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Introduction:Osteoarthritis (OA) is a prevalent joint disease that severely impacts

patients’ quality of life. Due to its unclear pathogenesis and lack of effective

therapeutic targets, discovering new biomarkers for OA is essential. Recently, the

role of chondrocyte subpopulations in OA progression has gained significant

attention, offering potential insights into the disease. This study aimed to explore

the role of fibrocartilage chondrocytes (FC) in the progression of OA and identify

key biomarkers related to FC.

Methods:We analyzed single-cell ribonucleic acid sequencing (scRNA-seq) data

from samples of OA and normal cartilage, focusing on FC. Microarray data were

integrated to identify differentially expressed genes (DEGs). We conducted

functional-enrichment analyses, including Kyoto Encyclopedia of Genes and

Genomes (KEGG) and Gene Ontology (GO), and used weighted gene co-

expression network analysis (WGCNA) and the least absolute shrinkage

and selection operator (LASSO) algorithm to select biomarkers. A novel

risk model for OA was constructed using these biomarkers. We then built

a transcription factor (TF)–gene interaction network and performed

immunohistochemistry (IHC) to validate protein expression levels of these

biomarkers in cartilage samples.

Results: The study identified 545marker genes associated with FC in OA. GO and

KEGG analyses revealed their biological functions; microarray analysis identified

243 DEGs on which functional-enrichment analysis were conducted. Using

WGCNA and LASSO, we identified six hub genes, on the basis of which we

constructed a risk model for OA. In addition, correlation analysis revealed a close

association between Forkhead Box (FoxO)-mediated transcription and these

these biomarkers. IHC showed significantly lower protein levels of ABCA5,

ABCA6 and SLC7A8 in OA samples than in normal samples.

Conclusion: This study used a multi-omics approach to identify six FC-related

OA biomarkers (BCL6, ABCA5, ABCA6, CITED2, NR1D1, and SLC7A8) and
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developed an exploratory risk model. Functional enrichment analysis revealed

that the FoxO pathway may be linked to these markers, particularly implicating

ABCA5 and ABCA6 in cholesterol homeostasis within chondrocytes. These

findings highlight ABCA family members as novel contributors to OA

pathogenesis and suggest new therapeutic targets.
KEYWORDS

Osteoarthritis, Cartilage, fibrocartilage chondrocytes, biomarkers, single-cell RNA
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1 Introduction

Osteoarthritis (OA) is one of the most common chronic joint

diseases, significantly affecting patients’ quality of life and imposing

substantial socioeconomic burdens. The major clinical symptoms of

OA include joint pain, limited mobility, and eventual disability (1).

As the population ages, the prevalence and annual incidence of OA

are steadily rising worldwide. As of 2017, approximately 303 million

people globally were reported to suffer from hip and knee OA,

making it the 15th-leading cause of disability and a major

socioeconomic burden (2, 3). OA is a multifactorial disease, with

known risk factors including aging, obesity, metabolic syndrome,

female sex, trauma, and genetic predisposition (4). Increasing

evidence suggests that OA involves the entire joint, affecting

structures such as articular cartilage, subchondral bone,

synovium, ligaments, menisci, and the infrapatellar fat pad

(IPFP), leading to cartilage loss, subchondral-bone growth and

destruction, synovial inflammation, and vascular remodeling (5–

7). Currently, no drugs are available that can cure or completely

reverse OA. Strategies primarily focus on weight control and the use

of NSAIDs to prevent OA progression, with most advanced-OA

patients requiring total joint replacement to alleviate symptoms (8,

9). Therefore, a deeper understanding of the pathogenesis of OA

and the target molecules involved is crucial. This knowledge will

help us identify potential diagnostic or therapeutic biomarkers to

achieve early identification and prevention of OA progression (10).

Articular cartilage is an avascular and aneural connective tissue

consisting of extracellular matrix (ECM) and chondrocytes (11). It

is composed of superficial, middle, deep, and calcified layers.

Besides water, ECM contains three major organic components:

type II collagen, hyaluronic acid, and proteoglycan matrix.

Chondrocytes maintain the homeostasis of these matrix

components by regulating the balance between ECM synthesis

and degradation (12). When articular cartilage is subjected to

adverse microenvironments, such as abnormal mechanical loads

or inflammatory mediators (13, 14), chondrocytes exhibit

phenotypic changes such as apoptosis, ferroptosis, oxidative

stress, cellular senescence, dysregulation of autophagy,

inflammation, and accelerated catabolism (11, 15). These changes
02
not only lead to ECM degradation but also induce and exacerbate

synovial inflammation through damage-associated molecular

patterns (DAMPs) (6), ultimately resulting in the destruction of

articular cartilage. Pathological processes in articular cartilage are

closely related to the pathogenesis of OA, which suggests that

identifying characteristic molecules in OA cartilage might provide

opportunities for intervention in the progression of the disease.

However, due to the heterogeneity of OA chondrocytes and the

functional complexity of different cell subtypes, obtaining reliable

and representative cartilage target molecules remains challenging.

With the advancement of bioinformatics and omics

technologies, especially single-cell sequencing, high-throughput

and highly specific tools have become available for disease

research, enabling a comprehensive understanding of cellular

heterogeneity. Recent studies on cartilage have resolved different

cell subpopulations within healthy and OA cartilage samples at

single-cell resolution, revealing their progression trajectories and

intercellular-communication patterns in OA (16–19). These

chondrocyte subpopulations exhibit distinct biological functions

at different stages of OA. In end-stage OA cartilage, fibrocartilage

chondrocytes (FC) are regarded as a predominant cell population,

positioned at the terminal point of the chondrocyte differentiation

trajectory, and are likely to contribute to OA progression (16). This

has been supported by several studies. For instance, Li et al. (17)

demonstrated a significant increase in the number of FC in hand

OA cartilage. In addition, studies by Fan et al. (19) and Sun et al.

(18) suggested that FC might represent the terminal stage of OA

cartilage differentiation, aligning with the fibrotic phenotype

observed in late-stage OA cartilage. The transition from normal

cartilage, primarily composed of hyaline cartilage, to late-stage OA

cartilage, dominated by FC, may indicate the decline of normal

cartilage function during OA progression and its shift towards an

abnormally proliferative fibrotic phenotype. A recent study has

revealed the potential molecular mechanisms behind the fibrotic

transformation of OA cartilage, providing new therapeutic targets

for OA treatment strategies. Therefore, we hypothesize that FC may

represent a key subpopulation in OA cartilage (20). However,

research on OA-related FC and their associated biomarkers

remains insufficient.
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This study aimed to explore key genes and biomarkers

associated with FC in OA by integrating single-cell and

microarray omics analyses of cartilage data from public databases.

We focused on biological functions of these genes in the

pathogenesis of OA. We hope these findings will provide

potential targets for identification of and intervention into OA.
2 Methods

2.1 Download and processing of datasets

We obtained the OA-associated articular-cartilage tissue single-

cell dataset GSE255460 from the Gene Expression Omnibus (GEO)

database (https://www.ncbi.nlm.nih.gov/geo/). 3 OA cartilage

samples and 3 non-OA samples from this dataset were used for

further analysis. Simultaneously, we collected 3 independent OA-

related articular-cartilage microarray datasets from the GEO

database: GSE169077, GSE178557, and GSE117999. The

GSE169077 dataset included 6 samples from OA patients and five

from non-OA individuals serving as normal controls. The

GSE178557 dataset comprised 4 disease samples and 4 normal

samples, while the GSE117999 dataset contained 12 disease samples

and 12 normal samples. In addition, we acquired the single-cell

ribonucleic acid sequencing (scRNA-seq) dataset GSE114007,

including 18 control and 20 OA samples, from the GEO database

to use as an external-validation dataset for verifying hub genes.

Subsequently, we employed the normalizeBetweenArrays and

removeBatchEffect functions available in the R package limma (R

Foundation for Statistical Computing, Vienna, Austria) to

normalize the raw data of each microarray dataset and eliminate

batch effects after the merging of three independent datasets.
2.2 Single-cell analysis

The Seurat package in R was used to analyze the six articular-

cartilage scRNA samples from GSE255460. To ensure cell quality,

we set the proportion of red blood cell genes to not exceed 3% and

filtered out cells with high mitochondrial-gene proportions (>10%),

fewer than 300 or more than 7000 detected genes, and total

expression counts greater than 100,000. After normalizing the

data, we selected the top 3000 most variable genes using the

varianceStabilizingTransformation (vst) function and extracted

principal components (PCs) using the RunPCA function. To

account for batch effects among samples, we integrated the data

using the RunHarmony function. Subsequently, we used the

FindNeighbors function for cell clustering and RunUMAP for

dimensionality reduction, setting the resolution to 0.8. The

FindAllMarkers function was then used to identify marker genes

for each cell cluster. Based on a previous study (19), we manually

annotated 11 chondrocyte subpopulations. The FeaturePlot

function was used to display characteristic markers of the cell

clusters and the ggplot2 package to create bar plots. Finally, we

identified genes that differentially expressed between groups of FC

using the FindMarkers function with the Wilcoxon test and defined
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these genes as FC-related genes (FCRGs). These results were

visualized using a volcano plot.
2.3 Differential-expression analysis of
genes between OA and normal samples

To analyze differential expression of genes between the OA and

control groups, we used the limma package, setting the significance

threshold at |log2 fold change| > 0.585 and P < 0.05. This resulted in the

identification of 243 differentially expressed genes (DEGs), which we

visualized using heatmaps and volcano plots created with the pheatmap

and ggplot2 packages, respectively. In addition, the chromosomal

locations of the DEGs were visualized using the circlize package.
2.4 Functional-enrichment analysis

We performed the Kyoto Encyclopedia of Genes and Genomes

(KEGG) and Gene Ontology (GO) functional-enrichment analyses

on FCRGs, covering categories such as Biological Process (BP),

Molecular Function (MF), and Cellular Component (CC).

Subsequently, we retrieved the h.all.v2023.2.Hs.entrez.gmt gene set

from the MSigDB website (https://www.gsea-msigdb.org/gsea/

msigdb) for GSEA enrichment analysis of DEGs. All analyses

were conducted using the clusterProfiler package with the P-value

cutoff set to < 0.05. We visualized the results using the enrichplot

package. We further performed pathway and process enrichment

analysis for DEGs using the Metascape website (21) (https://

metascape.org/), selecting KEGG, GO, and Reactome Gene Sets as

the datasets. The parameters were set as follows: Min Overlap = 3,

P-Value Cutoff = 0.01, and Min Enrichment = 1.5. In subsequent

analyses, we utilized the ‘GSVA’ package to conduct GSVA analysis

on the top 20 enriched pathways or processes identified from the

DEGs. Spearman correlation analysis was performed between the

sample scores of each pathway or process and the expression levels

of the six biomarkers. The results were visualized using heatmaps

and scatter plots.
2.5 Weighted gene co-expression
network analysis

TheWeighted Gene Co-expression Network Analysis (WGCNA)

package was used to construct a gene co-expression network for

identifying key gene modules associated with OA. First, based on the

pre-processed gene expression data, we constructed a sample

clustering tree and detected outliers. We then used the

PickSoftThreshold function to calculate the optimal soft threshold

(b) and converted the similarity matrix into an adjacency matrix.

Gene co-expression modules were identified using hierarchical

clustering and the dynamic tree cut algorithm, and each was

labeled with a different color. Subsequently, we analyzed

correlations between gene modules and clinical traits of the

samples, identifying the modules most highly associated with OA

for further analysis.
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2.6 Identification and validation of FC-
related OA biomarkers using
machine learning

Before applying machine learning algorithms, we intersected the

FCRGs obtained from scRNA-seq analysis, the DEGs, and the genes from

theWGCNAmodule most closely associated with OA, which resulted in

18 intersecting genes. Intersection results were visualized using Venn

diagrams created with the VennDiagram package. Subsequently, we used

the glmnet package to apply the least absolute shrinkage and selection

operator (LASSO) algorithm, selecting the optimal l-value based on 10-

fold cross-validation. Key genes identified through this process were

defined as potential FC-related biomarkers, and their value in OA disease

progression and diagnosis was investigated. We validated the expression

of these biomarkers in both the training cohort (GSE169077, GSE178557,

andGSE117999) and the external-validation cohort (GSE114007). Results

were presented as violin and box plots.
2.7 Construction and evaluation of an FC-
related diagnostic model of OA

We performed multivariable logistic-regression analysis on the

key genes identified by the machine learning algorithm to construct

an FC-related diagnostic model. The rms package was used to

develop the model and create a nomogram for OA. We assessed the

diagnostic utility of the key genes and the model using receiver

operating characteristic (ROC) curves generated by the pROC

package. Calibration curves and decision curve analysis (DCA)

were employed to validate the model’s accuracy and clinical utility.
2.8 Identification of transcription factor–
gene networks

To identify transcription factors (TFs) associated with key genes,

we used NetworkAnalyst v3.0 (https://www.networkanalyst.ca/) to

predict TFs from the Encyclopedia of Deoxyribonucleic Acid

(DNA) Elements (ENCODE) database (22). The results were

visualized using Cytoscape software v 3.9.0 (https://cytoscape.org/

) to create TF–gene interaction network maps.
2.9 Collection of cartilage samples and
immunohistochemical staining

We obtained six OA cartilage samples from patients undergoing

total knee arthroplasty for knee OA and six normal-cartilage

samples from patients undergoing amputation and arthroscopic

surgery due to trauma and infection. All patients signed their

informed consent before the study. The study was approved by

the Ethics Committee of Shantou Central Hospital (Shantou,

China), which also supervised the collection and handling of the

samples (Ethics Approval No. 2019-047). Details of the clinical

samples, including the OA grade, as well as the age and gender of

the patients, are presented in Table 1.
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To validate the expression of three key genes—solute carrier

family 7, member 8 (SLC7A8) and adenosine triphosphate (ATP)–

binding cassette sub-family A members 5 and 6 (ABCA5, ABCA6)

—in our cartilage samples, we performed Safranin O/Fast Green

(G1371; Beijing Solarbio Science & Technology Co., Ltd., Beijing,

China) and immunohistochemical (IHC) staining. First, tissues

fixed in 4% paraformaldehyde were dehydrated, embedded in

paraffin, sectioned into 3-mm thick slices, and baked. We placed

the deparaffinized slides in ethylenediaminetetraacetic acid (EDTA)

retrieval solution and citric acid retrieval solution for antigen

retrieval and then incubated them with an endogenous-

peroxidase blocker at 37°C for 10 min. Next, 10% goat serum was

added to the tissue sections. After 20 min of blocking at 37°C, we

applied primary antibodies (Abs): rabbit anti-ABCA5 (1:50; Bioss

Antibodies, Woburn, MA, USA), rabbit anti-ABCA6 (1:50; Affinity

Biosciences, Cincinnati, OH, USA), and mouse anti–L-type amino

acid transporter 2 (LAT2; 1:50; Affinity) at optimal dilutions. (LAT2

is the protein that corresponds with SLC7A8 gene expression.)

Then, we incubated the slides in a humid chamber at 4°C overnight

(approximately 12–16 h). Appropriate secondary Abs were then

added to the tissue sections and incubated at 37°C for 1 h. After

color development with 3,3′-diaminobenzidine (DAB) reagent, we

counterstained tissues using hematoxylin. Finally, positive cells in

the cartilage tissues were counted using ImageJ software (National

Institutes of Health, Bethesda, MD, USA). To assess the degree of

cartilaginous-tissue damage, we performed Safranin O/Fast Green

staining per the kit instructions and evaluated the cartilage tissue

according to the OARSI scoring system. For each sample, our

histological analysis data were collected from five randomly

selected high-power fields. The overall average for each sample

was calculated by averaging the values obtained from these

selected regions.
TABLE 1 Information about the clinical samples.

Group Gender Age

OA grade
(Kellgren-
Lawrence
System)

Patient 1 Normal Male 18 0

Patient 2 Normal Male 19 0

Patient 3 Normal Male 27 0

Patient 4 Normal Female 37 1

Patient 5 Normal Female 30 0

Patient 6 Normal Female 15 0

Patient 7 OA Male 67 4

Patient 8 OA Female 59 3

Patient 9 OA Female 71 4

Patient 10 OA Female 69 3

Patient 11 OA Female 69 3

Patient 12 OA Male 60 3
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2.10 Statistical analysis

We used GraphPad Prism v10.0 (GraphPad Software, Inc., San

Diego, CA, USA) for statistical analysis and graphing of histological

data. Proportions of positive cells in the normal and OA groups

were compared using an unpaired t test. P < 0.05 was considered

statistically significant.
3 Results

3.1 Identification and functional-
enrichment analysis of fibrocartilage
chondrocyte–related genes in OA

We analyzed the scRNA-seq data from dataset GSE223964.

Initially, we performed data quality control, filtering out genes and

cells that did not meet the standards in each sample (Figure 1A).

After normalizing the data, we identified and selected the top 3000

genes exhibiting high variability (Figure 1B). Ultimately, we obtained

45,368 cells. We then performed principal-component analysis

(PCA) for dimensionality reduction and removed batch effects

between samples (Figure 1C). We used a resolution of 0.8 for cell

clustering and visualized 15 cell subpopulations using the Uniform

Manifold Approximation and Projection (UMAP) algorithm

(Figure 1D), with marker genes of each subpopulation displayed in

a heatmap (Figure 1E). In accordance with a previous study reporting

on cell markers (19), we manually annotated 10 chondrocyte types:

homeostatic chondrocytes (HomC), hypertrophic chondrocytes

(HTC), reparative chondrocytes (RepC), regulator chondrocytes

(RegC), proliferative chondrocytes (ProC), prehypertrophic

chondrocytes (preHTC), FC, prefibrocartilage chondrocytes

(preFC), inflammatory chondrocytes (InfC), and effector

chondrocytes (EC) (Figure 1F). The feature markers of FC are

showed (Figure 2A). Furthermore, we compared cell distribution

between OA and normal cartilage and found significant differences

(Figures 2B, C). These distributions are presented in a bar chart,

which shows that the proportion of FC in OA cartilage was

significantly higher than that in normal cartilage (Figure 2D).

Finally, we identified 545 genes that differentially expressed related

to FC (FCRGs) (Figure 2E), as shown in Supplementary Data Sheet 2.

To elucidate the functions of these genes, we performed GO

annotation and KEGG pathway analysis on them (Figures 3A, B). As

shown in the bar chart, GO analysis indicated that main terms in the

BP category included connective-tissue development, gland

development, prostate gland development, negative regulation of cell

adhesion, ossification, cartilage development, response to ketone,

anoikis, bone development, and regulation of lipid metabolic

process. In the CC category, the main terms were collagen-

containing ECM, endoplasmic-reticulum lumen, fibrillar-collagen

trimer, banded-collagen fibril, collagen trimer, complex of collagen

trimers, major histocompatibility complex (MHC) protein complex,

luminal side of endoplasmic reticulum membrane, endocytic-vesicle

membrane, and endocytic vesicle. MF category terms included ECM
Frontiers in Immunology 05
structural constituent, growth factor (GF) binding, platelet-derived GF

binding, collagen binding, ECM structural constituent conferring

tensile strength, antioxidant activity, DNA-binding TF binding, and

glutathione transferase activity. As shown in the bubble chart, KEGG

pathway analysis revealed that FCRGs were primarily enriched in the

phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/protein kinase

B (Akt) signaling pathway, human papillomavirus (HPV) infection,

focal adhesion, cytoskeleton in muscle cells, phagosome,

proteoglycans in cancer, platinum drug resistance, ECM–receptor

interaction, glutathione (GSH) metabolism, and type 1 diabetes.
3.2 Differential-expression analysis and
GSEA analysis between OA and
normal groups

To identify DEGs between OA and normal cartilage, we

integrated and batch-corrected three independent datasets

(GSE169077, GSE178557, and GSE117999) to eliminate batch

effects between samples (Figures 3C, D). A total of 39 samples

were obtained, including 20 OA and 19 normal samples. Using the

limma package, we then performed differential-expression analysis,

which identified 243 DEGs. These DEGs were visualized using

volcano plots, heatmaps, and circos plots (Figures 3E–G).

Subsequently, we conducted GSEA analysis on the DEGs and

presented the top six pathways (Figure 4A). The results indicated

that DEGs were enriched in the following pathways: coagulation,

epithelial–mesenchymal transition (EMT), hypoxia, myogenesis,

P53, and tumor necrosis factor-a (TNF-a) signaling via nuclear

factor k-light-chain-enhancer of activated B cells (NF-kB).
Additionally, we performed pathway enrichment analysis of the

DEGs using the Metascape website, exhibiting the top 20 enriched

pathways (Supplementary Figure 1A).
3.3 Weighted gene co-expression
network analysis

A total of 39 samples were used to construct the weighted gene

co-expression network. Initially, sample clustering indicated that

there were no outlier samples, allowing all samples to be included in

subsequent analyses (Figure 4B). Setting the scale-free topology

model fit index threshold to 0.9, we chose b = 6 as the soft threshold,

at which the scale-free network performed optimally (Figure 4C).

Clustering analysis was used to identify highly similar modules, and

with dynamic hybrid cutting, we obtained 17 gene modules

(Figures 4D, E). We then evaluated the associations between OA

and the gene modules. The MEblue gene module (n = 1,239)

showed the strongest negative correlation with OA (Figure 4F). In

addition, the scatter plot for this module demonstrated a positive

correlation between module membership (MM) and gene

significance (GS; cor = 0.51, P = 5.4e−83) (Figure 4G).

Consequently, we defined the 1,239 genes in the MEblue module

as key OA-related genes.
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3.4 Identification and validation of FC-
related OA biomarkers using
LASSO regression

We intersected the MEblue module genes from the WGCNA

analysis with the FCRGs and DEGs (Figure 5A). This resulted in the

identification of 18 hub genes, on which we performed LASSO

regression analysis to identify potential FC-related OA biomarkers.
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Based on the results of 10-fold cross-validation, we selected six feature

genes with minimum log l (l = 6) (Figures 5B, C). Next, we validated

the expression of these six genes in both the training datasets

(GSE169077, GSE178557, and GSE117999) and the external-

validation dataset (GSE114007). The results showed that in the

training datasets, expression levels of the six genes were significantly

lower in OA than in normal samples. In the external-validation dataset,

expression levels of nuclear receptor subfamily 1 group D member 1
FIGURE 1

Quality control and cell type annotation of scRNA-seq data from GSE255460. (A) Violin plot of filtered scRNA-seq data, showing a total of 45,368
cells meeting the criteria. (B) Top 3000 highly variable genes are displayed as red dots in the scatter plot, with non-variable genes represented as
black dots. (C) Single-cell data after normalization and batch effect correction. (D) UMAP plot shows 15 cell clusters. (E) Heatmap of marker genes’
expression levels for each cell cluster. (F) UMAP plot shows 10 annotated cell clusters.
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(NR1D1), SLC7A8, Cbp/P300-interacting transactivator with Glu/Asp-

rich carboxy-terminal domain 2 (CITED2), B-cell lymphoma 6 (BCL6),

and ABCA5 were significantly lower in OA than in normal samples.

Meanwhile, ABCA6 showed no statistically significant difference in

expression between the two groups (Figures 5D, E). Finally, we

performed a correlation analysis between the expression levels of the

six biomarkers and the characteristics of the DEGs. The analysis
Frontiers in Immunology 07
revealed that the activities of blood vessel development, extracellular

matrix, and assembly of collagen fibrils and other multimeric structures

were negatively correlated with the expression of the biomarkers. In

contrast, the activities of Forkhead Box (FoxO)-mediated transcription

and response to steroid hormone showed positive correlations with the

biomarker expression. These results were visualized using both

heatmaps and scatter plots (Supplementary Figures 1B, C).
FIGURE 2

Markers, distribution, proportions, and differentially expressed genes of FC in OA cartilage. (A) Distribution of FC-related cell markers at specific
locations on UMAP plot. (B, C) Distribution of chondrocyte subpopulations in the control and OA groups displayed in the UMAP plot. (D) Bar plot
showing proportions of cell clusters in the control and OA groups. (E) Volcano plot showing FC-related differentially expressed genes (FCRGs)
between the control and OA groups. X-axis represents average log2 fold change values; Y-axis represents −log10(Pval_adj) values.
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3.5 Construction and evaluation of an FC-
related OA diagnostic model

Based on the six FC-related biomarkers, we constructed an OA

diagnostic model using logistic regression and created a nomogram
Frontiers in Immunology 08
to evaluate the risk of OA (Figures 6A, B). ROC curve analysis

showed that areas under the curve (AUCs) and 95% confidence

intervals (CIs) for BCL6, ABCA5, ABCA6, CITED2, NR1D1, and

SLC7A8 were, respectively, 0.9789 (95% CI, 0.9457–1.0000), 0.95

(95% CI, 0.8899–1.0000), 0.9368 (95% CI, 0.8672–1.0000), 0.8789
FIGURE 3

Functional-enrichment analysis of FCRGs and DEGs between normal and OA groups. (A) Bar plot of GO enrichment analysis for FCRGs, including
BP, CC, and MF categories. X-axis represents the number of genes enriched in each pathway, and color represents Padjust. (B) Bubble plot of KEGG
enrichment pathways for FCRGs. X-axis represents the ratio of enriched genes, bubble size indicates the number of genes enriched in Biological
Processes, and color represents Padjust. (C, D) Box plots and PCA, respectively, illustrating integration and batch effect correction of data from
GSE169077, GSE178557, and GSE117999. (E) Heatmap showing DEGs between normal and OA groups. Colors represent gene expression levels, with
upregulated genes shown in red and downregulated genes in blue. (F) Volcano plot of DEGs. X-axis represents log2 (fold change); Y-axis represents
−log10 (P). Red dots indicate significantly upregulated genes, blue dots indicate significantly downregulated genes, and gray dots represent genes
with no significant differential expression. (G) Circos plot showing the distribution of DEGs in mitochondria.
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(95% CI, 0.7668–0.9911), 0.8395 (95% CI, 0.7104–0.9685), and

0.7158 (95% CI, 0.5546–0.8770), indicating that these six

biomarkers had significant discriminatory power between OA and

normal samples. Furthermore, the diagnostic model achieved an

AUC of 0.9694 in the external-validation dataset, confirming its
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excellent diagnostic capability (Figures 6C, D). In addition, the

calibration curve demonstrated a high degree of concordance

between the model and the ideal model (Figure 6E). Based on the

DCA results from the external-validation dataset, when the

diagnostic threshold for OA is set between 0.1 and 0.7, the net
FIGURE 4

GSEA analysis of DEGs and WGCNA. (A) GSEA analysis of DEGs based on h.all.v2023.2.Hs.entrez.gmt gene set. (B) Sample clustering dendrogram to
remove outlier samples. (C) Determination of optimal soft-threshold powers (b) based on scale independence and mean connectivity. (D) Gene
cluster dendrogram and gene module colors. (E) Clustering dendrogram of module eigengenes. (F) Heatmap of correlations between module
eigengenes and clinical traits, with P-values annotated by both color and numerical value. (G) Scatter plot showing correlation between OA and blue
module genes.
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benefit of the model surpasses both the “None” strategy (no

intervention for anyone) and the “All” strategy (intervention for

everyone). This indicates that the model can effectively distinguish

between high-risk and low-risk individuals to some extent,

providing better clinical decision-making benefits for OA patients

under moderate intervention (Figure 6F).
Frontiers in Immunology 10
3.6 Construction of the TF
regulatory networks

We used the NetworkAnalyst platform and the ENCODE

database to predict TFs closely associated with the six key genes

(Figure 7A). The TF regulatory network was visualized using
FIGURE 5

Selection and validation of feature biomarkers of OA. (A) Venn diagram showing the intersection of MEblue module genes, FCRGs, and DEGs.
(B, C) The LASSO regression algorithm was used to select feature biomarkers with minimum log l. (D) Violin plots showing expression levels of six
biomarkers in the training datasets (GSE169077, GSE178557, and GSE117999). (E) Box plots showing expression levels of six biomarkers in the
external-validation dataset (GSE114007). *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001; ns, not significant.
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Cytoscape. In the regulatory network that we built, 37 TFs were

identified to interact with the six genes. Notably, forkhead box C1

(FOXC1) was found to interact with all key genes; histone H4

transcription factor (HINFP) interacted with BCL6, CITED2,

ABCA5, and ABCA6; and signal transducer and activator of

transcription 3 (STAT3) interacted with BCL6, CITED2, NR1D1,

and ABCA5.
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3.7 Validation of OA biomarkers expression
in cartilage by IHC staining

We first performed Safranin O/Fast Green staining on cartilage

samples from the normal and OA groups and evaluated the degree

of cartilage lesions based on the OARSI score (Figure 7B). The

results showed that the surface of cartilage in the normal group was
FIGURE 6

Construction and evaluation of OA diagnostic model based on FC-related biomarkers. (A, B) Nomogram constructed for OA based on six FC-related
biomarkers. (C) ROC curves showing the diagnostic performance of six biomarkers and the model for OA in the training dataset, with AUC values
shown in the bottom-right corner. (D) ROC curve of the diagnostic model in the GSE114007 dataset, with AUC value shown in the bottom-right
corner. (E) Calibration curve showing agreement between the model and the ideal model. (F) DCA curve indicating potential clinical benefit of the
model for decision making.
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intact, while cartilage in the OA group exhibited significant loss of

cartilage matrix, depletion of Safranin O staining, visible vertical

fissures, as well as chondrocyte death and cluster formation. These

findings indicated significant degenerative changes in the OA group

compared with the normal group. Subsequently, to validate protein

expression levels of OA biomarkers in cartilage, we performed IHC
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staining on samples from both groups. The results demonstrated

that expression levels of ABCA5, ABCA6, and LAT2 (the protein

product of the SLC7A8 gene) were significantly decreased in the

cartilaginous tissue of the OA group compared with that of the

normal group, consistent with our analysis of the public

datasets (Figure 7C).
FIGURE 7

A TF–gene interaction network and validation of feature biomarkers via IHC. (A) TF–gene interaction network, with key genes at the center and TFs
at the periphery. The darker the color of the TF, the stronger its interaction with the key genes. (B) Safranin O/Fast Green staining of cartilage
samples from the normal and OA groups and the OARSI score used to evaluate the cartilage lesions in both groups (n = 6 per group). (C) IHC
staining showing expression levels of ABCA5, ABCA6, and LAT2 in cartilage samples from the normal and OA groups (n = 6 per group). Scale bar:
100 and 50 mm. ***P < 0.001, ****P < 0.0001.
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4 Discussion

As understanding of OA’s pathogenesis has deepened, a

number of drugs have recently emerged that aim to alter disease

progression by modifying OA pathophysiology (23). These drugs,

known as disease-modifying osteoarthritis drugs (DMOADs), have

shown promising results in cell and animal experiments (24–28).

However, none has yet been approved by regulatory agencies for

clinical use. This highlights the importance of deepening our

understanding of OA pathogenesis, as well as the need for

advancements in OA-related imaging and biochemical markers

(29, 30). The destruction of articular cartilage, a pathological

hallmark of OA, is considered an important event in the

progression of the disease, suggesting that OA cartilage might be

a reliable target for identifying disease-specific molecules (31, 32).

Biological differences among chondrocyte subpopulations have also

become a research hotspot in recent years (16, 33, 34). Given these

insights, our study focused on cartilage tissue and FC, considering

their substantial presence and functional significance in OA

cartilage (17, 20, 35). We performed single-cell analysis and

microarray analysis on datasets from GEO, employing WGCNA

and machine learning algorithms to identify key genes. The

pathways closely associated with these genes were subsequently

identified. Finally, we exploratively constructed a risk model and

conducted experimental validation. These findings can help us

elucidate the underlying mechanisms of OA pathogenesis and

identify potential therapeutic targets.

Through single-cell analysis of the GSE223964 dataset, we

ident ified 545 marker genes associated with the FC

subpopulation. GO analysis revealed that these genes were

involved in connective-tissue development, negative regulation of

cell adhesion, ossification, anoikis, regulation of lipid metabolic

process, collagen-containing ECM, and platelet-derived GF

binding. In addition, KEGG analysis showed significant

associations with signaling pathways such as PI3K/Akt, focal

adhesion, phagosome, ECM–receptor interaction, and

GSH metabolism.

Endochondral ossification is typically a critical physiological

process in bone growth, but its abnormal activation in OA leads to

cartilage degeneration and osteophyte formation, making it a key

pathological feature of the disease (36). Chondrocyte hypertrophic

differentiation is considered a pivotal step in endochondral

ossification, with this phenotypic change representing the loss of

normal cartilage function (37). Studies have suggested that

hypertrophic chondrocytes in tissue engineering may contribute

to the formation of fibrocartilage (38). Our research showed that

FCRGs are significantly enriched in the ossification process, which

indicates that FC, representing a fibrotic cartilage phenotype, may

play a role in cartilage calcification, thereby promoting OA

progression. Anoikis, a form of programmed cell death triggered

by the loss of proper cell adhesion (39), involves complex signaling

pathways and has been implicated in the pathogeneses of various

tumors (40). Recent studies have begun exploring the relationship

between anoikis and articular diseases. Wang et al. (41)

demonstrated that developmentally regulated endothelial-cell
Frontiers in Immunology 13
locus 1 protein (DEL1) can protect chondrocytes by inhibiting

anoikis through integrin signaling. Another study investigated

anoikis-related OA genes using single-cell analysis (42),

highlighting the connection between anoikis and OA cartilage

degeneration. Due to the limited research on anoikis in OA

cartilage, its potential negative role in cartilage homeostasis,

particularly in relation to FC, may require further exploration.

Furthermore, the association between the PI3K/Akt signaling

pathway and OA has been extensively studied (43, 44). Activation

of this pathway is linked to various BPs in OA cartilage, including

ECM metabolism, production of inflammatory mediators, and

negative regulation of apoptosis (45). Our analysis suggested that

the PI3K/Akt signaling pathway played a significant role in the FC

subpopulation in OA. These pathways may provide new insights

into the role of FC in OA cartilage.

Our differential analysis of microarray data identified 243

DEGs. Enrichment analysis revealed that DEGs are involved in a

wide range of biological processes and signaling pathways, such as

response to nutrient levels, assembly of collagen fibrils and other

multimeric structures, and FoxO-mediated transcription. These

characteristics of DEGs are crucial for understanding the

molecular mechanisms and pathogenesis of OA. To further

identify genes more closely associated with OA traits, We also

conducted WGCNA on the microarray data, identifying the

MEblue genes module as the most significantly negatively

correlated with OA. Then, we intersected the FCRGs, DEGs, and

WGCNA key module genes and performed LASSO regression

analysis on the intersecting hub genes, ultimately identifying six

feature genes (BCL6, ABCA5, ABCA6, CITED2, NR1D1, and

SLC7A8). Differential expression of these genes was validated in

both the internal and external datasets, identifying them as potential

FC-related OA biomarkers.

How these biomarkers, identified from DEGs, represent the

characteristics of DEGs and contribute to the OA disease process

remains one of our key focuses. To clarify this complex relationship,

we performed a correlation analysis between the six specific genes

and the pathways significantly enriched by DEGs. Excitingly, we

found a strong association between the selected biomarkers and

biological processes related to extracellular matrix, collagen fibril

assembly, blood vessel development, response to nutrient levels, and

FoxO-mediated transcription. This reflects a high degree of

consistency between the biological functions of the biomarkers

and the characteristics of the DEGs, providing strong support for

the selection of these biomarkers. Specifically, the FoxO family of

transcription factors has been widely reported for its crucial role in

various biological processes, particularly in cellular senescence,

metabolic regulation, autophagy, and stress adaptation, where it is

considered a key regulator in maintaining cellular homeostasis (46).

Akasaki et al. (47) demonstrated that FoxO expression is

significantly reduced in aging articular cartilage, suggesting that

the downregulation of FOXO proteins may represent a novel

mechanism in OA development. Another study reported that

overexpression of FoxO1 reduces cartilage inflammatory

mediators and enhances cellular resistance to oxidative stress

(48). Studies by Matsuzaki et al. (49) and Lee et al. (50) further
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emphasized the protective role of FoxO in cartilage and meniscus,

respectively, with FoxO downregulation in OA potentially leading

to the abnormal expression of genes responsible for cellular

homeostasis. Our study confirms a strong positive correlation

between FoxO-related pathway activity and the expression levels

of the six biomarkers, suggesting a functional role for FoxO in the

involvement of these biomarkers in the pathogenesis of OA

cartilage. This also implies that these biomarkers may play a

critical role in protecting cartilage and slowing the progression

of OA.

In OA, BCL6 exhibits certain biological and genetic functions,

although the specific pathological processes it participates in remain

unclear. A bioinformatics study identified BCL6 as a key hub gene

linking knee OA and sarcopenia (51). The data analyses of both Xu

et al. (52) and Chen et al. (53) recognize BCL6 as an aging-related

OA biomarker with diagnostic potential. CITED2 is another

transcriptional regulator known to activate under appropriate

mechanical load, thereby playing a protective role in cartilage (54,

55). Other studies have shown it to be important in the IPFP (56)

and osteoclastogenesis (57). In our study, expression of CITED2 in

OA cartilaginous tissue was significantly downregulated compared

with the control group, aligning with the concept that protective

factors in cartilage are inhibited in OA. This bioinformatics

evidence supported CITED2’s role as a protective mediator in

cartilaginous tissue. As a crucial component in the regulation of

circadian rhythms, NR1D1 is closely associated with type 2 diabetes

(58), tumors (59), metabolic disorders (60), and inflammatory

diseases (61). Disruption of circadian rhythms is strongly linked

to increased OA susceptibility and might be a potential therapeutic

target in OA (62–64). Liu et al. (61) revealed that NR1D1 plays a key

regulatory role in synovial inflammation and bone destruction in

RA. Akagi et al. (65) confirmed downregulation of NR1D1 in OA

cartilage, which might impact transforming growth factor-b (TGF-

b) signaling in chondrocytes; this is consistent with our study’s

findings. SLC7A8, also known as LAT2, is a Na+-independent

amino acid transporter widely expressed in human tissues such as

those of the small intestine, kidney, placenta, and skeletal muscle,

mediating the specific exchange of neutral L-amino acids (66, 67).

SLC7A8 might activate mammalian target of rapamycin (mTOR)

through glutamine metabolism regulation, contributing to

metabolic reprogramming (68). Another member of the SLC7

family, SLC7A5, has been reported to regulate expression levels of

matrix metalloproteinases 3 and 13 (MMP-3, MMP-13) in RA

synovial cells (69). Another bioinformatics study identified SLC7A5

as an OA biomarker (70).

ABCA5 and ABCA6, members of the ATP-binding cassette

transporter superfamily, are located on human chromosome 17q24

and are primarily responsible for lipid transport, particularly

cholesterol transport (71–73). Knockout of murine ABCA5 leads

to lysosomal-disease–like symptoms (74). DeStefano et al. (75) and

Palmer et al. (76) identified ABCA5 as a key gene in hair growth,

with ABCA5 knockdown leading to cholesterol homeostasis

disruption. Fu et al. (77) confirmed a close association between

ABCA5 and late-onset Alzheimer disease, potentially due to its role

in maintaining brain cholesterol homeostasis. Another study

identified ABCA5 as a mediator of cholesterol efflux in
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macrophages under high-cholesterol conditions, highlighting its

potential in lipid management and atherosclerosis. ABCA6 has

been reported to be involved in the progression of various

malignancies through cholesterol transport regulation (78). A

large-scale genomic study found a 3.65-fold increase in ABCA6

mutation frequency in the Dutch population (79). Gai et al. (80)

demonstrated that ABCA6 is a novel target gene of FoxO in human

endothelial cells (ECs) and responds to cholesterol levels. This

finding strongly supports the close association between the FoxO

pathway and OA-related biomarkers revealed in our

previous results.

Given the significantly decreased expression of these

biomarkers in OA cartilage, we speculate that these key genes

may be closely involved in maintaining chondrocyte homeostasis,

participating in crucial physiological functions such as cholesterol

transport, glutamine metabolism, and circadian rhythm regulation.

The reduced expression of these biomarkers may disrupt

chondrocyte homeostasis, thereby promoting OA progression.

Specifically, we hypothesize that the low expression of ABCA5

and ABCA6 in OA cartilage may be regulated by FoxO and

potentially disrupt intracellular cholesterol homeostasis by

inhibiting cholesterol transport. This imbalance in intracellular

cholesterol could ultimately contribute to the pathological

progression of OA cartilage. Recently, the association between

OA and impaired lipid metabolism has garnered increasing

attention (81, 82). Choi et al. (83) experimentally confirmed that

cholesterol regulates chondrocytes in OA through the cholesterol

25-hydroxylase (CH25H)/cytochrome P450 7B1 (CYP7B1)/retinoic

acid receptor (RAR)–related orphan receptor-a (RORa) axis.

Another study has revealed a correlation between cholesterol and

cartilage degeneration (84). In addition, ABCA1, a member of the

ABCA subfamily and a cholesterol efflux gene, has been shown to be

downregulated in OA cartilage (85). These insights may help

uncover the complex pathological mechanisms involved in OA

cartilage degeneration and provide potential therapeutic targets for

OA. However, more comprehensive data analysis and further

experimental models are needed to validate this hypothesis and

explore the underlying complex molecular mechanisms.

Based on these biomarkers, we have exploratively constructed a

new OA risk model based on cartilage RNA-seq data. The

diagnostic ability and reliability of the model and of each

biomarker were subsequently evaluated. AUC values for each

biomarker were > 0.7, with that of BCL6 as high as 0.9789,

demonstrating their ability to distinguish between OA and

Normal group samples. The DCA result indicated that the model

may provide potential support for clinical decision-making in the

identification of OA patients. However, the model is still far from

clinical application, and its reliability needs to be validated using

larger cartilage sequencing datasets. Compared to other biomarkers

such as X-rays and synovial fluid, the acquisition of cartilage

samples and subsequent RNA sequencing may involve higher

costs and more invasive clinical interventions. Furthermore, due

to the uneven distribution of cartilage degeneration in OA, these

cartilage-derived biomarkers may be influenced by the sampling

region, potentially introducing bias into the predictive outcomes.

These limitations may restrict the practical application of the model
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and suggest that constructing a predictive model based on a

combination of multiple biomarkers could be a direction for

future research. However, these exploratory results still hold

potential value in expanding the knowledge of diagnostic

biomarkers for OA.

To identify molecules involved in the regulation of key genes,

we constructed a TF–gene regulatory network. We found that

FOXC1, HINFP, and STAT3 were closely related to the key

genes, suggesting that complex interactions might be involved in

the pathogenesis of OA. However, further research is needed to

verify this hypothesis. Finally, we validated protein expression levels

of the three key genes—ABCA5, ABCA6, and SLC7A8—in cartilage

samples collected from clinical cases. As expected, protein

expression levels of these three key genes were significantly lower

in the OA than in the normal group, further confirming the

reliability of the OA biomarkers we identified.

As previously noted, FC is the primary cell population in OA

cartilage and has a strong association with cartilage fibrosis and

degeneration. Our analysis further corroborates these findings. In

our study, the six FC-associated OA biomarkers identified all

showed lower expression levels in OA cartilage, which contrasts

with the increased abundance of FC in OA. We hypothesize that

during OA progression, the downregulation or even inactivation of

genes involved in maintaining normal chondrocyte metabolism and

circadian rhythm may disrupt chondrocyte homeostasis, leading to

phenotypic changes, increased FC abundance, and ultimately

cartilage degeneration. One study demonstrated that the gene

expression profile of FC underwent extensive alterations in hand

OA and that the proportion of FC associated with increased

cartilage degradation was significantly elevated in OA (17). These

studies support our hypothesis and help to reveal the specific

molecular mechanisms linking biomarkers and FC, although

further data and experimental validation are still needed.

Despite its potential insights into disease-related molecules, this

study had several limitations. First, the microarray datasets included

in our research were sourced from the GEO database, with only a

limited number of cartilage samples meeting study requirements.

This might have introduced bias into the results. Second, since the

dataset does not include data related to X-rays or other biomarkers,

our OA model may lack the ability to compare with other

biomarkers. In future studies, we aim to incorporate more OA-

related biomarkers to enhance the diagnostic efficacy of the model.

Moreover, the study validated expression levels of biomarkers

through IHC only. The heterogeneity in cartilage degeneration

may cause sampling variations that affect the expression levels of

these biomarkers in different samples. It is necessary to collect more

clinical cases and further explore the potential mechanisms of these

biomarkers through in vivo and in vitro experiments. Additionally,

the TF-gene interaction network we constructed was based on

connectivity between entities, which may not accurately reflect

the precise molecular regulatory relationships. Moreover, the

referenced database may not fully capture specific biological

phenomena. Therefore, the regulatory relationships within these

interaction networks require further validation through

experimental data or supporting literature evidence.
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In conclusion, this study employed a multi-omics integrative

bioinformatics approach, focusing on the FC subpopulation in OA

cartilage, and identified six genes (BCL6, ABCA5, ABCA6, CITED2,

NR1D1, and SLC7A8) as FC-related OA biomarkers. An exploratory

OA risk model based on cartilage RNA-seq data was also developed.

Furthermore, functional enrichment analysis confirmed a strong

association between the FoxO pathway and these biomarkers. We

hypothesize that ABCA5 and ABCA6 may play a key role in

maintaining cholesterol homeostasis in chondrocytes, and their

downregulation in OA cartilage could represent a potential

molecular mechanism driving cartilage degeneration and fibrosis.

These findings are the first to report a link between ABCA family

members and OA, potentially advancing our understanding of OA

pathogenesis and providing new therapeutic targets for the disease.
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