promoter hypermethylation in

several types of cancer (87). HYo et al. found that in STAD,

LUCAT1 epigenetically downregulates the tumor suppressor gene

SFRP2, regulating the activation of the Wnt/b-catenin signaling

pathway and promoting the proliferation and differentiation of

gastric cancer cells (88, 89). SFRP2 expression appears to be

involved in tumor aggressiveness and invasiveness, as indicated

by the most significant SFRP2 downregulation in aggressive and

invasive pituitary adenomas compared to less aggressive or invasive

tumor types (90, 91).

Conversely, the over expression of SFRP2 in cancer cell lines

and tumor tissues has also been described. | Conversely,

overexpression of SFRP2 in cancer cell lines and tumor tissues

has also been reported. High expression of SFRP2 has been

observed in osteosarcoma cells, where its upregulation promotes

cell proliferation and migration, endowing them with metastatic

potential (92). In colorectal cancer, upregulation of the SOX2 gene

in colonic stromal cells induces SFRP2 overexpression in cancer-

associated fibroblasts, thereby promoting tumor formation (93).

The formation of the tumor vasculature is a critical process in

tumor progression and metastasis. Newly formed blood vessels in

the tumor microenvironment provide a pathway for cancer cell

spread and subsequent metastasis (94). It has been established that

microvascular density within tumors correlates with their

metastatic potential (95). The Wnt signaling pathway promotes

tumor angiogenesis and endothelial cell survival (96). Elevated

levels of active b-catenin in tumor cells lead to overexpression of

vascular endothelial growth factor (VEGF), a key pro-angiogenic

factor that stimulates blood vessel formation (97). Furthermore,

matrix metalloproteinases (MMPs) are upregulated through the
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canonical Wnt signaling pathway, facilitating extracellular matrix

remodeling during angiogenesis (98). The b-catenin-independent
Wnt/Ca2+ pathways are also implicated in tumor angiogenesis. The

upregulation of SFRP2 in the tumor vasculature suggests a link

between SFRP2 and angiogenesis. Courtwright et al. first described

the pro-angiogenic effects of SFRP2 (99). In vitro experiments

showed that SFRP2 promotes the survival and migration of

endothelial cells. At the genetic level, SFRP2 treatment of

endothelial cells upregulates pro-angiogenic genes such as VEGF-

C (100). Another study suggested that recombinant SFRP2

treatment enhances angiogenesis in melanoma tumors, an effect

that can be reversed by adding anti-SFRP2 antibodies (101). These

data provide further evidence that the Wnt pathway plays a critical

role in the pro-angiogenic effects of SFRP2. Peterson et al. further

investigated this concept and found that the FzD5 receptor is crucial

in the SFRP2-mediated Wnt signaling pathway (102). In endothelial

cells lacking this receptor, intracellular calcium release is reduced,

nuclear NFATc3 does not accumulate, and angiogenesis is

impaired. In summary, the pro-angiogenic effect of SFRP2 largely

depends on the non-canonical Wnt signaling pathway, potentially

through direct binding to the FzD5 receptor on tumor endothelial

cells. In this study, we identified high expression of SFRP2 in mural

cells (especially pericytes) in AEGJ liver metastasis, suggesting that

SFRP2 may influence the tumor microenvironment and liver

metastasis by regulating pericyte function. The specific

mechanism may involve high expression of SFRP2 in pericytes,

promoting tumor angiogenesis and endothelial cell survival through

the Wnt/Ca2+ signaling pathway, which contributes to AEGJ liver

metastasis. However, the exact mechanism remains to be

further investigated.

This study identifies tumor microenvironmental and molecular

targets associated with liver metastasis in AEGJ, offering potential as

novel therapeutic options. Translating these findings into effective

therapeutic strategies requires further exploration of potential

clinical applications and associated challenges. First, considering

the roles of JUND, SFRP2, and other molecules in AEGJ

hematogenous metastasis, developing targeted therapies against

these molecules could offer new treatment options. For instance,

designing specific inhibitors or gene regulation strategies to

suppress SFRP2 expression in pericytes could mitigate its tumor-

promoting effects within the microenvironment, thereby reducing

metastatic potential. If further studies confirm stable SFRP2

expression across various patient subgroups, this molecular target

could aid in patient stratification and individualized treatment

planning, enhancing therapeutic precision. However, clinical

translation of these targets presents several challenges. First,

clinical validation of biomarkers is essential (103, 104).

Current findings of elevated SFRP2 expression need validation

in larger patient cohorts to confirm its generalizability and

specificity across populations. Furthermore, whether other

molecules and pathways identified through single-cell sequencing

possess therapeutic potential necessitates further in vitro and in vivo
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functional studies. Research involving specific cells may face

technical challenges. For example, isolating tumor-associated

pericytes presents significant technical challenges. Currently, most

studies use flow cytometry (84, 85, 105, 106) or magnetic bead

sorting (107) to isolate pericytes from tumor tissue and vasculature,

though these methods often encounter issues with cell purity and

cross-contamination. Some researchers propose microsurgical

excision of tumor vasculature, followed by Matrigel encapsulation

and a two-week culture to facilitate the natural migration of

pericytes from the vessels (108, 109). While this method yields

high-purity cells with minimal contamination, it is complex and

time-consuming, suggesting areas for improvement. Without access

to the relevant pericytes, molecular mechanism studies cannot

progress, limiting conclusions to expression-level validation.

Finally, the complexity of the AEGJ tumor microenvironment

presents new challenges for clinical translation. Research

indicates that diverse cell types and interactions within the

microenvironment are critical to tumor progression and

metastasis, and that the microenvironment consists of a complex,

three-dimensional structure with multiple mechanisms (16, 51,

110–112). Therefore, future therapeutic strategies may require

multi-target interventions, particularly combining targeted

therapies with traditional treatments. Investigating these factors

will be crucial for achieving comprehensive therapeutic outcomes.

Limitations of this study: We collected liver metastasis samples

from AEGJ patients for joint analysis. However, due to limited

experience in specimen collection, the liver metastasis samples were

found to be necrotic tissue during preliminary analysis. As a result,

they could not be included in the final single-cell transcriptome

analysis. Consequently, our study could not analyze the metastatic

process or the intrinsic molecular connections between the primary

and liver metastasis sites in AEGJ. Furthermore, we only collected

samples from two AEGJ liver metastasis patients who underwent

surgery for single-cell sequencing analysis. The small sample size

resulted in a low number of cells in several cell subpopulations. Our

findings must be validated in a larger patient cohort.
5 Conclusion

In summary, our study revealed high expression of the SFRP2

gene in pericyte cells during the liver metastasis of adenocarcinoma

of the esophagogastric junction (AEGJ) using 10X single-cell

sequencing. Additionally, we identified a specific fibroblast

subpopulation in AEGJ liver metastasis. These findings not only

deepen our understanding of the mechanisms underlying AEGJ

liver metastasis but also offer new insights and targets for future

therapeutic strategies. Further research will aim to elucidate the

specific functions and regulatory mechanisms of SFRP2 in pericytes,

thus providing a theoretical foundation for precision therapy in

AEGJ patients.
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SUPPLEMENTARY FIGURE 1

A more detailed schematic diagram of single-cell clustering analysis.

(A) UMAP plot showing the clustering of 22 cell subsets in AEGJ liver
metastasis (EGJ-liver), AEGJ (EGJ), gastric body cancer (Body), gastric

antrum (Antrum) and normal tissues (NC). (B) Proportions of 22 cell subsets
in each group. (C) Dot plot showing representative top 3 marker genes in 22

cell subsets. (D) UMAP plot color-coded for expression of marker genes.

SUPPLEMENTARY FIGURE 2

Supplementary explanation of four significantly expression genes in fibroblast.
(A-D) UMAP plot for the expression of IL24, JUND, S100A8 and S100A9 in

different groups. (E, F) S100A8 and S100A9 genes expression in Stomach
adenocarcinoma (STAD) in GEO database (GSE54129). (G, H) S100A8 and

S100A9 expression and distribution in STAD-GSE1672972.

SUPPLEMENTARY FIGURE 3

Other 10 different expression genes and their combinational analysis. The
results for these genes present the following questions: some genes show

inconsistent expression between our results and TCGA data, and some genes
have higher expression in liver metastasis but are associated with better

survival in KM analysis, which is clearly contradictory.
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