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MS4A (membrane-spanning 4-domain, subfamily A) molecules are categorized

into tetraspanins, which possess four-transmembrane structures. To date,

eighteen MS4A members have been identified in humans, whereas twenty-

three different molecules have been identified in mice. MS4A proteins are

selectively expressed on the surfaces of various immune cells, such as B cells

(MS4A1), mast cells (MS4A2), macrophages (MS4A4A), Foxp3+CD4+ regulatory T

cells (MS4A4B), and type 3 innate lymphoid cells (TMEM176A and TMEM176B).

Early research confirmed that most MS4A molecules function as ion channels

that regulate the transport of calcium ions. Recent studies have revealed that

some MS4A proteins also function as chaperones that interact with various

immune molecules, such as pattern recognition receptors and/or

immunoglobulin receptors, to form immune complexes and transmit

downstream signals, leading to cell activation, growth, and development.

Evidence from preclinical animal models and human genetic studies suggests

that the MS4A superfamily plays critical roles in the pathogenesis of various

diseases, including cancer, infection, allergies, neurodegenerative diseases and

autoimmune diseases. We review recent progress in this field and focus on

elucidating the molecular mechanisms by which different MS4A molecules

regulate the progression of tumors, Alzheimer’s disease, and autoimmune

diseases. Therefore, in-depth research into MS4A superfamily members may

clarify their ability to act as candidate biomarkers and therapeutic targets for

these diseases. Eighteen distinct members of the MS4A (membrane-spanning

four-domain subfamily A) superfamily of four-transmembrane proteins have

been identified in humans, whereas the MS4A genes are translated into

twenty-three different molecules in mice. These proteins are selectively

expressed on the surface of various immune cells, such as B cells (MS4A1),

macrophages (MS4A4A), mast cells (MS4A2), Foxp3+CD4+ regulatory T cells

(MS4A4B), type 3 innate lymphoid cells (TMEM176A and TMEM176B) and

colonic epithelial cells (MS4A12). Functionally, most MS4A molecules function

as ion channels that regulate the flow of calcium ions [Ca2+] across cell

membranes. Recent studies have revealed that some MS4A proteins also act as

molecular chaperones and interact with various types of immune receptors,

including pattern recognition receptors (PRRs) and immunoglobulin receptors

(IgRs), to form signaling complexes, thereby modulating intracellular signaling
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and cellular activity. Evidence from preclinical animal models and human genetic

studies suggests that MS4A proteins play critical roles in various diseases (2).

Therefore, we reviewed the recent progress in understanding the role of the

MS4A superfamily in diseases, particularly in elucidating its function as a

candidate biomarker and therapeutic target for cancer.
KEYWORDS
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1 MS4A genes and structural
characteristics of MS4A proteins

The human MS4A superfamily consists of eighteen different

members (MS4A115 and MS4A18), which are encoded by genomic

loci located on chromosome 11q12, in contrast, the MS4A genes in

mice are located on chromosome 19 and encode twenty-three

different molecules (1). TMEM176A (HCA112) and TMEM176B

(LR8/TORID), whose genes are specifically located at 7q36.1 on

chromosome 7, are also categorized as members of the MS4A

superfamily because they have similar four-transmembrane

protein structures, but their proteins only share ~16% amino acid

sequence similarity with MS4A molecules (3). Genome-wide

association studies (GWAS) have identified susceptibility genes

for atopy and allergic diseases within this genomic region,

indicating that mutations in MS4A genes might predispose

individuals to related diseases (4). The MS4A genes first appeared

in cartilaginous fish and are expressed in tissues beyond the

immune system. These genes have since evolved and are now

present in various vertebrates, including mammals, birds, reptiles,

and amphibians. The TMEM176 gene, however, is expressed

primarily in mammals and bony fish (3).

Most MS4A proteins consist of 200~300 amino acids, with a

molecular weight of approximately 22~35 kDa. According to

transmembrane prediction databases, nearly all identified MS4A

proteins, except for MS4A4E and MS4A6E, possess a four-

transmembrane structure, therefore, they are classified as

tetraspanins (2). Tetraspanins can interact with other proteins to

form tetraspanin-enriched microdomains (TEMs) on the cellular

membrane, which play critical roles in regulating cellular

physiological processes (5). MS4A molecules typically contain two

extracellular loops and one intracellular loop, and both the N- and

C-termini are located intracellularly. Among the different MS4A

proteins, the first three transmembrane regions exhibit high

homology: the first transmembrane region of the extracellular

loop has approximately thirteen amino acids and consists of

conserved amino acid sequences such as VLGAIQIL, LGAXQI,

and LSLG. The second extracellular loop varies in length from 1046

amino acids, with its transmembrane region containing conserved

sequences, such as GYPFWG and FIISGSLS, and this region
02
exhibits significant heterogeneity between different molecules.

Interestingly, the conserved sequences SLX2NX2 and SX3AX2G

are commonly found in the third transmembrane region (6, 7). In

addition to MS4A8B and MS4A12, most MS4A molecules possess

two cysteine residues in the second extracellular loop that can form

disulfide bonds. Additionally, the intracellular segments of MS4A

proteins generally contain SH2 and SH3 domain binding sites (7).

Notably, the intracellular segment of MS4A2 includes an

immunoreceptor tyrosine-based activation motif (ITAM), whereas

MS4A8B and TMEM176B contain an immunoreceptor tyrosine-

based inhibitory motif (ITIM), these structures facilitate the

formation of signal transduction complexes. Therefore, MS4A

proteins can regulate cytoskeletal remodeling, transcriptional

responses , s ignal transduction cascades, and cel lular

differentiation (8).
2 Characteristic expression of MS4A
molecules in cell subsets and tissues

Most MS4A molecules are expressed on the surface of immune

cells. For example, MS4A1 (CD20) is expressed primarily on the

membrane of precursors and mature B cells, but its expression is

lost on plasma cells. The high-affinity IgE receptor (FceRI) is a

tetramer that consists of one a subunit, one b subunit, and two g
subunits. MS4A2 (FceRb) serves as the b subunit of both the high-

affinity FceRI and the low-affinity IgG receptor (FcgRIII), which are

predominantly expressed on the surface of mast cells and basophils

(6). MS4A3 (HTm4) is selectively expressed on various myeloid and

lymphoid progenitor cells within the hematopoietic system (1).

MS4A5 (TETM4.1) is expressed on the surface of precursor

monocytes (2). Although MS4A8B (L985P) has been detected in

B-cell lines, such as BJAB, DAUDI, and SB, it is expressed primarily

on ciliated cells of the bronchial mucosal epithelium (6, 7). MS4A12

is exclusively expressed in the mucosal epithelial cells of colonic

tissue and in colon cancer cell lines (9). Notably, TMEM176A

(HCA112) and TMEM176B (LR8 or TORID) are highly expressed

on immature or resting dendritic cells (DCs), as well as on the

surface of helper T cells and type 3 innate lymphoid cells (ILC-3)

(10). Moreover, MS4A4B appears to be restricted to Foxp3+
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regulatory T cells (Tregs) based on a yeast split-ubiquitin Treg

library screen (11). Notably, some MS4A proteins may exist as

homo- and/or heterodimers, for example, TMEM176A and

TMEM176B have been shown to interact with each other in DCs.

Additionally, MS4A4A associates with itself and/or with two other

members of the MS4A family, including MS4A6A and MS4A7, to

form characteristic molecular clusters on the surface of

macrophages (12). Here, we list the distributions of several major

MS4A molecules in cell types and tissues (Table 1).
3 The predominant biofunctions of
MS4A molecules

3.1 MS4A proteins act as ion channels

Early studies confirmed that MS4A molecules function primarily

as ion channels that regulate the exchange of calcium ions [Ca2+]

between the intracellular and extracellular environments. For
Frontiers in Immunology 03
example, MS4A1 is present in both homodimers and heterodimers

on human B lymphoblastoid cells, where it serves as an ion channel to

regulate [Ca2+] flow across the cell membrane, as evidenced by the

increase in [Ca2+] conductance after transfection with MS4A1 (64,

65). MS4A1 crosslinks with BCR and positively regulates BCR-

induced cytoplasmic [Ca2+] mobilization (66). MS4A2 contains an

ITAM motif ((D/E)-XXYXXL-(X)7–9YXX-L/I) in its C-terminus,

and crosslinking of the IgE-bound FceRI receptor by an antigen can

phosphorylate tyrosine residues in the ITAMs of MS4A2, triggering

downstream signal cascades that result in the mobilization of

intracellular calcium stores (67); conversely, the downregulation of

MS4A2 reduces [Ca2+] influx upon IgE cross-linking (67). Human

mast cells express MS4A4A, and silencingMS4A4A via RNAi reduces

[Ca2+] influx upon IgE crosslinking, suggesting that MS4A4A can

also regulate store-operated [Ca2+] entry (68). MS4A12 is a novel

component of store-operated [Ca2+] entry in intestinal cells, and loss

of MS4A12 in LoVo colon cancer cells attenuates epidermal growth

factor receptor-mediated signaling, thereby promoting colonic

carcinoma migration (9). Recent two-photon imaging of olfactory
TABLE 1 Distribution and physiological functions of MS4A molecules.

MS4A Distribution Biofunctions Tumor types Other associated
diseases

References

MS4A1 Tonsil, lymph nodes,
bone marrow, spleen,
amygdala, CD20+ B
cells, TRM-cells,
olfactory sensory
neurons, mast cells,
Natural killer-like B
cells, etc.

Protein tetramerization,
mammalian olfactory
receptor, store-operated Ca2+

entry, Calcium channel
protein of B lymphocytes,
participating in
differentiation B-cell
differentiation, proliferation
and activation

colorectal cancer, breast Cancer,
intrahepatic cholangiocarcinoma,
non-small cell lung cancer, lung
adenocarcinoma, B-cell
lymphoma, ovarian cancer,
stomach adenocarcinoma, head
and neck squamous cell
carcinoma,
nasopharyngeal carcinoma

Common Variable
Immunodeficiency (CVID),
rheumatoid arthritis, lupus nephritis,
IV infection of rhesus macaques,
Mycobacterium tuberculosis
lung infection

(13–21)

MS4A2 Adrenal cortex,
pituitary, thyroid, liver,
heart, bone marrow,
skin, brain, testis,
skeletal muscle, cardiac
myocytes, monocytes,
Mast cells, CD34+ cells,
CD33+ myeloid, etc.

Lipid metabolism, store-
operated Ca2+ entry, high
affinity for lgE receptor
subunits of mast cells,
involving in allergic
reactions induced
by allergens.

colorectal cancer, lung
adenocarcinoma, gastric cancer

atopic dermatitis, type 2 diabetic
peripheral neuropathy, Idiopathic
Pulmonary Fibrosis, COVID-19, RA,
osteoarthritis, preterm infants with
congenital respiratory diseases,
severe asthma patients, type 2
diabetes patients

(22–25)

MS4A3 CD34+ myeloid
precursors, CD33+

myeloid, macrophage,
dendritic cells; bone
marrow, etc.

enhancing b-chain cytokine
receptor endocytosis, binding
with CDKN3/KAP regulates
phosphorylation of CDK2
and G1-S transition,
perinuclear region
of cytoplasm.

chronic myeloid leukemia, ovarian
cancer, breast cancer

Hematopoietic disorder,
pregnancies, type 1 diabetic patients,
murine
coronavirus encephalomyelitis

(26–29)

MS4A4A Lung, placenta, small
intestine, CD33+

myeloid, macrophage,
mast cells; bone
marrow, etc.

store-operated Ca2+ entry,
suspected to be related to
development and secretion
function of Th1 cells

Glioblastoma, mucinous colorectal
adenocarcinoma, Lymphoma,
gastric cancer, esophageal cancer,
ovarian cancer, glioma, ovarian
cancer, breast cancer, lung
adenocarcinoma, gastric cancer

AD, diabetic nephropathy, pediatric
sepsis, RA-associated interstitial lung
disease, atherosclerosis, diabetic
kidney disease

(30–34)

MS4A4E Peripheral blood,
spleen, liver, skin, etc.

No relevant
functions reported

Glioma AD (34, 35)

MS4A5 Testes, CD33+ myeloid Cell surface receptor
signaling pathway

No relevant tumors reported No relevant diseases reported

(Continued)
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epithelial cells has also demonstrated that different MS4A proteins

can recognize specific chemical ligands, thereby increasing the

activity of the calcium indicator GCaMP6 (69). Additionally,

Xenopus oocytes express TMEM176B, which initiates an inward
Frontiers in Immunology 04
current activated by acidification of the extracellular solution to pH

5, suggesting that TMEM176B might function as an acid-sensitive,

nonselective, monovalent cation channel (61). Because TMEM176A

also induces an inward current activated by acidification of the
TABLE 1 Continued

MS4A Distribution Biofunctions Tumor types Other associated
diseases

References

MS4A6A BDCA4+ DCs, CD14+

monocytes, CD68+

macrophages, CD33+

myeloid, CD105+

endothelial cells, etc.

Cell surface receptor
signaling pathway

Glioma, glioblastoma, non-small
cell lung cancer, lung
adenocarcinoma, esophageal
cancer, ovarian cancer

AD pathology, nonalcoholic fatty
liver disease, periodontitis, and type
2 diabetes mellitus, lupus nephritis,
chronic gastritis and osteoporosis,
obesity, Kawasaki disease, multiple
sclerosis, small vessel
ischemic disease

(36, 37)

MS4A6E Lymph nodes,
testis, etc.

Cell surface receptor
signaling pathway

No relevant tumors reported polycystic ovary syndrome (38–40)

MS4A7 Macrophage, peripheral
blood, spleen, etc.

Suspected to be related to
differentiation of
mononuclear cells

glioblastoma, non-small cell lung
cancer, Gastric Cancer, lung
adenocarcinoma, esophageal
cancer, Glioma

peripheral neuropathic pain
No relevant diseases reported

(41–44)

MS4A8B Colon, lung, trachea,
skeletal muscle,
prostate, testis, small
intestine, etc.

Suspected to be related to
proliferation of prostate
cancer cells

Prostate cancer No relevant diseases reported (45)

MS4A10 Kidney, tonsil, lymph
nodes, bone marrow,
adrenal grands, small
intestine, BDCA4+ DCs,
CD14+ monocytes,
CD68+ macrophages,
CD33+ myeloid, etc.

No relevant
functions reported

gastric cancer, metastatic
colorectal cancer, primary
colorectal cancer

patient with transient hyperCKemia
and myalgia

(46–48)

MS4A12 Colon, pituitary. Calcium channel protein on
colonic cells, suspected to be
related to proliferation of
colon cancer cells

colon cancer No relevant diseases reported (48, 49)

MS4A13 Testes No relevant
functions reported

No relevant tumors reported No relevant diseases reported (50)

MS4A14 Testes No relevant
functions reported

Gastric cancer,
lung adenocarcinoma

No relevant diseases reported (51–53)

MS4A15 Lung and
salivary glands

calcium-restricted lipid
remodeling, reprogramming
energy metabolism

ovarian cancer, lung
adenocarcinoma, gastric cancer

Ferroptosis resistance (51, 52, 54, 55)

MS4A18 Testis and
small intestine.

No relevant
functions reported

No relevant tumors reported No relevant diseases reported

TMEM176A Kidney, fetal liver, fetal
lung, pancreatic islets,
liver, retina, CD14+

monocytes, CD68+

macrophages, CD33+

myeloid, etc.

Ion channels,
cation channels

pancreatic cancer, lung cancer,
triple-negative breast cancer,
hepatocellular carcinoma,
glioblastoma, esophageal
squamous cell cancer, colorectal
cancer, glioma, gastric cancer,
bladder cancer, metastatic
colon cancer

Chronic spinal cord Injury,
Kimura’s disease, sporadic Ménière’s
disease patients, Behçet’s syndrome,
acute myocardial infarction,
neovascular age-related macular
degeneration, carotid atherosclerotic
plaques, negative regulation of
dendritic cell differentiation.

(56–60)

TMEM176B Kidney, fetal liver, fetal
lung, colon, small
intestine; pancreatic
islets, liver, retina,
CD14+ monocytes,
CD68+ macrophages,
CD33+ myeloid, whole
blood, etc.

intracellular cation channel,
unleashing inflammasome
activation, amino acid
metabolism, regulation of
myogenic differentiation;
development of DCs and
cerebellar granule cells

Triple-negative breast cancer, non-
small cell lung cancer, lung
adenocarcinoma, colorectal cancer,
skin cutaneous melanoma,
prostate cancer, gastric cancer,
diffuse large B-Cell lymphoma,
colorectal cancer

Chronic spinal cord injury, acute
respiratory distress syndrome,
nonclassical monocytes, atrial
fibrillation; negative regulation of
dendritic cell differentiation.

(58, 61–63)
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extracellular solution in Xenopus oocytes, TMEM176A may act as a

cation channel (70).
3.2 MS4A proteins function as
molecular chaperones

Recent studies have suggested that some MS4A molecules

function as chaperones that interact with pattern recognition
Frontiers in Immunology 05
receptors (PRRs) and/or immunoglobulin receptors (IgRs). For

example, MS4A1 interacts with membrane proteins, such as major

histocompatibility complex (MHC) class I proteins, MHC class II

proteins, tetraspanins (CD53, CD81, and CD82), and the BCR,

thereby promoting B-cell activation and antibody class switching

(Figure 1A) (71, 72). MS4A2 associates with FceRIa and FceRIg to
form a tetrameric receptor complex (abg2) on mast cells at high

density, therefore, MS4A2 acts as a signal amplifier through its ability

to increase Lyn-dependent phosphorylation of FceRIg (Figure 1B)
FIGURE 1

MS4A proteins function as molecular chaperones. (A) MS4A1 interacts with BCR to induce B cell activation, differentiation, and proliferation.
(B) MS4A2 as a receptor for IgE and triggers the activation of basophils as well as mast cells. (C) MS4A3 promotes hematopoietic cell G0-S cycle
transition via interaction with KPA and CDK2. (D) MS4A4A/Dectin-1 complex induce NK cell activation and protection against metastasis (left), on the
other hand, MS4A4A/KIT complex also can controls cell proliferation and migration (right). (E) MS4A4B crosslink with GITR and control Treg
proliferation. (F) VSIG4 forms a complex with MS4A6D, regulating the Jak-STAT1-A20-NF-kB pathway, which in turn influences the transcription of
Nlrp3 and its substrate Il1b genes (left), on the other hand, MHC-II forms a complex with MS4A6D, regulating the SYK-CREB-SDHB pathway, which
affects mitochondrial mtROS secretion, leading to macrophage inflammatory responses.
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(73). Human MS4A3 (HTm4) regulates the cell cycle of

hematopoietic cells and controls their differentiation into various

cell types through binding to the cyclin-dependent kinase-associated

(CDK-associated) phosphatase-CDK2 (KAP-CDK2) complex (74),

and the overexpression of MS4A3 causes cell cycle arrest at the G(0)/

G(1) phase (Figure 1C). MS4A4A4A interacts with and colocalizes

with the b-glucan receptor Dectin-1 in lipid rafts, and the MS4A4A/

Dectin-1 complex can trigger downstream spleen tyrosine kinase

(SYK) signaling cascades to induce macrophage and NK cell

activation in response to dectin-1 ligands (12, 75). Additionally,

MS4A4A on mast cells facilitates trafficking of the receptor tyrosine

kinase KIT to caveolin-1-rich microdomains through endocytic

recycling rather than degradation pathways, thus promoting KIT

signaling in endosomes (Figure 1D) (76). MS4A4B interacts with the

glucocorticoid-induced tumor necrosis factor receptor (GITR) on

Foxp3+CD4+ Tregs, forming a membrane signaling complex

(MS4A4B/GITR) that enhances IL-2 secretion in response to

triggering with GITR ligands or anti-GITR Abs (Figure 1E) (11). In

mice, MS4A4B is highly expressed on T cells and influences T-cell

apoptosis by controlling the activity of caspases 3, 8 and 9.

Conversely, knocking down Ms4a4b with siRNA or shRNA

promotes apoptosis in naïve T cells or the T32 cell line, whereas

the overexpression of Ms4a4b reduces EL-4 cell apoptosis (77, 78).

Our recent research revealed that MS4A6D, a novel member of

the MS4A superfamily, is restrictively expressed in tissue-resident

macrophages and DCs in mice. MS4A6D interacts with VSIG4 to

form a cell surface signaling complex, activating the STAT3-A20-NF-

kB signaling pathway and thereby inhibiting the transcription of the

Nlrp3 and Il1b genes in peritoneal macrophages (Figure 1F) (79).

Recent studies have shown that MS4A6D on the surface of monocyte

−macrophages cross-links with MHC-II molecules under

inflammatory conditions, activating downstream SYK signaling and

leading to the release of the inflammatory cytokines IL-1, IL-6, TNFa,
and mitochondrial reactive oxygen species (mtROS) (80). Notably,

we found that MS4A6D primarily exists as a homodimer, with the

cysteine at position 237 playing a decisive role in dimer formation

(Figure 1F). Therefore, MS4A6D plays a crucial role in macrophage

activation and the progression of inflammatory diseases.
4 Associations between MS4A
molecules and diseases

Evidence from preclinical animal models and human genetic

studies indicates that most members of the MS4A superfamily play

critical roles in various pathological disorders, including cancer,

infectious diseases, and neurodegenerative diseases. As a result,

some MS4A members might serve as candidate biomarkers and

therapeutic targets for specific diseases.
4.1 MS4A superfamily molecules and
Alzheimer’s disease

Alzheimer’s disease (AD) is the most common cause of

dementia worldwide, with the prevalence continuing to grow in
Frontiers in Immunology 06
part because of the aging population. The progression of this

neurodegenerative disease is characterized by two hallmark

pathologies: b-amyloid (Ab) plaque deposition and neurofibrillary

tangles of hyperphosphorylated Tau (81). AD predominantly affects

elderly individuals, especially those who are older than 85 years.

Nearly 43% of elderly individuals are speculated to suffer from AD

in 2050, creating a substantial burden on patients and society (82).

Removing aggregated Ab from the brains of symptomatic patients

can slow the progression of AD, but the clinical benefit achieved in

these trials has been modest, highlighting the need for a deeper

understanding of the pathogenesis of disease mechanisms.

GWAS have revealed a correlation between mutations in the

MS4A gene cluster, particularly the rs610932 and rs4938933 loci of

the MS4A4A gene, which are more susceptible to AD (83, 84).

Additionally, polymorphisms at the rs1562990 locus, which is

located between the MS4A4E and MS4A4A genes, have also been

suggested to be linked with AD susceptibility (85). Astrocytes and

microglia affect AD progression by clearing pathological proteins,

and single-nucleus RNA sequencing (snRNA-Seq) studies have

shown that the MS4A6A gene in microglia affects Ab plaque

deposition and Tau protein phosphorylation (86). The triggering

receptor expressed on myeloid cells 2 (TREM2), which can regulate

microglial activation and Ab phagocytic function, is found on the

surface of microgl ia . Furthermore , s ingle-nucleot ide

polymorphisms (SNPs) within the MS4A gene cluster, such as

rs1582763, are associated with increased levels of soluble TREM2

(sTREM2) in cerebrospinal fluid; remarkably, sTREM2 can reduce

AD risk and delay AD onset; conversely, the rs6591561 locus is

linked to decreased sTREM2 levels, leading to increased AD risk

(30). Additionally, the rs667897 locus within the MS4A gene cluster

promotes the expression of the MS4A6A gene, thereby increasing

AD risk (87). Therefore, a deeper understanding of the role of

MS4Amolecules in the pathogenesis of AD would help develop new

preventive and therapeutic strategies.
4.2 MS4A superfamily molecules and
autoimmune diseases

Autoimmune diseases (AuDs) are characterized by a loss of

immune tolerance to self-antigens, leading to strong immune

responses and thus resulting in tissue damage. AuDs can be

classified into organ-specific and systemic autoimmune diseases.

Organ-specific AuDs include Hashimoto’s thyroiditis, Graves’

disease, and myasthenia gravis, whereas systemic ADs include

rheumatoid arthritis (RA), systemic lupus erythematosus (SLE),

and Sjögren’s syndrome (SS) (88). Approximately 5%~8% of the

global population is affected by AuDs.

Several members of the MS4A family are implicated in the

progression of AuDs. For example, MS4A1 is expressed primarily

on the surface of B cells, which exacerbates the progression of AuDs.

Rituximab, a monoclonal antibody (mAb) that targets MS4A1, has

been approved by the U.S. Food and Drug Administration (FDA)

and the European Medicine Agency (EMA) for the treatment of RA

in the clinic (89). Additionally, MS4A4A, a macrophage marker

within the MS4A family, has also been detected in the synovial
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tissue of early RA patients (90). The MS4A2 molecule is the b
subunit of FceRI, and mice withMs4a2 gene knockout are protected

from both skin and systemic allergic reactions (91). Human MS4A2

is not only associated with allergies but also linked to an increased

risk of allergic rhinitis (91). Recent studies have shown that

MS4A4A expression is associated with cutaneous systemic

sclerosis, polyangiitis, and Kawasaki disease (92, 93). Our research

has also identified MS4A6D as a potential therapeutic target for

various inflammatory diseases, including colitis and psoriasis

(94, 95). Therefore, certain MS4A family members may serve as

novel therapeutic targets or immune interventions for AuDs.
4.3 MS4A superfamily molecules
and tumors

In addition to being involved in controlling the pathogenesis of

AD and autoimmune disorders, MS4A molecules are also

associated with the occurrence and progression of hematological

malignancies. We reviewed the different MS4A molecules in certain

solid tumors in much greater detail (Table 1).

4.3.1 MS4A1
MS4A1 is a characteristic marker of B cells and is closely related

to the treatment and prognosis of lymphomas and lymphocytic

leukemias. Rituximab, a mAb against MS4A1, was approved for the

treatment of relapsed B-cell lymphomas and relapsed non-

Hodgkin’s lymphoma (96). Recently, MS4A1 has also been

detected in other cancer tissues, including glioblastoma, mucinous

colorectal adenocarcinoma, lymphomas, esophageal cancer, ovarian

cancer, glioma, and lung adenocarcinoma, indicating that the

therapeutic application of Rituximab may extend beyond B-cell

lymphomas (97). Mechanistically, the antitumor activity of

Rituximab is attributed primarily to the induction of apoptosis,

complement-dependent cytotoxicity (CDC), and antibody-

dependent cell-mediated cytotoxicity (ADCC). Recent studies

have suggested that antibody-dependent cellular phagocytosis

(ADCP) may be the predominant mechanism by which

Rituximab clears cancer cells (98). However, because Rituximab is

a chimeric human-mouse anti-MS4A1 mAb, it contains

approximately 30% mouse-derived sequences, which can elicit a

human anti-mouse immune response (HAMA) when it is

introduced into the human body, this side effect significantly

restricts its clinical application. To reduce the immunogenicity of

the mouse-derived sequences in Rituximab, antibody humanization

techniques, such as “complementarity-determining region (CDR)

grafting” have been employed (99). This technique involves grafting

the CDRs of mouse antibodies onto the framework regions of

human antibodies, thereby reducing the immunogenicity

associated with the mouse antibody framework. In addition to

Rituximab, other therapeutic strategies that target MS4A1, such

as CAR-T cell therapy and antibody−drug conjugates (ADCs), are

under active development (100, 101). CAR-T cell therapies have

shown promise in overcoming resistance in relapsed hematologic

malignancies, with several companies and institutions currently

conducting clinical trials.
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4.3.2 MS4A3
MS4A3 (HTm4) is expressed on bone marrow-derived

macrophage precursors, DCs, and monocytes in peripheral blood,

making it a key regulator of the cell cycle in hematopoietic cells.

Abnormal expression of MS4A3 leads to increased kinase-

associated phosphatase activity, causing cells to arrest in the G0/

G1 phase. Recent studies have revealed a close association between

MS4A3 and tumorigenesis, with significant differences in MS4A3

expression observed in prostate cancer, ovarian cancer, and breast

cancer tissues compared with normal tissues (26–29). The

transcription factor EVI-1 (ecotropic virus integration site 1) is

highly expressed in myeloid leukemia, and research by Heller G

et al. revealed that overexpression of EVI-1 in myeloid leukemia

cells suppresses MS4A3 expression, thereby promoting tumor

growth (102), suggesting a potential link between MS4A3 and

tumor development.
4.3.3 MS4A6A
MS4A6A (also known as CDA01, MS4A6, 4SPAN3, or

CD20L3) is a prominent member of the MS4A gene family (103).

MS4A6A is expressed on the surface of classical CD14+CD16-

monocytes and M2 macrophages, with minimal expression on

CD14-CD16+ M1 macrophages and CD14+CD16-transitional

macrophages, suggesting that MS4A6A might play a critical role

in tissue repair (36). MS4A6A is significantly expressed in lung-

infiltrated macrophages and can serve as a prognostic marker for

non-small cell lung cancer (NSCLC) (37). In lung adenocarcinoma,

researchers have reported a positive correlation between MS4A6A

expression and the infiltration of immune cells, such as

macrophages and DCs, within the tumor microenvironment (37,

104). We also detected the expression of MS4A6A in tissues from

breast ductal carcinoma in situ (DCIS), and multicolor fluorescence

staining revealed that MS4A6A is expressed mainly in infiltrated

CD68+ macrophages. Moreover, survival is better among DCIS

patients with high levels of MS4A6A-positive cells than among

patients with low numbers of these cells. Our study revealed that

MS4A6A can function as a prognostic marker in various malignant

tumors, including DCIS, because of its role in tumorigenesis and

tumor immunity. However, the precise role of MS4A6A in cancer

progression remains unclear, and the relationship between

MS4A6A expression in tumor tissues and immune cell infiltration

needs further investigation.
4.3.4 MS4A7
MS4A7 (CFFM4) is expressed primarily in monocyte/

macrophage-containing tissues, such as the spleen, liver, and

lungs. Moreover, research indicates that MS4A7 is expressed in

var ious cancer t i ssues , inc luding gl ioblastoma, lung

adenocarcinoma, esophageal cancer, and glioma. In triple-

negative breast cancer (TNBC), MS4A7 has been identified as a

prognostic factor, and a predictive model that incorporates the

MS4A7, SPARC, and CD300C genes has demonstrated strong

prognostic accuracy (105). In gastric cancer, low mRNA

transcription levels of MS4A7 are associated with better overall

survival, whereas high mRNA transcription levels of MS4A6A
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suggest a better prognosis (51). Functionally, the regulatory role of

MS4A7 in the differentiation of monocytic leukemia cells may be

related to the activation of the p38 MAPK pathway.

4.3.5 MS4A8B
MS4A8B is a recently identified member of the MS4A family

that has been implicated in cell differentiation and tumorigenesis.

Its murine homolog, MS4A8A, is expressed on tumor-associated

macrophages in breast cancer and melanoma. Overexpression of

MS4A8A in the RAW264.7 cell line has been shown to increase

breast tumor growth in a mouse model of breast cancer.

Additionally, MS4A8B is expressed on the surface of intestinal

epithelial cells, and its expression is elevated in colorectal cancer.

Immunohistochemical studies demonstrated that MS4A8B was

upregulated in small cell lung cancer, and its levels have also been

linked to the progression of prostate cancer (106). SilencingMs4a8b

in prostate cancer cell lines leads to cell cycle arrest, suggesting that

MS4A8B promotes G1/S cell cycle transition (71), conversely, the

overexpression of MS4A8A has been shown to significantly reduce

the proliferation and migration rates of mouse colorectal cancer

cells (33). Clinical studies have also revealed significant differences

in MS4A8B protein expression across benign prostate tissue,

adjacent prostate cancer tissue, prostatic intraepithelial neoplasia,

prostate carcinoma in situ, and metastatic prostate cancer lymph

nodes. Research has revealed that MS4A8B protein expression is

associated with tumor recurrence, Gleason scores, and proliferation

indices (45), indicating that MS4A8B expression is related to

postsurgical recurrence and metastasis in prostate cancer patients.

4.3.6 MS4A12
MS4A12 is specifically expressed in colonic tissue, and early

immunohistochemical studies revealed that MS4A12 is expressed

exclusively in colorectal cancer cells, with no expression in adjacent

stromal or nontumor epithelial cells. The rate of MS4A12 positivity in

colorectal cancer is as high as 63%, andMS4A12 expression is regulated

by the transcription factor caudal type homeobox 2 (CDX2), which can

influence the proliferation and cell cycle of colorectal cancer cells (9).

Drew J et al. analyzed six colorectal cancer and six colorectal adenoma

tissue samples and reported significant differences in MS4A12

expression between normal colon tissue, inflammatory polyps, and

colorectal cancer tissues, suggesting that MS4A12 expression may be

related to the degree of colonocyte differentiation (107). Additionally,

Dalerba P et al. reported that patients with negative MS4A12

expression had significantly reduced survival rates (108), indicating

that the unique expression pattern of MS4A12 in the colon may make

it a novel target for colorectal cancer immunotherapy.

4.3.7 TMEM176A and TMEM176B
TMEM176A and TMEM176B are unique members of the MS4A

family with distinct expression characteristics, and recent studies have

improved our understanding of their structures, distribution patterns,

biological functions, and associations with various clinical diseases,

including cancer. TMEM176A and TMEM176B interact with each

other and function as ion channels that play critical roles in regulating

antigen cross-presentation in DCs (10). Abnormal DNA methylation
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of CpG islands in human TMEM176A and TMEM176B is associated

with breast cancer development (109). In hepatocellular carcinoma

(HCC) tissues, the transcription of the 5’ and 3’ introns of the gene that

encodes human TMEM176B is significantly reduced (110).

Additionally, the expression levels of TMEM176A and TMEM176B

differ significantly between cancerous and normal tissues in breast

cancer, lymphoma, skin cancer, and liver cancer, suggesting their

potential as diagnostic markers for tumors (111). Knockdown of the

TMEM176A gene has been shown to inhibit the proliferation,

migration, and invasion of colorectal cancer cells (112), indicating a

possible role for TMEM176A in the invasion and metastasis of

colorectal cancer. In breast cancer cells, the expression of

TMEM176B is crucial for AKT/mTOR signaling, angiogenesis,

KRAS signaling, epithelial−mesenchymal transition (EMT), and the

regulation of estrogen and interferon response genes (62), therefore,

therapeutic antibodies that target TMEM176B may inhibit tumor cell

proliferation. These findings suggest that TMEM176A and

TMEM176B could serve as novel targets for immunotherapy in

certain cancers.
5 Perspective

MS4A family proteins play crucial regulatory roles in cell

growth, survival, and activation. These proteins function

physiologically as ion channels or signal modulators of immune

receptors, often existing as homomeric and heteromeric complexes

within lipid raft microdomains. Several MS4A members have

significant physiological functions in various diseases, including

Alzheimer’s disease, autoimmune disorders, and cancer. Future

research should focus on elucidating the molecular mechanisms

of signal transduction mediated by MS4A, with particular emphasis

on the biological functions of various splicing variants of MS4A

proteins. Understanding the mechanisms of action of MS4A family

molecules will have profound implications for a wide range of

diseases, including malignant tumors.
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