
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Jun Zhang,
Kumamoto University, Japan

REVIEWED BY

Paul E. Love,
National Institutes of Health (NIH),
United States
Yuquan Chen,
Monash University, Australia
Xiaofei Liu,
Affiliated Hospital of Shandong University of
Traditional Chinese Medicine, China

*CORRESPONDENCE

Chaojie Liang

liangchaojie8@126.com

Gaopeng Li

malone2001@163.com

†These authors have contributed
equally to this work and share
first authorship

RECEIVED 18 August 2024
ACCEPTED 17 December 2024

PUBLISHED 08 January 2025

CITATION

Dai Y, Dong C, Wang Z, Zhou Y, Wang Y,
Hao Y, Chen P, Liang C and Li G (2025)
Infiltrating T lymphocytes and tumor
microenvironment within
cholangiocarcinoma: immune
heterogeneity, intercellular
communication, immune checkpoints.
Front. Immunol. 15:1482291.
doi: 10.3389/fimmu.2024.1482291

COPYRIGHT

© 2025 Dai, Dong, Wang, Zhou, Wang, Hao,
Chen, Liang and Li. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Review

PUBLISHED 08 January 2025

DOI 10.3389/fimmu.2024.1482291
Infiltrating T lymphocytes and
tumor microenvironment within
cholangiocarcinoma: immune
heterogeneity, intercellular
communication,
immune checkpoints
Yunyan Dai1†, Chenyang Dong2†, Zhiming Wang1,
Yunpeng Zhou1, Yi Wang1, Yi Hao1, Pinggui Chen3,
Chaojie Liang2,4* and Gaopeng Li1,5*

1Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical
Sciences, Tongji Shanxi Hospital, Taiyuan, China, 2First Clinical Medical College, Shanxi Medical
University, Taiyuan, China, 3Department of Nuclear Medicine, Nanyang First People’s Hospital,
Nanyang, Henan, China, 4Department of biliary and Pancreatic Surgery, First Hospital of Shanxi
Medical University, Taiyuan, China, 5Department of Hepatobiliary Surgery, Shanxi Bethune Hospital,
Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi
Hospital, Taiyuan, China
Cholangiocarcinoma is the second most common primary liver cancer, and its

global incidence has increased in recent years. Radical surgical resection and

systemic chemotherapy have traditionally been the standard treatment options.

However, the complexity of cholangiocarcinoma subtypes often presents a

challenge for early diagnosis. Additionally, high recurrence rates following

radical treatment and resistance to late-stage chemotherapy limit the benefits

for patients. Immunotherapy has emerged as an effective strategy for treating

various types of cancer, and has shown efficacy when combined with

chemotherapy for cholangiocarcinoma. Current immunotherapies targeting

cholangiocarcinoma have predominantly focused on T lymphocytes within the

tumor microenvironment, and new immunotherapies have yielded

unsatisfactory results in clinical trials. Therefore, it is essential to achieve a

comprehensive understanding of the unique tumor microenvironment of

cholangiocarcinoma and the pivotal role of T lymphocytes within it. In this

review, we describe the heterogeneous immune landscape and intercellular

communication in cholangiocarcinoma and summarize the specific distribution

of T lymphocytes. Finally, we review potential immune checkpoints

in cholangiocarcinoma.
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1 Introduction

Biliary tract cancers (BTC) include cholangiocarcinoma (CCA)

and gallbladder carcinoma (GBC) (1). CCA is further categorized

into intrahepatic (iCCA), perihilar (pCCA), and distal (dCCA)

cholangiocarcinoma based on its anatomical location within the

biliary tree. Among these subtypes, pCCA is the most prevalent,

accounting for 50–60% of CCA, followed by dCCA at 20–30%, and

iCCA at 10–20% (2) (Figure 1).

CCA is acknowledged as a relatively rare form of cancer,

comprising less than 2% of all cancers (3). A epidemiological

analysis in the United States indicated that the incidence of CCA,

iCCA, and extrahepatic cholangiocarcinoma (eCCA) has increased

by 43.8%, 148.8%, and 7.5%, respectively (4). A study conducted in

European countries revealed that mortality rates due to iCCA are

rising at a higher rate than those due to eCCA (5). Additionally,

while increasing mortality from iCCA has been observed globally,

mortality from eCCA has either leveled off or decreased (6). CCA

accounts for nearly 15% of all primary hepatic carcinomas and 3%

of gastrointestinal cancers (5). The incidence and etiology of CCA

subtypes vary across different regions. Developed regions exhibit

low incidences of CCA, with rates falling below 2 per 100,000 (7). In

the Western world, primary sclerosing cholangitis, metabolic

syndrome, and nonalcoholic fatty liver disease are recognized risk

factors for iCCA (8). In contrast, low-income countries in Southeast

Asia report significantly higher incidences of CCA, up to 40 times

that of Western countries. Infections with specific flukes have been

identified as the primary cause of CCA in endemic regions, such as

Thailand and China (9). In conclusion, the complex etiology and

regional variations in incidence are closely linked to the highly

heterogeneous subtypes of CCA.

Multiple diagnoses and distinct therapies for CCA are contingent

on specific genetic aberrations and the primary site of the disease
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(10). Most CCAs are asymptomatic, with diagnosis is usually made at

more advanced stages. Regional lymph node invasion is present in

nearly half of patients, and distant metastases affect approximately

one-quarter (11). This contributes to poor prognosis, high mortality

rates, and limited treatment options, with a 5-year mortality rate of

80% (12). Surgical resection remains the preferred treatment for

localized disease. Unfortunately, due to delayed diagnosis and locally

advanced situation, curative resection is possible in less than 30% of

patients (13). Even patients who undergo potentially curative surgical

resection experience a high rate of recurrence and early local or

distant metastases. Currently, the combination of gemcitabine and

cisplatin (GemCis) is considered the standard treatment for

unresectable or metastatic CCA (14), and ongoing clinical trials are

investigating various targeted therapies. Nevertheless, dismal survival

rates and adverse side effects following chemotherapy significantly

affect patients’ quality of life. In summary, overall survival and

genuine benefit of surgical resection and adjuvant therapy for CCA

remain suboptimal (15, 16).

Immunotherapy has demonstrated significant potential in the

treatment of solid tumors by effectively enhancing antitumor

immunity through the modulation of immune checkpoints (17).

The TOPAZ-1 trial, which evaluated the combination of GemCis

and durvalumab in cholangiocarcinoma patients, has shown a

notable improvement in overall survival (OS) and progression-

free survival (PFS) for those with advanced cholangiocarcinoma

(18). However, grade 3-4 adverse events were reported in three-

quarters of patients, and the overall health of the patients

demonstrated a prolonged trend of deterioration. Additionally,

the study also did not reveal the influence of PD-L1 expression,

primary tumor site, disease state, or geographic region on the

findings. The positive results of the KEYNOTE-966 trial, a Phase

III clinical study assessing Pembrolizumab in combination with

chemotherapy for advanced biliary tract tumors, provided
FIGURE 1

Classification and main treatment of CCA.
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additional evidence supporting the incorporation of immune

checkpoint inhibitors into standard chemotherapy regimens (19).

Based on these two trials, the role of immune checkpoint inhibitors

(ICIs) in the first-line treatment of advanced CCA is firmly

established. However, the efficacy of ICIs in unselected groups of

patients with advanced CCA is limited. Therefore, identifying

predictive biomarkers for patients and understanding their

resistance mechanisms are critical (20).
2 The characteristics of tumor
microenvironment
in cholangiocarcinoma

The tumor microenvironment (TME) constitutes a complex

microecosystem surrounding a developing and progressing tumor.

It includes not only the tumor cells themselves but also cancer-

associated fibroblasts, vascular endothelial cells, and immunocytes

from both innate and adaptive immune systems. Additionally, the

TME comprises an extracellular matrix rich in various proteins

such as collagen, laminin, and proteoglycan complexes (21, 22). The

formation of this highly dynamic, multicellular functional

compartment in conjunction with tumor growth is a hallmark

feature of numerous epithelial cancers, which are often

characterized by significant invasiveness and limited therapeutic

options (23).
2.1 The phenotypic conversion and
functional changes of tumor-
infiltrating cells

In this internal environment, cancer-associated fibroblasts

(CAFs) are the primary cells that contribute to tumorigenesis and

are likely involved in tumor progression (24). CAFs may induce

immune exclusion by overproducing aberrant extracellular matrix

(ECM) (25), thereby affecting the immune microenvironment and

delivery of chemotherapy drugs (26). As cancer advances, all cells

undergo phenotypic conversion and functional changes (27). In

innate immune cells, tumor-associated macrophages (TAMs)

consistently tend to differentiate into the M2 phenotype, which

possesses protumorigenic characteristics. The current conflicting

findings in studies evaluating TAMs and patient outcomes in CCA

suggest the need for further exploration of the relationship between

TAMs and mechanisms underlying CCA progression (28, 29).

Tumor-associated neutrophils (TANs) are inflammatory during

the early stages of tumor development but adopt an

immunosuppressive phenotype as the tumor progresses (30).

Natural killer cells (NKs) are recognized for their potent cytotoxic

effector functions, their ability to eliminate malignant cells and limit

tumor metastasis is constrained within the TME (31). Some studies

have indicated that the low cytotoxic activity of NKs is associated

with an increased risk of cancer (32). Dendritic cells play a crucial

role in maintaining communication between adaptive and innate

immune cells, and are essential for orchestrating specific antitumor
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immune responses (33). The ability of tumor-infiltrating dendritic

cells (TIDCs) to efficiently process antigens may be suppressed in

the TME, but this capability can be restored by exiting this

immunosuppressive milieu (34).

Over the past decade, numerous studies have demonstrated the

critical role of adaptive immune cells in the antitumor immune

response (35–37), with particular emphasis on T lymphocytes,

which will be discussed in greater detail later. Similar to tumor-

infiltrating T cells, tumor-infiltrating B cells (TIL-Bs) are adaptive

immunocytes with diverse functions. In addition to their pro-

tumorigenic effects, B cells exhibit antitumor activity (38). In the

TME, CD8+ T lymphocytes, CD4+ T lymphocytes, and NKs are

activated to block tumor propagation and inhibit immune escape.

Conversely, other immunocytes such as DCs, regulatory T cells

(Tregs), and TAMs promote tumor growth, progression, invasion,

and angiogenesis, thereby inhibiting the antitumor immune

response (39).
2.2 The intercellular communication and
disease prognosis in cholangiocarcinoma

CCA is characterized by a desmoplastic tumor microenvironment

that encompasses a complex immunological landscape and a tumor-

reactive stroma. The tumor microenvironment of CCA is notably

enriched in myeloid cells, particularly TAMs and TANs, along with

other immunosuppressive populations (40–42). In contrast, cells that

mediate antitumor immunity are markedly diminished (43). The CCA

phenotype is shaped not only by epigenetic alterations within the

cancer cells but also by extensive crosstalk between malignant cells and

their surrounding cellular environment (44). Cell–cell communication

in CCA generates and maintains an immunosuppressive environment;

tumors typically reprogram the TME to support survival

(21) (Figure 2).

CAFs generate an extracellular matrix (ECM) that provides

immune barriers, contributing to the highly desmoplastic tumor

microenvironment characteristic of CCA (45). CAFs also secrete

heparin-binding epidermal growth factor (HB‐EGF), which

activates the epidermal growth factor receptor (EGFR) expressed

by CCA cells (46). Additionally, CAFs attract DCs and dampen the

expression of antigen-presenting molecules, which impair their

ability to activate tumor-infiltrating lymphocytes (TILs) and

stimulate immunosuppressive functions (47). Among all innate

immune cells, TAMs represent the most significant population

within the TME (48). CCA cells induce polarization of

macrophages toward the M2 phenotype via the STAT3 pathway.

TAMs participate in tumor growth and metastasis by releasing

TNF-a, TGF‐b, IL6, IL10, and VEGF-A. High infiltration of TAMs

is associated with angiogenesis and increased recruitment of Tregs

and has been linked to poor prognosis in CCA patients. TANs are

predominantly driven by C-X-C motif ligand 5 (CXCL5) and

express CCL2 and CCL17, which recruit TAMs and Tregs,

ultimately creating an immunosuppressive environment that

sustains CCA progression (49). An increased presence of TANs

in the TME, along with an elevated preoperative peripheral blood
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neutrophil-to-lymphocyte ratio, are poor prognostic factors

for CCA.

NKs are recruited into the TME by CXCL9, where they utilize

death receptor-mediated apoptosis and perforin/granzyme-mediated

cytotoxicity to target tumor cells and inhibit primary tumor growth

(50). Preclinical and clinical studies have shown that NK cell deficiency

or impaired function is associated with an increased incidence of

various malignancies. TIL-Bs contribute to limiting tumor growth by

secreting immunoglobulins, enhancing T cell responses, and directly

destroying cancer cells (51). Although TIL-Bs constitute a minor

proportion of TILs in cholangiocarcinoma, a higher density of

infiltrating B cells is significantly correlated with longer PFS and OS

in CCA patients (52).
2.3 The heterogeneity of the immune
microenvironment in cholangiocarcinoma

The immune heterogeneity of the TME is a prevalent

characteristic of cholangiocarcinoma (53), as demonstrated by

variations in the abundance and composition of infiltrating

immune cells, along with the diverse activation states observed

within individual immune cell subtypes (54–56). A comprehensive

understanding of TME heterogeneity is essential for elucidating the

molecular and cellular landscape of immune cells in CCA,

deciphering the varied responses to anti-tumor therapies among

CCA patients, and facilitating the development of personalized

immunotherapies tailored to the specific characteristics of the

TME (Table 1).

In a study involving 255 human samples of iCCA (57), Lin

and colleagues identified three TME-based subtypes: IG1

(immunosuppressive), IG2 (immune-exclusion), and IG3 (immune-
Frontiers in Immunology 04
activated). Researchers found that IG1 was characterized by excessive

infiltration of neutrophils and immature dendritic cells (iDCs),

whereas tumor-infiltrating T lymphocytes were predominant in

IG3. Furthermore, the immune subgroups exhibited significant

differences in OS and recurrence-free survival, with IG1 associated

with the worst prognosis and IG3 associated with the best prognosis.

Patients exhibiting an enrichment of innate immune cells within the

TME may respond positively to myeloid-targeted therapies such as

C-X-C motif chemokine receptor 2 (CXCR2) and colony-stimulating

factor receptor (CSFR) inhibitors, which aim to deplete or reprogram

tumor-associated neutrophils (58, 59). Conversely, patients with a

predominance of adaptive immune cells may continue to benefit

from ICI treatment. This comprehensive multimodal analysis of the

three immune subgroups provides valuable insights into the immune

landscape of iCCA, offering potential opportunities for personalized

treatment of CCA patients. Job et al. categorized 78 human iCCA

samples into four subtypes: I1 (immune desert), I2 (immune

activation), I3 (myeloid-enrich), and I4 (mesenchymal-like) (60).

Notably, I2 subtype exhibited a high infiltration of immune cells

and demonstrated strong activation of inflammatory and immune

checkpoint pathways, suggesting the potential effectiveness of

immunotherapy targeting this subtype. In contrast, I4 subtype

displayed the poorest overall survival, while the other two subtypes

exhibited intermediate survival outcomes. This classification

highlights the dynamic interaction between tumors and the

immune system, aiding the identification of patients who may

benefit from effective immunotherapy. Consequently, developing an

immune classification method to identify CCA phenotypes

characterized by high immune cell infiltration is essential to

identify potential candidates for effective immunotherapy. In

several other clinical studies of iCCA and eCCA have identified

immune microenvironment-based prognostic subtypes, indicating a
FIGURE 2

The cross-talk and interaction of immune cells in CCA.
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strong correlation between TILs and favorable patient outcomes (57,

61–66). Comprehensive characterization of these immune subtypes is

critical for establishing CCA stratification, which may ultimately

facilitate the design of subpopulation-specific immunotherapies.
Frontiers in Immunology 05
Concurrently, these immune subtypes with more favorable

prognoses demonstrate activated inflammatory pathways (67).

Chronic inflammation within the TME may promote tumor

progression, with specific immune cells linked to poor prognostic
TABLE 1 Cholangiocarcinoma subtypes based on the tumor microenvironment.

Year Author Sample (n) Subtype and characteristic prognosis Reference

2012 Andersen JB CCA (104) 1. SGI
2. SGII
3. SGIII
4. SGIV

2 > 1 > 4 > 3 (54)

2013 Sia D iCCA (149) 1. Inflammation class (38%)
2. Proliferation class (62%)

1 > 2 (67)

2015 Nakamura H iCCA (145)
eCCA (86)
GBC (29)

1. Cluster 1
2. Cluster 2
3. Cluster 3
4. Cluster 4

1 > 3 > 2 > 4 (55)

2017 Chaisaingmongkol J iCCA (130) 1. C1
2. C2
3. C3
4. C4

3 > 2 > 4 > 1 (56)

2020 Job S iCCA (78) 1. I1 (immune desert)
2. I2 (immune activation)
3. I3 (myeloid-enrich)
4. I4 (mesenchymal-like)

2 > 1 > 3 > 4 (60)

2020 Montal R eCCA (189) 1. Metabolic class (18.7%)
2. Proliferation class (22.5%)
3. Mesenchymal class (47.3%)
4. Immune class (11.5%)

4 > 1 > 2 > 3 (62)

2022 Lin Y iCCA (45) 1. The sparsely subgroup
2. The heterogeneously subgroup
3. The highly infiltrated subgroup

– (53)

2022 Bao X iCCA (151) 1. Subtype 1 (chronic inflammation)
2. subtype 2 (metabolism)
3. Subtype 3 (chromatin remodeling)

3 > 2 > 1 (68)

2022 Ding GY iCCA (962) 1. Class I (immune excluded)
2. Class II (immune altered)
3. Class III (immune altered)
4. Class IV (immune active)

4 > 3 > 2 > 1 (63)

2022 Lin J iCCA (255) 1. IG1 (immunesuppressive, 25.1%)
2. IG2 (immune-exclusion, 42.7%)
3. IG3 (immune-activated, 32.2%)

3 > 2 > 1 (57)

2022 Dong L iCCA (262) 1. S1 (inflammatory)
2. S2 (mesenchymal)
3. S3 (metabolic)
4. S4 (differentiated)

4 > 3 > 2 > 1 (69)

2022 Chen S iCCA (16) 1. high-immune cluster
2. low-immune cluster

1 > 2 (64)

2022 Carapeto F iCCA (96) 1. Group 1
2. Group 2 (immune hot phenotype)
3. Group 3 (immune cold phenotype)
4. Group 4 (immune cold phenotype)

2 > 1 > 4 > 3 (61)

2023 Deng M iCCA (114)
eCCA(103)

1. S-I (metabolism subtype)
2. S-II (proliferation subtype)
3. S-III (stromal subtype)

1 > 2 > 3 (65)

2023 Cho SY iCCA(102) 1. The stem-like subtype
2. The poorly immunogenic subtype
3. The metabolism subtype

3 > 1 > 2 (66)
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outcomes. A study identified three distinct subtypes: chromatin

remodeling, metabolism, and chronic inflammation. Subsequently,

Bao and colleagues found that APOE+ C1QB+ macrophage have the

ability to reshape the chronic inflammation subtype, which is linked

to an unfavorable prognosis in patients with iCCA (68). Another

study revealed that the inflammatory subgroup characterized by

high expression of inflammatory proteins and dominated by Treg

infiltration exhibited a comparatively poor prognosis compared to

the metabolic and differentiated subgroups. Furthermore, both

inflammatory and stromal responses were found to significantly

facilitate the progression of iCCA (69). Although these

classifications provide a comprehensive overview of the immune

landscape of CCA and suggest potential avenues for personalized

treatments, no clinical applications have yet been reported.

Therefore, prospective validation of these classifications is

essential before they can be integrated into patient care for CCA.
3 Tumor-infiltrating T lymphocytes
in cholangiocarcinoma

T lymphocytes originate from progenitors in the bone marrow and

undergo differentiation in the thymus. Following this process, they

migrate to various immune organs and tissues throughout the body via

lymphatic vessels, blood, and tissue fluid circulation, where they play a

crucial role in adaptive immunity (70). During the immune response, T

cells can be activated and proliferate in response to specific antigens

expressed by tumor cells, leading to their differentiation into effector T

cells. After the immune response concludes, apoptosis occurs in the

majority of effector T cells. Within the tumor microenvironment of

CCA, T lymphocytes represent the most common inflammatory cell

type (71). CCA can be classified into two groups based on the presence

of tumor-infiltrating lymphocytes (TILs) in the TME: lymphocyte-

infiltrated tumors and non-lymphocyte-infiltrated tumors (72, 73).

Tumors that exhibit immune cell invasion are regarded as immune-

responsive tumors, and the immune cell population in lymphocyte-

infiltrated tumors can either promote or inhibit tumor progression

through their immune responses (74).

The heterogeneity of tumor-infiltrating T lymphocytes is

prevalent in CCA, encompassing both intertumoral and

intratumoral heterogeneity (75). Intertumoral heterogeneity is

closely associated with the subtype and stage of CCA, characterized

by variations in the quantity, proportion, and distribution of T cells

among cholangiocarcinoma subtypes (76). Goeppert observed a

decreasing trend in the density of CD4+ and CD8+ T cells in the

tumor immune microenvironment as bile duct cancer progressed

(77). Different subsets of tumor-infiltrating T lymphocytes exert

distinct effects on the long-term prognosis of CCA patients (78).

Although occasional conflicting findings have been reported,

infiltrated CD8+ T and CD4+ T lymphocytes are generally

positively correlated with prognosis for CCA patients (71). In

contrast, a high number of infiltrated Tregs may be associated with

poorer overall survival. The intratumoral heterogeneity of tumor-

infiltrating T lymphocytes is primarily related to T cell plasticity and

intercellular communication within the TME, manifesting as state
Frontiers in Immunology 06
transformation and functional changes in T lymphocytes. Numerous

studies have demonstrated that the TME of cholangiocarcinoma

exhibits distinct T-cell states and potential trajectories for cellular

development. Single-cell analyses of CCA have identified multiple

subpopulations of TILs (79). A study involving 33 iCCA patients

demonstrated that tissue resident memory (TRM)-like CD8+ TILs

expressing CD69+ CD103+ showed significantly elevated levels of T

cell markers (80). The phenotypic exhaustion of CD4+ T and CD8+ T

cells, along with the aberrant activation of Tregs within the TME, has

been extensively investigated (81). T cell exhaustion is a distinct state

of cell differentiation, accompanied by changes in chromatin

conformation and DNA methylation, and associated alterations in

gene expression (82). Epigenetic therapy can restore defects in

antigen processing and presentation of MHC-1 molecules during

tumor immunoediting (83). Research has shown that increased

expression of CCL5 by epigenetic treatment could increase T-cell

infiltration and promote the memory and effector T-cell phenotypes

(84). Additionally, the expression level of CCL5 chemokines is up-

regulated, which may further attract CD8+ T cells to infiltrate the

TME (85). Zhou and colleagues found that antibodies against TIM-3

or LAG-3 can repair the response of T cells to tumor antigens, and

the combination of antibodies shows a superimposed effect (86).

Heterogeneous expression patterns are also observed in certain genes

both within and between different T cell subtypes. For instance,

immune checkpoint molecules such as PD1, CTLA4, LAG3, and

TIGIT exhibit differential expression in CD4+ T and CD8+ T cells

(61). Jing and colleagues found that the expression frequency of

human endogenous retrovirus-H long terminal repeat associated

protein 2 (HHLA2) was higher in iCCA than in PDL1. HHLA2

overexpression is associated with a lower density of CD8+ TILs (87).

The heterogeneous expression of these genes presents significant

challenges in identifying predictors of immunotherapy responses. A

comprehensive understanding of the heterogeneity among tumor-

infiltrating T lymphocytes will enhance the advancement

of immunotherapy.
3.1 CD4+ T lymphocytes
in cholangiocarcinoma

CD4+ T lymphocytes play a pivotal role in the regulation of the

immune system and the promotion of anti-tumor responses (88).

They facilitate B cell activation for antibody production, enhance

and sustain CD8+ T cell responses, regulate the immune response to

control the strength and persistence of autoimmunity (89). These

diverse functions are achieved through the differentiation of native

CD4+ T cells upon stimulation by tumor antigens presented by

antigen-presenting cells (APCs), leading to their development into

effector or memory cells with specialized phenotypes (90, 91).

Various subsets of CD4+ T cells, including Th1, Th2, Th17, and

follicular T helper cells contribute differently to these processes (92,

93). Additionally, CD4+ T cells possess the ability to directly

eliminate tumor cells by releasing cytotoxic particles (94). Recent

studies also indicate the appearance of exhausted CD4+ T cells upon

persistent antigen stimulation (95).
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3.1.1 The CD4+ T lymphocytes interact with other
cells in the immune microenvironment

CD4+ T lymphocytes possess the ability to activate monocytes,

macrophages, and NKs (96). However, CD4+ T cells in the TME

gradually lost the ability to proliferate and recognize tumors (97).

Tran and colleagues demonstrated that the progression of CCA was

effectively inhibited by the adoptive transfer of T-helper (Th) cells

that specifically recognize the tumor-expressed erbb2 mutant

protein (98). This finding suggests that Th cell responses may

facilitate the regression of late-stage CCA. The release of

interleukin-10 (IL-10) by MSDCs and TAMs promotes a Th2

response while disrupting Th1/Th2 balance. Shen and colleagues

found that HBV-infected iCCA patients showmore Th2 cells within

immune landscape (99). Studies have shown that most malignant

tumors are skewed towards a Th2 response, but Qiu found that Th1

cytokines such as IFN-g and IL-2 are mainly expressed in primary

liver cancer (100). The accurate identification of T-cell phenotypes

in CCA may aid in the development of effective personalized

cancer immunotherapies.

3.1.2 The distribution and prognosis of tumor
infiltrating CD4+ T cells

The proportion and distribution of tumor-infiltrating CD4+ T

lymphocytes in CCA subtypes exhibited significant disparities. Most

studies have observed a marked increase in CD4+ T cell infiltration at

the periphery of CCA compared to the central region of the tumor (76,

77, 101–103). Conversely, one study indicated that CD4+ T cell

infiltration was notably higher at the center of the tumor than at its

edge (104). Another investigation found no substantial variance in the

distribution of CD4+ T cells surrounding and within the tumor (105). It

has been demonstrated that there is a gradient decrease in T cell

infiltration from the periphery to the center of the tumor, and that the

total number of intraepithelial infiltrating CD4+ T lymphocytes serve as

an independent staging and prognostic indicator for CCA (77). Kim

et al. found that tumor margins with active infiltration of Foxp3- CD4+

T helper cells exhibited higher expression levels of LAG3 and TIM3,

suggesting that the infiltration of Foxp3- CD4+ T helper cells at the

tumor margin is a key group associated with clinical outcomes in

patients with CCA (102). Ding and colleagues observed a significant

increase in follicular helper T (Tfh) cells within the tumor and the

elevated levels of Tfh cells potentially indicating a favorable prognosis

(63). CCAs demonstrate diverse TILs, with a high density of CD4+ T

cells at the tumor margin being associated with improved disease-free

survival (DFS) and OS (106). Kasper et al. found that CD4+ T cells

predominantly localize at the periphery of the tumor tissue, where they

are induced by tumor cells to establish immune tolerance within

the TME, thereby adapting to its immunosuppressive milieu (101).

The infiltration of CD4+ T cells may signify malignant

enhancement (Table 2).
3.2 CD8+ T lymphocytes
in cholangiocarcinoma

CD8+ T cells are a subset of lymphocytes developing in the

thymus and are committed to detecting antigenic peptides
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presented by MHC class I molecules expressed by all tumor cell

types. DCs cross present the MHC class I molecules to CD8+ T cells

to induce the generation of effector CD8+ T cells with cytotoxic

capacity, namely CTLs (107). Following CD8+ T cell activation,

CTLs migrate to the TME to mount effective responses (108).

sustained overexpression of the receptors on CD8+ T cells could

promote their dysfunction or exhaustion, leading to impaired

efficacy in combating cancer (109). Activated CTLs employ two

primary mechanisms to kill tumor cells: granule exocytosis and Fas

ligand (FasL)-mediated apoptosis induction. The granule exocytosis

pathway is mediated by the release of granzymes (GZM) A and B

from CTLs. The released granzymes then enter cancer cells and

cleave their intracellular substrates. The second mechanism is that

the FasL on CTLs binds to Fas receptors on tumor cells to accelerate

apoptosis (110).

3.2.1 The intercellular communication of CD8+ T
cells in the tumor microenvironment

CD8+ T lymphocytes play critical roles in interacting with other

cells within the TME (111). As cholangiocarcinoma progresses, these

interactions become attenuated. CD8+ T lymphocytes positively

interact with immunostimulatory cells while negatively interacting

with immunosuppressive cells (112). In addition to directly targeting

tumor cell elimination, CTLs can also release TNF-a into the TME,

inducing apoptosis in cancer cells (113). The production of

prostaglandin E2 and adenosine by cholangiocarcinoma cells

directly restrains the function and activity of CTLs, further

inhibiting CTL-mediated anti-tumor immunity through the

overexpression of immune checkpoint ligands such as PD-L1 and

B7-H7, or through the downregulation of MHC-I expression on their

surface (114). CAFs generate a substantial amount of extracellular

matrix, impeding CTL contact with tumor cells, while also secreting

the chemokine CXCL12, which inhibits T cell migration toward the

tumor (115, 116). Furthermore, the activation of pathways involving

TGF-b, B7-H1/PD-1, and Fas/FasL has been observed in the

cholangiocarcinoma microenvironment, which hampers the

proliferation and activity of CD8+ T lymphocytes (71).

3.2.2 The distribution and prognosis of tumor
infiltrating CD8+ T cells

Regardless of iCCA or eCCA, the predominant infiltrating

inflammatory cells are CD8+ T lymphocytes (80, 103, 104). Numerous

studies have consistently demonstrated that CD8+ T cells are primarily

localized in the peritumor area of CCA (76, 77, 101, 102, 106, 117–119).

Conversely, it has been reported that there is no significant variance in

the distribution of CD8+ T lymphocytes around and within CCA tumors

(105, 120). The quantity and positioning of CD8+ T cells at the tumor

site are closely associated with clinical diagnosis and prognosis (121).

Asahi et al. found a negative correlation between the number of CD8+ T

cells and tumor size, suggesting that the count of CD8+ T cells can serve

as a prognostic factor for postoperative iCCA patients (106). Immune

checkpoints are closely associated with the prognosis of CCA patients.

The abundant expression of ICOS, LAG3, OX40, PD-1, and TIM3 at the

tumor margin indicates active participation of T cells in the immune

response to tumor cells, which can lead to T cell depletion (61).

Overexpression of PD-1 by CD8+ T cells result in the depletion of
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these cells and poor prognosis. Additionally, upregulated expression of

the immunosuppressive cytokine IL-10 is observed in activated CD8+

PD-1+ T cells, suggesting that CD8+ PD-1High T cells may acquire the

ability to inhibit the immune response to CCA (117) (Table 2).
3.3 Tregs of tumor microenvironment
in cholangiocarcinoma

Regulatory T cells, commonly referred to as Tregs, represent a

subset of CD4+ T cells within the immune system characterized by
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low proliferation capacity and typically expressing phenotypes such

as CD4+ CD25+ Foxp3+ and CD4+ CD25+ CD127low (122). Tregs can

be categorized into thymus-derived Tregs (tTregs) and peripherally-

derived Tregs (pTregs) (123, 124). Tregs are capable of secreting

cytokines such as IL-4, IL-10 and TGF-b, which contribute to the

maintenance of immune homeostasis by regulating immune

responses within the organism. The transcription factor Foxp3,

specifically expressed by Tregs, plays an essential role in their

maturation and function (125). Recent studies have revealed that

Tregs not only participate in immunosuppressive regulation but also

play a substantial role in tumor immune evasion (126, 127).
TABLE 2 Distribution of tumour-infiltrating T lymphocytes in cholangiocarcinoma .

Year Country Author Sample(n) Distribution Reference

2009 Germany Kasper HU CCA (8)
HCC (27)

CD3+ T: PT > IT (p=0.008)
CD4+ T: PT > IT (p=0.043)
CD8+ T: PT > IT (p ≤ 0.001)

(101)

2013 Germany Goeppert B pCCA (106)
dCCA (43)
iCCA (157)
GBC (69)

CD4+ T: PT > IT
CD8+ T: PT > IT
Treg: PT < IT

(77)

2018 Japan Ueno T eCCA (117) CD4+ T: PT vs IT (p=0.15)
CD8+ T: PT vs IT (p=0.94)
Treg: PT vs IT (p=0.62)

(105)

2019 China Zhou G iCCA (25)
pCCA (2)

CD4+ T: PT > IT
CD8+ T: PT > IT (p<0.001)
Treg: no difference

(76)

2020 Japan Asahi Y iCCA (69) CD8+ T: PT > IT
Treg: PT > IT

(106)

2020 China Tian L iCCA (322) CD8+ T: PT > IT (p<0.0001) (117)

2021 China Wu H iCCA (50) CD3+ T: PT > IT (p=0.047)
CD8+ T: PT > IT (p=0.009)

(118)

2021 China Xu YP iCCA (140) CD8+ T: PT > IT (119)

2021 Korea Kim HD CCA (52) CD4+ T: PT > IT (p<0.001)
CD8+ T: PT > IT (p<0.001)
Treg: PT > IT (p<0.001)

(102)

2021 Korea Kim HD iCCA (33) CD103+ CD8+ T: PT < IT (80)

2022 Italy Alvisi G iCCA (20) CD4+ TRM: PT < IT (p<0.0001)
CD8+ CTL: PT > IT (p<0.0001)
CD8+TRM: PT < IT (p<0.05)
Treg: PT < IT (p<0.0001)

(135)

2022 China Ding GY iCCA (39) Treg: PT < IT (p<0.05)
CD4+ Bcl6+ T: PT < IT (p<0.05)

(63)

2022 China Xu L eCCA (2) CD4+ T: PT > IT (15.59%>3.31%)
CD8+ T: PT > IT (34.16%>22.47%)

(103)

2023 China Shang T CCA (32)
SL (32)

T cell: PT < IT (78)

2023 China Chen L iCCA (149) CD8+ T: PT vs IT (p=0.669)
CD103+ CD8+ T: PT vs IT (p=0.668)

(120)

2024 China Zhang QW iCCA (13)
SL (6)

CD4+ T: PT < IT (p<0.001)
CD8+ T: PT > IT (p<0.01)
gdT: PT > IT (p<0.05)

(104)
HCC, Hepatocellular carcinoma; SL, surrounding liver; CD, cluster of differentiation; TRM, Tissue resident memory T cells; CD8+ CTL, CD8+cytotoxic T lymphocytes; PT, peritumoral;
IT, intratumoral.
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3.3.1 The cross-talk between Tregs and other
cells within tumor microenvironment

Tregs in cholangiocarcinoma often work with immunosuppressive

cells to promote tumor progression and inhibit CD4+ T and CD8+ T

lymphocytes activity in TME in a variety of ways (128). Tumor cells,

TAMs, and CAFs release CCL22/CCL17 to bind to CCR4 on the

surface of Tregs, and recruit a large number of Tregs to move to the

TME (129). CTLA-4 is highly expressed on Tregs and competitively

binds to CD80 and CD86 with T cells, leading to a reduction in T cell

proliferation and cytokine production. In addition, Tregs down-

regulated the function of DCs by competitively binding CD80 (130).

Treg produces IL10 and TGF-b, attracts more immunosuppressive

cells, transforms DCs into regulatory dendritic cells that produce

indoleamine 2, 3-dioxygenase, and blocks the immune system’s

rejection of cancer (131). In a study, researchers found that MUC1

interacts with the epidermal growth factor receptor (EGFR) and its

downstream carcinogenic pathway EGFR/PI3K/Akt is activated,

leading to the accumulation of Tregs. This accumulation enhances

the malignant phenotype of CCA cells and ultimately promotes their

metastasis and growth (132). Additionally, FoxM1 binds to the Foxp3

promoter region and promotes FoxP3 transcription. The

overexpression of FoxM1 enhanced the inhibitory effect of Treg cells

on CD8+ T cytotoxicity, promoting immune escape in

cholangiocarcinoma (133). Notably, a study demonstrated that

knockdown of FoxP3 reduces the proliferation and invasiveness of

CCA cells (134).

3.3.2 The distribution and prognosis of tumor
infiltrating Tregs in cholangiocarcinoma

There is currently no consensus regarding the spatial

distribution of Tregs. Zhou and colleagues reported the presence

of Tregs both within the tumor and at the tumor margins in iCCA

and pCCA. Their study also noted an enhanced expression of

CD69, an activation marker for Tregs, suggesting that CCA has

immunosuppressive microenvironment characteristics (76).

Similarly, Ueno observed a consistent distribution of Tregs in and

around eCCA tumors (105). A study involving 52 patients receiving

palliative gemcitabine in combination with cisplatin for BTC

showed that the density of Tregs was significantly higher at

tumor margins compared to interstitial and core areas. However,

Treg density did not correlate with PFS and OS (102). Asahi also

reported more Treg infiltration at the tumor margins in iCCA (106).

In contrast, Alvisi and colleagues provided a comprehensive

analysis of various lymphocyte subsets present in iCCA patients,

revealing extensive aggregation of Tregs with a highly

immunosuppressive phenotype within tumors (135). Ding (63)

and Goeppert (77) similarly noted that higher densities of Tregs

in CCA were found in the tumor core region. In addition, Goeppert

and colleagues found that a gradual decrease in Tregs was associated

with tumor aggressiveness and metastasis. Meanwhile, compared to

patients with lower Treg counts in tumor tissue, those with higher

Treg counts exhibited a better prognosis, suggesting that the

immunosuppressive effect of Tregs may not be a major factor in

progression of BTC (77) (Table 2).
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4 The immune checkpoints
in cholangiocarcinoma

Tumor cells interact with surrounding cells to create a

microenvironment that supports their growth and development

while evading immune surveillance through various mechanisms,

thereby achieving immune escape (136). Traditional treatments for

CCA, such as chemotherapy and radiation, often lack specificity,

leading to indiscriminate attacks on immune cells and subsequent

immune system disorders (137). Immunotherapy aims to enhance

or restore the ability of autoimmune cells to recognize and eliminate

tumor cells, which is more in line with the anti-tumor mode of the

body. Current immunotherapy approaches for CCA primarily focus

on T lymphocytes. However, the complexity of the CCA immune

microenvironment results in inconsistent responses to anti-tumor

therapies, presenting both opportunities and challenges for the

development of personalized immunotherapy (138).

The immune response of T lymphocytes is regulated not only by

antigen-specific signals but also by numerous immune checkpoint

signaling pathways (139). In recent decades, therapies targeting

immune checkpoints have emerged as a promising approach to

immunotherapy (140). Co-stimulatory immune checkpoints such

as CD40L, OX40, GITR, and ICOS enhance cell activation, whereas

co-inhibitory immune checkpoints, including PD-1, CTLA-4, TIM-

3, TIGIT, and LAG-3 negatively regulate immune cell activation.

The clinical application of blocking co-inhibitory immune

checkpoints or activating co-stimulatory immune checkpoints has

demonstrated significant potential in the treatment of advanced

CCA. The presence of multiple co-expressions on T cells suggests

that combination therapy targeting different immune checkpoints

may yield more effective therapeutic outcome compared to single

immune checkpoint therapies (141) (Table 3; Figure 3).
4.1 PD-1

Programmed cell death protein-1 (PD-1) is a transmembrane

protein widely expressed in various activated immune cells. When

PD-1 binds to programmed death-ligand 1 (PD-L1) on the surface

of tumor cells, the immunoreceptor tyrosine-based inhibitory motif

(ITIM) and immunoreceptor tyrosine-based switch motif (ITSM)

of PD-1 are phosphorylated (142). Subsequently, Src homology

region 2 domain-containing phosphatase (SHP-2) is recruited and

activated, inhibiting the phosphorylation of downstream signaling

of TCR and CD28. As a result, PD-1 inhibits the activation,

proliferation, and cytotoxic secretion of T cells in cancer. The

PD-1/PD-L1 pathway plays a crucial role in maintaining immune

tolerance within the tumor microenvironment and facilitating the

immune escape of tumor cells (143). PD1/PDL1 has emerged as a

significant clinical biomarker for prognosticating the effectiveness

of immunotherapy in solid tumors (144). At present, antibodies

blocking PD-1 or its ligand PD-L1 have been approved to treat

various solid and hematologic malignancies (145).
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Tian and colleagues found that iCCA patients exhibiting a high

proportion of CD8+ PD-1High T cells had worse postoperative

survival compared to those with a low proportion of these cells.

Furthermore, a high proportion of tumor-infiltrating CD8+ PD-

1High T cells was significantly correlated with advanced TNM stage

(117). This finding suggests that a high percentage of CD8+ PD-

1High T cells may serve as an independent prognostic factor.

However, it is important to note that the data for this study were

derived from a single hepatobiliary center, and no prospective

studies have been conducted to validate these results. Previous

studies have demonstrated the expression of PD-1/PD-L1 in CCA

and its correlation with ICI treatment response, the predictive value

of PD-L1 in CCA remains uncertain. A clinical trial using

pembrolizumab for various advanced cancers included 104

patients with BTC. Although results showed that the objective

response rate (ORR) was slightly higher in patients with positive

PD-L1 expression than in patients lacking PDL1 expression,

significant differences in median PFS or OS were not observed

(146). This limited response to monotherapy with an immune

checkpoint inhibitor in an unselected cohort of advanced BTC

underscores the necessity of identifying specific biomarkers and

screening patients who may response from treatment. In another

clinical trial that included a cohort of 20 patients with advanced

solid tumors, 23 BTC patients with positive PD-L1 expression had a

17% ORR, a median PFS of 1.8 months, and a median OS of
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6.2 months after receiving pembrolizumab. The highest response

rates were found in patients with elevated tumor mutational burden

and inflammatory markers (GEP or PD-L1) (147). These results

suggest that a combination of biomarkers may help identify patients

most likely to respond to ICIs, while also indicating that it

may be feasible to enhance the antitumor response through

combination therapy.
4.2 CTLA-4

Cytotoxic T lymphocyte antigen 4 (CTLA-4) is a member of

immunoglobulin related receptors family and is predominantly

found in intracellular vesicles in Tregs or activated conventional

T cells (148). This localization is due to the constitutive endocytosis

of the plasma membrane and results in 90% of CTLA-4 being

intracellular. CTLA-4 competes with CD28 to bind two different

ligands of APC, CD80 and CD86, to regulate adaptive immune

responses and inhibit T cell overactivation (149). CTLA-4 tends to

have an advantage due to CTLA-4 interacts with both ligands with

higher affinity and avidity than CD28. Blocking CTLA-4 is capable

of generating an immune response to cancer and self-tissue, and

targeting the CD28/CTLA-4 pathway with antibodies has shown

considerable promise in the treatment of cancer and autoimmune

diseases. Experiments have shown that anti-CTLA-4 therapy
TABLE 3 Immune checkpoints in cholangiocarcinoma.

Acceptor Other name Mainly expressed Ligand Other name Mainly expressed Immune

PD-1 CD279 immune cells
TILs

PD-L1
PD-L2

CD274 Tumor cells
APCs

(-)

CTLA-4 CD152 activated T cells
Tregs

B7-1
B7-2

CD80
CD86

APCs (-)

TIM-3 CD366
HAVCR2

activated CD4+ T
cells

Gal-9
PtdSer
HMGB1
CEACAM-1

(-)

TIGIT WUCAM
Vstm3
VSIG9

activated T cells
activated NKs

CD155
CD112
CD113

PVR
Nectin-2
PVRL3

Tumor cells
APCs

(-)

LAG-3 CD223 activated CD4+ T
activated CD8+ T
TILs

MHC II
Gal-3
LSECtin
FGL-1

APCs (-)

CD40 TNFRSF5
Bp50

APCs CD40L CD154
TRAP
gp39
TNFSF5

activated CD4+ T
cells

(+)

OX40 CD134
ACT35
TNFRSF4

activated Tregs
Activated NKT
cells

OX40L CD252
TNFSF4
CD134L
gp34

B cells
DCs

(+)

GITR TNFRSF18
CD357
AITR

Tregs
effector T cells

GITRL activated APCs (+)

ICOS CD278 activated T cells ICOSL B7-H2 APCs (+)
The “-” in the table represents the co-inhibitory immune checkpoints, the “+” represents the co-stimulatory immune checkpoints.
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combined with Treg consumption is more effective in inducing

anti-tumor response than blocking CTLA-4 alone (150), reducing

tumor Infiltrating Treg may be an important factor in determining

immunotherapy response.

A study found that CTLA-4+ lymphocyte density was elevated

in iCCA compared with peritumoral hepatic tissues, and patients

with a high density of CTLA-4+ tumor-infiltrating lymphocytes

(TILsCTLA-4 High) showed a reduced OS compared with patients

with TILsCTLA-4 Low (151). Clinically, the density of CTLA-4+ TIL

serves as an independent risk factor for evaluating OS in patients

with iCCA. Additionally, the expression of CTLA-4 in TILs is

critical in maintaining an inhibitory immune microenvironment in

iCCAs. Another study showed a different outcome, the elevated

density of CD4+ or CD8+ TILs in patients with high CTLA-4

expression on interstitial lymphocytes or tumor cells, the superior

outcomes in the group of high CTLA-4 expression level (152). This

study underscores the potential prognostic significance of CTLA-4

expression in eCCA. Notably, the impact of CTLA-4 expression on

survival appears to vary depending on the tumor location. This

study is not without limitations, its retrospective design and

relatively small patient cohort necessitate the acquisition of

additional datasets to verify the reliability of the findings. In a

study involving 20 patients with advanced BTC, participants

received tremelimumab in conjunction with radiofrequency

ablation. The results indicated that two patients achieved partial

response, and five patients achieved stable disease. Furthermore, an

analysis of the cell subsets in these patients post-treatment revealed

an increase in the number of activated CD8+ T cells in peripheral

blood (153). Although this small study yields limited conclusions, a

correlation between immune markers and clinical responses

appears to exist.
Frontiers in Immunology 11
4.3 TIM-3

T cell immunoglobulin and mucin domain 3 (TIM-3) was

originally found to be expressed on the surface of Th1 cells,

Expression of TIM-3 on CD8+ T cells in the tumor

microenvironment is considered a cardinal sign of T cell

dysfunction. Recent studies have shown that TIM-3 is also

expressed on other immune cells (154). TIM-3 binding to the

ligand galectin-9 to mediate Th1 cell the apoptosis. Tregs highly

express TIM-3 and secrete IL-10 to inhibit the function of effector T

cells in the TME (155, 156). TIM-3 has emerged as an important

checkpoint molecule whose expression correlates with to promote T

cell exhaustion in chronic viral infection and cancer (157). A number

of clinical trials are under way using blocking monoclonal antibodies

directed against TIM-3, however the exact mechanisms underlying

the anti-tumor activity of these antibodies are not well understood. In

CCA, the highly immunogenic iCCA expressed high levels of TIM-3

(141). Furthermore, TIM-3 is upregulated in infiltrating CD8+ T and

infiltrating CD4+ T cells, and high expression of TIM-3 in CD8+ T

cells is associated with lymph node metastasis of iCCA (158). A study

demonstrated that reducing the expression of several inhibitory

molecules, including TIM-3, in CAR T cells resulted in robust

immunity against CCA, exhibiting long-term efficacy both in vitro

and in vivo (159). However, the safety and efficacy of this approach

require further validation through preclinical trials.
4.4 TIGIT

T cell immunoreceptor with immunoglobulin and ITIM

domain (TIGIT) is a receptor of the Ig superfamily, expressed by
FIGURE 3

List of the immune checkpoints and their receptors in CCA.
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activated CD8+ T and CD4+ T cells in humans, which potently

inhibits innate and adaptive immunity through multiple

mechanisms (160). TIGIT binds to two ligands, CD155 and

CD112, that are expressed by tumor cells and antigen presenting

cells in the tumor microenvironment. TIGIT indirectly impedes T

cell function by binding to CD155 on DCs. Second, TIGIT exhibits

direct immune cell-intrinsic inhibitory effects (161). Dmitrij and

colleagues found that TIGIT was upregulated in tumor-infiltrating

CD8+ T cells. Furthermore, TIGIT can accurately identify

exhausted CD8+ T cells at various stages of differentiation (162).

Nicole found that TIGIT is highly expressed by Tregs in the

peripheral blood mononuclear cells of healthy donors and cancer

patients, and is further upregulated in the TME (163). There is now

strong evidence that TIGIT regulates both T-cell-mediated and

natural killer cell-mediated tumor recognition in vivo and in vitro.

Dual PD-1/TIGIT blocking enhances in vitro expansion and

function of tumor antigen-specific CD8+ T cells and promotes

tumor rejection in mouse tumor models (164, 165). These findings

support the development of ongoing clinical trials of PD-1/TIGIT

dual blocking to treat cancer patients.
4.5 LAG-3

Lymphocyte activation gene 3 (LAG-3) is an inhibitory receptor

that is highly expressed by exhausted T cells (166). While LAG-3

negatively regulates T cell activation and function, its significance in

other cell types remains unclear. LAG-3 is widely expressed by

many cell types of both lymphocytic and nonlymphocytic lineage

and its expression is a hallmark of exhausted CD4+ T and CD8+ T

cells in the context of persistent antigenic stimulation by tumors or

chronic viral infections (167)LAG-3 has a higher binding affinity

with its typical ligand major histocompatibility complex (MHC)

class II than CD4. which can competitively bind MHCII with CD4

and inhibit CD4+ T cell function (168). LAG-3 is a promising

immunotherapeutic target, with more than 20 LAG-3-targeting

therapeutics in clinical trials (169). The immune profiling analysis

of peripheral blood reveals an increased abundance of LAG-3hiPD-

1hi memory CD4+ T cell subset in relapsed cholangiocarcinoma

patients after gemcitabine plus cisplatin therapy, which provided a

basis for the study of immune checkpoint inhibitors for CCA (170).

In addition, the study demonstrated that bispecific antibodies

targeting LAG-3 and PD-L1 elicit an effective anti-tumor

response from immune cells in the tumor microenvironment,

although these results further support the potential of targeting

LAG-3 as a cancer immunotherapy. However, further research is

needed to explore the modulation of tumor-infiltrating T

lymphocytes and its translational value.
4.6 OX40

Tumor necrosis factor receptor superfamily member 4

(TNFRSF4), also known as OX40, is a type 1 transmembrane

glycoprotein predominantly expressed by activated T lymphocytes
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(171). The cytoplasmic domain of OX40 is involved in downstream

signaling pathways by binding to the tumor necrosis factor

receptor-associated factor family (TRAF) of intracellular proteins.

Its ligand OX40L, which also belongs to the tumor necrosis factor

superfamily, is primarily expressed on APCs. The interaction

between OX40 and OX40L has immunomodulatory function on

T cell survival and proliferation. Studies have shown that increased

OX40 expression in CD8+ T cells with IL-2 via STAT5-mediated

signaling in the setting of weak TCR stimulation (172). OX40

signaling also reduces the expression of FOXP3 and CTLA-4,

leading to a decline in Tregs function. Furthermore, activated T

cells exhibit increased expression of CD28 and enhanced expression

of OX40 (173). Giampietri and colleagues found that OX40 was

significantly upregulated in 36 cholangiocarcinoma samples

compared to 9 normal control samples, suggesting that OX40

may play a potential role in cholangiocarcinoma, as both a

diagnostic or prognostic marker and a therapeutic target (174).

Another study showed that the frequency of OX40+ nTregs (naïve

Tregs) and OX40+ eTregs (effector Tregs) in peripheral blood of

CCA patients was significantly higher than that of healthy controls,

both before and after surgery (175). This suggests that OX40+

nTregs (naive Tregs) and OX40+ eTregs can be used as biomarkers

of therapeutic effect and prognosis of CCA.
4.7 CD40L

Cluster of differentiation 40 ligand (CD40L) is a 39-kDa type II

transmembrane protein. The expression of CD40L is typically

inducible and primarily restricted to cells of the hematopoietic

system (176). CD40 can bind to its ligand CD40L, which activates

dendritic cells, enhances antigen presentation, and activate T cells

by up-regulating the expression of co-stimulatory molecules while

down-regulating immunosuppressive molecules (177). CD40/

CD40L immune checkpoint leads to activation of both innate and

adaptive immune cells via two-way signaling. CD40/CD40L

interaction also participates in regulating thrombosis, tissue

inflammation, hematopoiesis and tumor cell fate. In vitro

experiments have demonstrated that specific blockade of tumor-

secreted IL-10 and TGF-b can lead to the up-regulation of CD40,

thereby enhancing the cytolytic activity of effector T cells against

CCA cells (178). Current evidence suggests that immunotherapy for

CCA holds promise through the activation of CD40/CD40L

immune checkpoints (179). An animal demonstrated that

combination therapy with a CD40 agonist resulted in a superior

effector response compared to anti-PD-1 monotherapy for CCA,

accompanied by an increased presence of CD4+ T and CD8+ T cells

in tumor-bearing mice (180). Immunotherapy for CCA by

activating CD40/CD40L immune checkpoints is a promising

approach. Second, strong expression of CD40 was observed in

tumor samples from half of patients with cholangiocarcinoma.

However, the effects observed in this study were not associated

with positive expression of CD40 in tumor cells. It is possible that

other factors such as the expression of cytokines IFN-g or TNF-a
are also involved in the process of inducing apoptosis of tumor cells.
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4.8 GITR

Glucocorticoid-induced tumor necrosis factor receptor-related

protein (GITR) is a member of the TNF receptor superfamily,

consistently expressed at high levels on the surfaces of Tregs (181).

GITR ligand (GITRL) is mainly expressed in dendritic cells, B cells,

macrophages, and endothelial cells. APCs not only constitutively

express GITR ligand (GITRL) but also enhance its expression

under stimulating conditions (182). The signaling mediated by

GITR plays a crucial role in regulating immune responses by

providing costimulatory signals that enhance responder T cell

functions such as activation, differentiation, survival, and

memory formation while simultaneously counteracting the

immunosuppressive effects of Tregs (183). Blockade of the GITR/

GITRL system has proven beneficial in treating autoimmune

diseases and in transplantation, whereas stimulation with an

agonistic antibody has reversed immunosuppressive responses in

chronic infections and tumors (184). Zhou found that activating

GITR on T cells within cholangiocarcinoma tumors increased their

production of effector molecules and proliferation, suggesting that

targeting GITR could be a potential immunotherapy for CCA

patients (76). However, the limited cohort of patients in this

study did not correlate immunological data with patient survival,

indicating that the clinical application of these findings requires

further validation.
4.9 ICOS

Inducible Co-Stimulator (ICOS) is predominantly expressed on

activated T cells (185). Its ligand ICOSL is expressed on antigen-

presenting cells and somatic cells, including tumor cells in the

tumor microenvironment. The expression of both ICOS and ICOSL

correlates with the release of cytokines that are induced by immune

response activation (186). Together, ICOS and ICOSL facilitate a

range of activities across various T cell subsets, encompassing T cell

activation, effector functions, and the inhibitory activities mediated

by Tregs (187). This dual role in both antitumor and protumor

activity makes targeting the ICOS/ICOSL pathway attractive for

enhancing antitumor immune responses. A study indicated that

ICOS expression is elevated in the TME of cholangiocarcinoma,

particularly in regions with increased extracellular matrix

distribution, which has significant implications for the

stratification of immunotherapy (141). Additionally, Carapeto

reported that ICOS expression is greater at the tumor margin

compared to the tumor center, and low ICOS expression in iCCA

is associated with poor OS (61). These studies also demonstrated the

co-expression of checkpoint molecules in CCA, suggesting the

necessity for combined therapy targeting different immune

checkpoints. However, it remains unclear whether immune cells

can be recruited into the immune microenvironment when ICIs are

used to treat CCA. Furthermore, investigating the distribution of

checkpoint molecules may be crucial in determining the optimal

treatment strategies for patients receiving combinations of

chemotherapy and immunotherapy.
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4.10 Combination therapy for
immune checkpoints

Given the limitations of ICI monotherapy, there is significant

interest in developing combined immunotherapy strategies. A

comprehensive analysis of a database comprising 290 iCCA

patients, alongside tumor tissue immunohistochemistry, revealed

that CTLA-4+ TILs and PD-L1+ TILs can independently predict

tumor recurrence and OS in iCCA patients following surgical

resection (151). Consequently, therapies targeting both PD-1/PD-

L1 and CTLA-4 may offer potential advantages for the treatment of

iCCA patients. The premise of the dual ICI is that blocking a single

checkpoint may not be enough to activate CTLs. In a Phase 2 study

evaluating the combination of nivolumab and ipilimumab in 39

patients with advanced-stage BTC, the trial reported an overall

response rate (ORR) of 23% and a disease control rate of 44%

(188). These findings highlight the potential superiority of dual ICI

combination therapy compared to monotherapy. Notably, these

responses were observed exclusively in patients with iCCA or

gallbladder cancer. In developing effective immune-specific

therapeutics, understanding the immune landscape characteristics

of each CCA subtype will be crucial (189). Although the combination

of CTLA-4 and PD-1 blockade improved efficacy, it also increased the

incidence of adverse events (AE) in CCA. Results from a clinical

study indicated that the early treatment outcomes of durvalumab

combined with tremelimumab in patients with hepatocellular

carcinoma and BTC were relatively disappointing, particularly

among BTC patients. In the BTC cohort, the median progression-

free survival was 3.1 months, and the overall survival was 5.5 months.

Additionally, multiple grade 3/4 treatment-related adverse events

were reported (190). Given the heightened risk of AE and the limited

efficacy of PD-1/CTLA-4 blockade, there is considerable interest in

exploring alternative combination immunotherapies.

Two clinical trials are currently underway targeting CD40

(NCT03329950) and OX40 (NCT03071757) as monotherapy or

in combination therapy for advanced cancers including BTC (191),

Additionally, investigations are underway into combination

strategies involving ICIs alongside other treatments for CCA, in

addition to ICI immunotherapy administered alone. These

strategies include combined local ablation, radiotherapy, intra-

tumor injection, and chemotherapy, all of which aim to enhance

tumor antigen exposure and thereby increase the likelihood of an

immune response when used in conjunction with ICIs (192, 193).

The combination of ICIs with anti-angiogenic therapy has the

potential to promote immune responses by suppressing

immunosuppressive factors or by increasing immune cytokines

within the TME (194). Finally, combinations of various immune

checkpoint inhibitors with standard chemotherapy have shown an

acceptable safety profile in several early-stage clinical trials (195).
5 Conclusions and future directions

CCA is a malignant tumor characterized by its insidious onset

and poor prognosis. At present, the main treatment modalities for
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CCA have not been effective in reducing patient mortality.

Immunotherapy, as a novel treatment approach for solid tumors,

offers significant hope for CCA patients. However, the application

of immunotherapy in CCA encounters substantial challenges.

Firstly, CCA is a heterogeneous disease, and the immune

microenvironment varies among patients, which affects the

efficacy of immunotherapy. Secondly, most CCA patients present

with immunosuppressive microenvironments, resulting in low

response rates to immunotherapy. Lastly, treatment with a single

ICI has shown limited effectiveness, and patients are often prone to

developing resistance. These challenges underscore the need for a

deep understanding of the immune landscape of CCA, a

comprehensive assessment of patient immune status, and the

development of personalized combination immunotherapy

regimen to address the therapeutic difficulties posed by the

immune diversity of CCA. Current immunotherapy strategies

primarily target T lymphocytes within the TME, with a particular

emphasis on CD8+ T cells. Tumor-infiltrating T cells display

various phenotypes and functional states, and the heterogeneity

among these T lymphocytes is linked to the malignant progression

of CCA as well as the effectiveness of immunotherapy. To achieve

more effective and precise treatments, future research should utilize

single-cell and multi-omics to explore the complex mechanisms of

T-cell interactions with CCA. This could facilitate the development

of novel immunomodulators and herald a new era in CCA therapy.

Combination therapy focusing on ICIs has emerged as the first-

line treatment for CCA. Dual ICI therapy, which targets different

immune checkpoints, has also demonstrated the anticipated

synergistic therapeutic effect. However, it is important to note

that in clinical practice, most patients exhibit resistance to ICI

combination treatment, leading to poor overall prognosis and

relapse-free survival rates. Consequently, there is an urgent need

to develop a stratified treatment model for CCA patients and to

identify biomarkers that can facilitate more accurate and reliable

immunotherapy. Additionally, it is essential to evaluate the safety

and adverse reactions associated with ICI combination therapy.

This necessitates further high-quality, prospective, and randomized

controlled trials to ascertain the safety and therapeutic efficacy of

various immunization combination regimens. From a clinical

perspective, it is vital to consider both standard treatment

regimens and the optimal combinations with immunotherapy. On

the immunotherapeutic front, ongoing clinical trials are

investigating novel immune checkpoint therapies. The study of

tumor-infiltrating T cells in CCA has thus far shown promising

potential for advancing immunotherapy strategies. With these

emerging therapeutic options, patient prognosis in CCA is

anticipated to improve.
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