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Introduction: The majority of liver cancer cases (90%) are attributed to

hepatocellular carcinoma (HCC), which exhibits significant heterogeneity and

an unfavorable prognosis. Modulating the immune response and metabolic

processes play a crucial role in both the prevention and treatment of HCC.

However, there is still a lack of comprehensive understanding regarding the

immune-related metabolic genes that can accurately reflect the prognosis

of HCC.

Methods: In order to address this issue, we developed a prognostic prediction

model based on immune and metabolic genes. To evaluate the accuracy of our

model, we performed survival analyses including Kaplan-Meier (K-M) curve and

time-dependent receiver operating characteristic (ROC) curve. Furthermore, we

compared the predictive performance of our risk model with existing models.

Finally, we validated the accuracy of our risk model using mouse models with in

situ transplanted liver cancer.

Results: By conducting lasso regression analysis, we identified four independent

prognostic genes: fatty acid binding protein 6 (FABP6), phosphoribosyl

pyrophosphate amidotransferase (PPAT), spermine synthase (SMS), and

dihydrodiol dehydrogenase (DHDH). Based on these findings, we constructed

a prognostic model. Survival analysis revealed that the high-risk group had

significantly lower overall survival (OS) rates. Besides that, the ROC curve

demonstrated the effective prognostic capability of our risk model for

hepatocellular carcinoma (HCC) patients. Furthermore, through animal

experiments, we validated the accuracy of our model by showing a correlation

between high-risk scores and poor prognosis in tumor development.

Discussion: In conclusion, our prognostic model surpasses those solely based on

immune genes or metabolic genes in terms of accuracy. We observed variations
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in prognosis among different risk groups, accompanied by distinct immune and

metabolic characteristics. Therefore, our model provides an original evaluation

index for personalized clinical treatment strategies targeting HCC patients.
KEYWORDS
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Introduction

HCC is the most prevalent primary malignant liver tumor,

exhibiting comparable rates of morbidity and mortality, which are

indicative of a poor prognosis (1). Diverse therapeutic regimens are

available for different stages of HCC development, encompassing liver

resection, liver transplantation, transarterial chemoembolization,

systemic supportive therapy, among others (2–4).

Immunotherapy is regarded as the fourth cornerstone of cancer

treatment, following surgery, chemotherapy, and radiotherapy (5).

Immunotherapy encompasses immune cell therapy and immune

checkpoint inhibitors as its primary modalities. Immune cell therapy

offers significant advantages in HCC treatment, including adoptive cell

transfer therapy (ACT), chimeric antigen receptor T-cell (CAR-T)

therapy and tumor-infiltrating lymphocytes (TILs) (6, 7). Additionally,

immune checkpoint inhibitors have revolutionized HCC therapy with

the approval of nivolumab and pembrolizumab targeting the PD-1/

PD-L1 pathway for advanced HCC treatment, instilling new hope (8,

9). Notably, the combination therapy of immune checkpoint inhibitors

atezolizumab and bevacizumab has demonstrated remarkable

therapeutic efficacy in advanced hepatocellular carcinoma (HCC)

patients, representing a pivotal breakthrough in HCC treatment (10).

Moreover, considering the triumph of immunotherapy, immune-

related genes may emerge as crucial prognostic indicators for both

HCC development and therapeutic interventions.

In the 1920s, Otto Warburg initially reported the Warburg

effect, which refers to the phenomenon wherein tumor cells exhibit

a preference for glycolysis as their primary energy source, even in

the presence of sufficient oxygen (11). The advantage of this

metabolic adaptation lies primarily in its provision of a favorable

tumor microenvironment conducive to cancer cell proliferation and

rapid energy supply for accelerated tumor growth, thereby gaining a

growth advantage (12). Besides aberrant glucose metabolism,
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ntially expressed genes;
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abnormal lipid and amino acid metabolism also contribute

significantly to cancer development (13). Numerous investigations

have demonstrated that tumor metabolism is highly adaptable and

reprogramming of cellular metabolism effectively influences both

initiation and progression of tumors (14).

Although numerous studies have focused on predicting the

prognosis of liver cancer by prioritizing immune or metabolic

genes, it is insufficient to solely analyze these gene sets

independently. In this study, we identified four immune-related

metabolic genes whose expression levels were significantly

associated with the prognosis of hepatocellular carcinoma (HCC).

Subsequently, we developed a risk model incorporating these genes

to accurately forecast the prognosis of HCC.
Materials and methods

Data acquisition and processing

Transcriptional data were obtained from TCGA database

(https://www.cancer.gov/ccg/research/genome-sequencing/tcga),

including 50 normal liver samples and 374 HCC samples.

Microarray data profiles of GSE112790 were obtained from GEO

database (https://www.ncbi.nlm.nih.gov/geo/), which included 15

normal liver samples and 183 HCC samples. Additionally, clinical

data pertaining to HCC samples were acquired via TCGA and GEO

databases (Supplementary Tables 1A, B).
Clustering analysis

Non-negative Matrix Factorization (NMF) clustering algorithm

was used to perform clustering analysis on the TCGA samples. The

“brunet” option was chosen and a total of 10 iterations were

performed. The number of clusters k was set from 2 to 10. The

optimal clustering number was determined to use cophenetic,

dispersion, and silhouette indicators, and selected as 2.
Prognostic model construction

The differentially expressed genes (DEGs) and clinical survival

were integrated from the data of TCGA and GEO databases
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(Supplementary Tables 1C, D). By using the integrated data, a

random grouping was conducted. The train group consisted of 70%

of the samples and the remaining 30% were assigned to the test

group. To identify significant genes associated with prognosis,

univariate COX correlation analysis was conducted in the train

group (Supplementary Table 2A). To prevent excessively fitting, the

least absolute shrinkage and selection operator (LASSO) analysis

(ten-fold cross-validation) was employed to identify the significant

predictive genes (Supplementary Table 2B). Subsequently,

multivariate COX correlation analysis was conducted to identify

prognostic gene (Supplementary Tables 2C, D), and then we

constructed a risk model. The risk score was calculated as FABP6

× (0.220543173197653) + PPAT × (0.447449310621628) + SMS ×

(0.478136055547003) + DHDH × (0.230507719504424). Samples

were classified into high-risk and low-risk groups using the median

risk score of train group from the TCGA database.
Validation of model accuracy

To validate if our model can accurately distinguish survival

differences between different risk groups, we adopted survival

analyses, including K-M curve and ROC curve, survival status

heatmap and analysis of survival differences in different clinical

subgroups. In addition, to investigate whether the constructed

model was superior to other reported models, we compared

multiple models using K-M curve, ROC curve, and C-index value.
Evaluation of model predictive ability

By using R packages “survival”, “regplot”, and “rms”, a

prognostic nomogram was constructed. The predictive ability of

nomogram was assessed using decision curve analysis (DCA) and

the ROC curve.
Correlation of risk scores with
clinicopathological characteristics

The clinicopathological characteristics of samples were

integrated with their corresponding risk scores. The

clinicopathological characteristics associated with prognosis were

screened using COX correlation analysis.
Estimation of immunotherapy response

The gene expression data and immune cell infiltration

information derived from TCGA database were merged with their

corresponding the risk scores (Supplementary Table 3A), and then

we analyzed the correlation between the risk score and the

expression levels of immune checkpoint-related genes (ICRGs), as
Frontiers in Immunology 03
well as between risk score and immune cell infiltration. Correlation

plot was generated using R packages “ggpubr” and “corrplot”.
Enrichment analysis

The gene expression data of different risk groups was subjected

to the Gene Set Enrichment Analysis (GSEA) with R package

“clusterProfiler” (Supplementary Table 3B), and then we selected

top five pathways that showed significant enrichment for each

group. The “c2.cp.kegg. Hs.symbols” gene set was obtained from

the Molecular Signatures Database (https://www.gsea-msigdb.org/

gsea/msigdb) for further analysis.
Cell culture and RNA extraction

Hepa1-6 cells were cultured in DMEM (Gibco), and H22 cells

were cultured in RPMI 1640 (Gibco), both of which were

supplemented with 10% FBS (Biochannel) and 1% streptomycin -

penicillin (Gibco), and then placed in the 37°C incubator containing

5% CO2. When cell density was 70% - 80%, the culture medium was

discarded and the cells were washed twice with phosphate buffer

solution (PBS). The TRIzol reagent (Invitrogen) was used to lyse cells

for 5 minutes and then 0.2 mL of trichloromethane (Chinese

medicine Hushi) was added to every 1mL of TRIzol reagent, then

the mixture was shaken vigorously for 15 seconds and left to stand at

room temperature for 5 minutes. Centrifuged cell lysate at 4°C and

12700 rpm for 15minutes, and then mixed upper aqueous phase with

equal volume isopropanol (Chinese medicine Hushi). Gently inverted

and mixed well, then rested for 5 minutes. The mixture was then

centrifuged mixture at 4°C and 12700 rpm for 3 minutes. After

discarding the supernatant and washing with 75% ethanol (Chinese

medicine Shanghai trial), we centrifuged again and discarded the

supernatant. After opening the lid and allowing to stand for 2

minutes, RNA precipitation was dissolved by 30 -100 µLDEPCwater.
Fluorescence quantitative PCR

To obtain cDNA, the ReverTra Ace qPCR RT Kit (TOYOBO) was

utilized for RNA reverse transcription. Then 2XUniversal SYBR Green

Fast qPCRMix (ABclonal) was applied for qPCR. The gene expression

level was quantified using the 2-DCt method and each sample was tested

in triplicate. The corresponding primers for the four genes could be

found in the Supplementary Materials (Supplementary Table 4).
Orthotopic mouse model analysis

To investigate the sensitivity of tumors with different risk scores

to metformin treatment, orthotopic mouse models were established

using Hepa1-6 and H22 liver cancer cells. Six-week-old male BALB/
frontiersin.org
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c and C57BL/6J mice were obtained from GemPharmatech LLC.

The mice were maintained under pathogen-free conditions and

were provided with sterilized food and water. C57BL/6J mice were

inoculated with Hepa1-6 cells and BALB/c mice with H22 cells.

There were 12 mice of each strain. First, 1x106 cells were injected

into the liver of each mouse with an injection volume of 40 µL.

Thereafter, each strain was randomly divided into an experimental

group and a control group. On the third day, oral gavage treatment

started, and the experimental group was given metformin (250mg/

kg/day, Cat: M21704, HARVEYBIO) dissolved in physiological
Frontiers in Immunology 04
saline with a dosage of 100 µL. The control group was given an

equal amount of physiological saline. After 2 weeks, the mice were

euthanized and the livers were harvested.
Hematoxylin-eosin staining

Firstly, the liver slices were dried in a 65°C oven for 30 minutes and

then followed by immersing in xylene I, II and III for 5 minutes each.

After immersing the slices in anhydrous ethanol I and II for 1 minute
FIGURE 1

NMF subtyping and analysis of tumor microenvironment. (A) Volcano map of differentially expressed genes in normal and tumor samples. (B) Two
subgroups were identified as optimal values for consensus clustering. (C) OS analysis of two subtypes. (D) PFS analysis of two subtypes. (E) Tumor
microenvironment related scores of two subtypes. (F) The immune infiltration analysis of two subtypes.
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each, they were soaked in 95% ethanol I and II for 1 minute each. The

slices were rinsed with water for 1minute, then stained with hematoxylin

solution (Baso) for 5 minutes, and then rinsed with water for 10minutes.

Next, the slices were stained with eosin aqueous solution (ZSGB-BIO) for

1 minute, then soaked in 95% ethanol III and IV for 1 minute each,

followed by soaking in anhydrous ethanol III and IV for 1 minute each.

Finally, the slices were soaked in xylene IV and V for 1 minute each and

sealed with neutral resin.
Statistical analysis

The study was analyzed using R version 4.2.1. Immune cell

infiltration level and immune checkpoint gene expression were

analyzed by Wilcoxon test. The comparison of risk scores

between the Hepa1-6 and H22 liver cancer cells and the

difference analysis of the ratio of liver weight to body weight were

statistically analyzed using an unpaired t-test. Unless specifically

annotated otherwise, a two-tailed P-value of less than 0.05 was

considered to indicate statistical significance in this study.
Results

Differentially expressed genes shape
prognosis and tumor immunity

To understand the overall effect of immune genes and metabolic

genes in HCC prognosis, we conducted DEGs analysis on normal

and tumor samples (Figure 1A) and performed NMF subtyping

based on the analysis results (Supplementary Figure 1A). Based on

the cophenetic correlation analysis (Supplementary Figure 1B), the

optimal k value was determined to be 2, so we divided all samples

into two types, C1 and C2 (Figure 1B). Subsequently, we analyzed

the DEGs between different subtypes (Supplementary Figure 1C).

Our analyses showed that the OS and progression-free survival

(PFS) of C2 exhibited higher levels compared to C1 (Figures 1C,

D).To discern the differences in the tumor immune

microenvironment (TIME) among samples with different

subtypes, we conducted an analysis of TIME. Interestingly, the

analysis revealed that C1 had higher immune cell score and

comprehensive score compared to C2 (Figure 1E). To further

investigate which immune cells had different expression levels in

different subtypes, we subsequently performed an immune cell

infiltration analysis. We found that the neutrophil distribution in

C2 group was higher than C1, but this was not the case for CD8+ T

cells, cytotoxic lymphocytes, NK cells or other T cells (Figure 1F).

Therefore, both the quantity and quality of anti-tumor immune

cells determined their effects on tumor prognosis.
High expression of prognosis-related
genes elevates mortality

To obtain prognosis-related genes (PRGs), we conducted

univariate COX correlation analysis within the train group,
Frontiers in Immunology 05
followed by lasso regression analysis and cross validation

(Figures 2A, B).Then, we screened out four independent PRGs,

including fatty acid binding protein 6 (FABP6), phosphoribosyl

pyrophosphate amidotransferase (PPAT), spermine synthase (SMS)

and dihydrodiol dehydrogenase (DHDH). The aforementioned

factors all play a pivotal role in metabolic and immune regulation

and exhibit significant correlations with survival outcomes.

FABP6 is overexpressed in various cancers. Inhibiting its

expression can halt the cell cycle and boost the secretion of

immune response-related chemokines, facilitating CD8+ T cell

recruitment (15, 16). The enzyme PPAT facilitates the conversion

of glutamine into phosphoribosylamine, which is recognized as an

immunomodulatory nutrient and exhibits a rapid increase in

uptake upon activation of naive T cells (17). The increased SMS

expression in HCC is linked to a negative prognosis and can hinder

the effectiveness of immune checkpoint blockade therapy (18).

DHDH catalyzes the conversion of NADP+ to NADPH, which is

a substrate for generating reactive oxygen species (ROS). These ROS

can affect dendritic cell maturation and cross-presentation

capabilities, as well as T cell immune response, thereby

modulating immune reactions (19, 20). Elevated DHDH

expression in cancer has been correlated with unfavorable

prognostic outcome (21–23).

To fully encompass the potential prognostic significance of

immune and metabolic genes in HCC, we visualized the gene

coefficient. Finally, we established a prognostic model by utilizing

the expression levels and corresponding coefficient of the PRGs.

The different risk groups were divided according to median risk

score of train group (Figure 2C). We adopted the same approach in

the test group (Figure 2D). The expression of four genes in high-risk

group were much more than the low-risk group (Figures 2E, F).

Correspondingly, patients in high-risk group showed an increased

mortality (Figures 2G, H).
Risk model effectively predicts the survival
rates of HCC patients

Through the survival analysis of different risk groups in train

groups and test groups, our study found that high-risk group

showed significantly reduced OS compared to low-risk group

(Figures 3A, B). Besides that, a survival analysis based on all

TCGA and GEO samples also showed the same results

(Supplementary Figures 2A, B). Accordingly, our model could

effectively distinguish high- and low-risk group. Additionally, the

ROC curve showed that the area under curve (AUC) of the train

group was approximately 0.783, 0.733 and 0.775 for 1, 3 and 5 years

(Figure 3C). The AUC of the test group was approximately 0.796,

0.634 and 0.570 for 1, 3 and 5 years (Figure 3D). In summary, the

above findings indicated that risk model had efficient predictive

power for HCC survival.

In order to evaluate predictive accuracy of the risk model and

clinical characteristics, and to confirm whether the risk model could

serve as an independent prognostic factor, we conducted an analysis

of the predictive association among age, gender, tumor stages,

grades, and the risk score, considering individual factor as well as
frontiersin.org
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multiple factors. The findings denoted that the risk score served as

an independent predictive factor of HCC survival (Supplementary

Figures 2C, D). Subsequently, we combined risk score with age,

gender and pathological stage to establish a prognostic nomogram

(Figure 3E). As shown by the calibration curve (Figure 3F), the

nomogram could predict OS with relatively great accuracy. The

ROC curves of several indicators (Figure 3G) and DCA (Figure 3H)

revealed that the nomogram exhibited superior predictive ability

compared to the indicator of age, gender, grade and stage.
Frontiers in Immunology 06
In summary, the above results validated the predictive potential

of the nomograms in predicting HCC prognosis.
Risk model exhibits potent
clinical applicability

In order to ascertain the suitability of the model for patients in

various clinical groups, we analyzed the survival of patients in
FIGURE 2

Construction of prognostic model. (A) Partial likelihood deviance with changing of log (l) plotted through LASSO Cox regression in 10-fold cross-
validations. (B) Coefficients with changing of log (l) plotted through LASSO Cox regression in 10-fold cross-validations. (C, D) The distribution of risk
scores in the train group and test group. (E, F) Heatmap of 4 genes expression in the train group and test group. (G, H) The survival status of patients
in the train group and test group.
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different clinical stages. Our findings suggested that, regardless of

whether the patients had early or advanced HCC, the model

exhibited high accuracy in distinguishing high-risk and low-risk

patients (Figures 4A, B). To investigate variations in risk scores

among patients in distinct clinical categories, we conducted a
Frontiers in Immunology 07
clinical correlation analysis. Our analysis revealed a positive

correlation between the risk score and tumor characteristics,

including tumor grade, stage and T stage (Figures 4C–E). As

expected, the predictive function of the risk score was not affected

by age, gender, M stage or N stage (Supplementary Figures 3A–D).
FIGURE 3

Verification of the predictive ability of the model. (A, B) Kaplan–Meier curves of survival in train group (A) and test group (B). (C, D) Time-dependent
ROC curve of the risk score model for predicting 1, 3 and 5 years in train group (C) and test group (D). (E) The nomogram for predicting survival
proportion of patients in 1, 3 and 5 years. (F) The calibration plots for predicting patient survival at 1, 3 and 5 years. (G) Comparison of time-
dependent ROC curve of multiple factors. (H) Comparison of decision curve analysis of multiple factors.
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The immune status and GSEA enrichment
pathways differ between the two
risk groups

Immunotherapy for HCC has emerged as a prominent research

focus in recent years. In an effort to explore the correlation between

immune checkpoints, immune cells and patient prognosis, we

conducted correlation analysis. In the high-risk group, a

significant proportion of immune checkpoints (92%, 11 out of 12)

and immune cell types (70%, 7 out of 10) exhibited high expression

levels (Supplementary Figures 4A, B). The aforementioned findings
Frontiers in Immunology 08
suggested that patients classified in high-risk group may potentially

derive greater therapeutic benefits from immunotherapy. In order

to identify active molecular functions and pathways in different risk

groups, we performed GSEA. Molecular biological processes, such

as cell cycle, ECM receptor interactions, hematopoietic cell lines

and neuroactive ligand-receptor interaction, were primarily

enriched in the high-risk groups (Supplementary Figure 4C).

Metabolic pathways, such as b-alanine metabolism, fatty acid

metabolism, tryptophan metabolism and primary bile acid

biosynthesis, were found to be enriched in the low-risk group

(Supplementary Figure 4D).
FIGURE 4

The clinical correlation analysis. (A) OS in the high-risk and low- risk groups of HCC patients in stage I-II. (B) OS in the high-risk and low- risk groups
of HCC patients in stage III-IV. (C) The clinical correlation analysis of grade. (D) The clinical correlation analysis of cancer stage. (E) The clinical
correlation analysis of T stage.
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The predictive power of the risk model is
higher compared to that of other
tested models

To determine the predictive power of our risk model compared

to that of previously reported models, we conducted OS analyses

(Figures 5A–C) and ROC curve (Figures 5D–F). We found that the
Frontiers in Immunology 09
AUC of our model was overall better than that of the other models.

In addition, similar results were observed when we used the C-index

method to analyze each model (Figure 5G). In conclusion, the

aforementioned finding suggested that the model we had

constructed was superior to other prognostic models, which were

based solely on immune genes or metabolic genes, in terms

of accuracy.
FIGURE 5

Comparison between risk model and other prognostic models. (A) OS analysis of high-risk and low-risk groups in risk model. (B) OS analysis of high-
risk and low-risk groups in immune model. (C) OS analysis of high-risk and low-risk groups in metabolism model. (D-F) Time-dependent ROC curve
of the risk model (D), immune model (E) and metabolism model (F) for predicting 1, 3 and 5 years. (G) Concordance index comparison of three
prognostic models.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1481331
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhuo et al. 10.3389/fimmu.2024.1481331
Higher risk scores lead to decreased
sensitivity to metformin in liver cancer
animal models

To further verify the relationship between the risk score

and prognosis under metabolism targeting treatment, we

performed qPCR analysis on the expression levels of four genes in

Hepa1-6 and H22 liver cancer cells (Supplementary Figures 5A, B;

Supplementary Table 5), and calculated their risk scores, with

Hepa1-6 cells scoring about 0.00730 and H22 cells scoring about

0.0178 (Figure 6A). This indicated that the risk value of H22 liver

cancer cells was approximately twice that of Hepa1-6 liver cancer

cells. Therefore, we supposed that the prognosis of H22 liver cancer

would be worse than that of Hepa1-6 liver cancer. Research has

revealed that metformin has therapeutic effects on various cancers,

including liver cancer. Therefore, we further investigated the

therapeutic effects of metformin on mice with Hepa1-6 and H22

orthotopic tumors, and observed the prognosis. The results

depicted that, compared with the Hepa1-6 model, metformin had

a poor therapeutic effect on the H22 model (Figures 6B, C;

Supplementary Table 6). The H&E staining revealed that the

arrangements of tumor cells in both models were irregular, with

diverse cell morphologies and increased nuclear division. After
Frontiers in Immunology 10
treatment with metformin, the morphology of tumor cells in the

Hepa1-6 model improved, while there was no significant change in

the H22 model (Figure 6D). In summary, the higher the risk score,

the lower the response to metformin treatment in liver cancer.
Discussion

HCC ranks as the second most common cause of cancer-related

deaths globally (24), characterized by an estimated five-year survival

rate of around 18% and a poor prognosis (25). Metabolism pattern

determined the immunocyte fate and their regulation on tumor

(26–28). Over the past few years, significant progress has been made

in management of HCC, including in-depth research on tumor

metabolism reprogramming (29–32) and important breakthroughs

in immunotherapy (33–35). Given the significant role of

metabolism and immunity in the incidence, progression, and

management of HCC, it’s necessary and feasible to predict HCC

prognosis using genes involved in immune and metabolic processes.

In this study, we identified four gene markers, FABP6, PPAT, SMS,

and DHDH, which are composed of immune-relevant metabolic

genes. A risk model was designed utilizing these genes, enabling

accurate prediction of HCC prognosis.
FIGURE 6

Verification of the accuracy of the model in vivo experiments. (A) Risk score of Hepa1-6 and H22 liver cancer cells. (B) Using Hepa1-6 and H22 cells
to establish orthotopic mouse models. (C) Comparison of liver weight to body weight between the two models. (D) H&E staining indicated that after
treatment with metformin, the prognosis of H22 liver cancer was worse than that of Hepa1-6 liver cancer.
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Our research has demonstrated that these genes serve as

independent prognostic markers for hepatocellular carcinoma

(HCC). Inhibition of FABP6 impedes the cell cycle and enhances

the secretion of chemokines involved in immune response, thereby

facilitating the recruitment of CD8+ T cells (15, 16). PPAT catalyzes

the conversion of glutamine into phosphoribosylamine, a well-

recognized immunomodulatory nutrient whose uptake rapidly

increases upon activation of naive T cells (17). Elevated

expression of SMS in HCC is associated with an unfavorable

prognosis and can attenuate the efficacy of immune checkpoint

blockade therapy (18). DHDH catalyzes the conversion of NADP+

to NADPH, which serves as a substrate for generating reactive

oxygen species (ROS) that subsequently influence dendritic cell

maturation and cross-presentation capabilities, as well as T cell

immune responses, thus modulating overall immune reactions

(19, 20). Increased DHDH expression in cancer has been

correlated with an adverse prognostic outcome (21–23).

We utilized gene expression data from the TCGA and GEO

databases and employed univariate COX correlation analysis and

lasso regression approaches. Then, we identified four independent

genes with a significant association with HCC prognosis.

Subsequently, we constructed a risk model by using these genes.

The survival analyses indicated that the risk model had potential to

effectively differentiate high-risk and low-risk patients. To enhance

the precision of model prediction, our study combined the

prognostic risk score with clinical features to construct an OS

prediction nomogram. Through several analyses, such as ROC

curve and DCA, we found that the nomogram showed better

predictive ability for the prognosis of HCC compared to other

indicators. Additionally, we observed a notable positive correlation

between the risk score and the tumor characteristics, including

grade, stage and T stage. This finding enhances the predictive

accuracy and clinical relevance of risk model.

Immunotherapy is progressively gaining significance in HCC

treatment. The research on immune cells and immune checkpoints

has been constantly innovating and improving. Our study found

expression of immunocyte infiltration and immune checkpoint-

associated genes in the high-risk group were elevated, indicating

that immunotherapy may achieve ideal results in the high-risk

group. In recent years, studies on prognostic model for predicting

HCC outcomes have become increasingly extensive and refined. By

comparing with other models (36, 37), we verified the advantages of

the combined prognostic model of immune and metabolism,

providing new ideas and methods for future research.

The model we have constructed has high accuracy and strong

predictive potential for prognosis of HCC patients, which is the

innovation and significance of this study. Nevertheless, there are

also certain limitations. Firstly, the gene expression data we used to

construct the model comes from a public database, so the sample

size and patient treatment history cannot be fully guaranteed.

Secondly, this study focuses on the impact of immune-related

metabolic genes on prognosis in HCC, so the applicability of the

model is somewhat limited. In the future, more clinical samples and

gene expression data will be needed to support the potential clinical

application of this prognostic analysis model.
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SUPPLEMENTARY FIGURE 1

Clustering of molecular subgroup and analysis of DEGs. (A) The results of
NMF subtyping. (B) NMF rank survey. (C) Heatmap of the DEGs in C1 and

C2 subtypes.

SUPPLEMENTARY FIGURE 2

The risk score independently predicts the survival rate of HCC. (A) Survival
analysis of different risk groups in TCGA samples. (B) Survival analysis of

different risk groups in GEO samples. (C) The univariate Cox regression
analysis of the associations between the risk scores and clinical parameters

and the OS of patients. (D) The multivariate Cox regression analysis of the
Frontiers in Immunology 12
associations between the risk scores and clinical parameters and the OS
of patients.

SUPPLEMENTARY FIGURE 3

Clinical applicability verification of themodel. (A)Correlation between risk score

and age. (B) Correlation between risk score and gender. (C) Correlation
between risk score andM stage. (D)Correlation between risk score andN stage.

SUPPLEMENTARY FIGURE 4

Analysis of risk score and immune status and related pathways. (A) Box plots

of immune checkpoint molecule expression in high- and low-risk groups. (B)
The violin plot of immune cell infiltrating in high- and low-risk groups. (C) The
top five pathways enriched in the high-risk group. (D) The top five pathways
enriched in the low-risk group.

SUPPLEMENTARY FIGURE 5

Expression levels of four genes in HCC cells. (A) Expression levels of four

genes in Hepa1-6 liver cancer cells. (B) Expression levels of four genes in H22
liver cancer cells.
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