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strategy for ultrasound
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exhaustion in pancreatic
cancer therapy
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Medicine, Guang’an Vocational & Technical College, Guang’an, China, 3Department of Oncology,
Chongqing General Hospital, Chongqing University, Chongqing, China
Pancreatic cancer (PC) is a highly aggressive and lethal malignancy characterized

by a complex tumor microenvironment (TME) and immunosuppressive features

that limit the efficacy of existing treatments. This paper reviews the potential of

combining ultrasound with macrophage exhaustion in the treatment of

pancreatic cancer. Macrophages, particularly tumor-associated macrophages

(TAMs), are crucial in pancreatic cancer progression and immune escape.

Prolonged exposure to the immunosuppressive TME leads to macrophage

exhaustion, reducing their anti-tumor ability and instead promoting tumor

growth. The CSF1/CSF1R signaling pathway is key in macrophage recruitment

and functional regulation, making it an effective target for combating

macrophage exhaustion. Ultrasound technology not only plays a significant

role in diagnosis and staging but also enhances therapeutic efficacy by guiding

radiofrequency ablation (RFA) and percutaneous alcohol injection (PEI) in

combination with immunomodulators. Additionally, ultrasound imaging can

monitor the number and functional status of TAMs in real-time, providing a

basis for optimizing treatment strategies. Future studies should further

investigate the combined use of ultrasound and immunomodulators to refine

treatment regimens, address challenges such as individual variability and long-

term effects, and offer new hope for pancreatic cancer patients.
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1 Introduction

Pancreatic cancer is a highly aggressive and metastatic

malignant tumor that is difficult to diagnose at an early stage and

has an extremely poor prognosis (1–4). In recent years, the

incidence and mortality of pancreatic cancer have continued to

rise. Statistically, the 5-year survival rate for pancreatic cancer for

the period 2013-2019 remains only 13%, one of the lowest among

all cancers (4, 5). One of the main reasons for the poor prognosis is

the lack of symptoms and inaccurate diagnosis in the early stages.

About 90% of cases are diagnosed at an advanced stage, by which

time more than 50% of patients have developed systemic metastases

(5). The treatment of pancreatic cancer usually involves a

multidisciplinary approach that includes chemotherapy, radiation,

immunotherapy, and sometimes surgical interventions (3).

However, the majority of pancreatic cancer patients who undergo

radical resection and systemic chemotherapy still experience

recurrence with local or systemic metastases (6). Commonly used

chemotherapeutic agents such as gemcitabine and FOLFIRINOX

have limited their application due to rapid chemoresistance (7–9).

On the other hand, although emerging immunotherapies have

demonstrated significant efficacy in a variety of cancers, their

efficacy in pancreatic cancer and other quiescent tumors such as

breast cancer remains limited (10, 11). Therefore, there is an urgent

need to discover new therapies for pancreatic cancer patients,

especially combination therapy strategies.

The TME of pancreatic cancer is complex and uniquely

characterized, contributing to tumor immune escape and

therapeutic failure (1). Among its components, TAMs play a

crucial role in determining tumor growth, and therapeutic

resistance (12). Prolonged exposure to cancer antigens and

inhibitory TME significantly impairs macrophage efficacy, leading

to their multifaceted functional exhaustion, including the

upregulation of immune checkpoint ligands (13). In particular,

the CSF1/CSF1R signaling pathway, which modulates TAM

functions and behaviors, is vital in regulating the TME.

Therefore, targeting the CSF1/CSF1R signaling pathway may

represent a promising anti-tumor strategy in the future.

Ultrasound technology also has significant applications in the

diagnosis and treatment of pancreatic cancer. Ultrasound-guided

fine-needle aspiration (FNA) and coarse-needle biopsy (CNB) can

accurately obtain macrophage samples from the TME, providing

essential data for studying the role of TAMs in pancreatic cancer

(14–16). Additionally, interventional techniques such as

ultrasound-guided radiofrequency ablation (RFA) and

percutaneous alcohol injection (PEI) can be combined with

immunomodulators for precise delivery of targeted drugs,

improving treatment efficacy (17, 18). Ultrasound can also

monitor changes in the number and functional status of TAMs in

real time during the treatment process, optimizing the treatment

strategy (19, 20). Therefore, combining ultrasound with

macrophage exhaustion and incorporating the unique properties

of the TME may bring new breakthroughs and hope for pancreatic

cancer patients.
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2 Macrophage exhaustion

2.1 Classification and function of TAMs
in TME

Pancreatic cancer has a highly reactive TME enriched with

immunosuppressive and inflammatory cells capable of specifically

silencing anti-tumor immune responses, allowing tumor cells to

evade the effects of traditional monotherapies such as

chemotherapy, immunotherapy, etc (1, 21). In addition, the TME

of pancreatic cancer specifically contains pancreatic stellate cells

(PSCs), cancer-associated fibroblasts (CAFs) as well as a variety of

non-cellular components such as extracellular matrix (ECM),

cytokines, and growth factors (1, 22). Together, these components

contribute to an immunosuppressive TME, which ultimately leads

to metastasis of tumor cells (Figure 1A).

Macrophages, as an important component of the innate and

adaptive immune system, are widely studied immune cells in TME.

The majority of macrophages originate from circulating monocytes.

Based on their morphology, phenotype, and function, TAMs can be

divided into 2 main classes: “anti-tumor” classically activated M1

TAMs and “pro-tumor” selectively activated M2 TAMs (Figure 1B)

(12, 13). In the typical classification, pro-inflammatory

macrophages acquire the M1 phenotype through activation of

granulocyte-macrophage colony-stimulating factor (GM-CSF),

lipopolysaccharide, and interferon gamma (IFN-g), and anti-

inflammatory macrophages acquire the M2 phenotype through

induction of Colony-stimulating factor 1 (CSF-1), interleukin 4

(IL-4), IL-13, and IL-10 (23, 24). In the M2 TAM, there are

characteristic biomarkers, including CDC, CDSF, and IL-10, that

are associated with the M2 phenotype. characteristic biomarkers,

including CD206 and CD163, among others. Biomarkers of M1

TAM polarization include CD80 and CD86. These molecules form

the basis for the identification of TAMs (25).
2.2 Impact of macrophage exhaustion on
pancreatic cancer development

Immune cell depletion is a dysfunctional state characterized by

the fact that immune cells that play a key role in the antitumor

immune response, such as T cells, natural killer (NK) cells, B cells,

and macrophages together, exhibit reduced effector function. This

depletion is not only a depletion of cell populations, but also

manifests itself in altered expression of inhibitory receptors (e.g.,

PD-1, CTLA-4), metabolic dysregulation, and transcriptional

changes leading to reduced cytokine production and proliferative

capacity. TME plays a crucial role in this process. More research

findings have been found for immune depletion targeting T cells,

but it is still to be explored for the other immune cell depletion.

Targeted macrophage exhaustion will perhaps be critical for the

development of next-generation immunotherapies (26–28).

Prolonged exposure to immunosuppressive TME (characterized

by low oxygen levels, high lactate levels, inflammation, and oxidative
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stress) significantly impairs the anti-inflammatory efficacy of

macrophages, leading to macrophage exhaustion (29, 30). At this

point, macrophages tend to adopt an M2 phenotype characterized by

the secretion of immunosuppressive cytokines, such as IL-10, TGF-b,
and other cytokines, in order to promote angiogenesis generation,

lymphangiogenesis, immunosuppression, and tumor progression

(13). macrophage exhaustion is also characterized by increased

recruitment of M2 macrophages and upregulation of immune

checkpoint ligands (e.g., PD-1L). Together, these changes promote

immunosuppressive TME formation in pancreatic cancer patients,

further leading to a vicious cycle.

In addition, data suggest that TAMs in immunosuppressive

TME can also lead to depletion of other immune cells, particularly

NK cells and T lymphocytes. TAMs can not only promote T cell

depletion by overexpression of PD-1L, but also block cytotoxicity by

expression of TAM-associated molecules, such as collagen

structural macrophage receptor (MARCO) and CD163 T cell and

natural killer cell activation (31). Deficiency of MARCO was found

to significantly inhibit tumor progression and metastasis in a mouse

model of pancreatic cancer, and correlation of clinical data showed

a strong trend toward poorer survival in patients with high CD163

and MARCO macrophage infiltration (32). Notably, targeting these
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molecules with antibodies or knocking down these molecules may

repolarize the TAM, thereby restoring the ability of T cells and anti-

tumor capacity of natural killer cells, as well as down-regulate the

activity of regulatory T cells (Treg) (33, 34). Considering that TAM

induces immunosuppressive TME, reprogramming TAM to

modulate the anti-tumor immune response has been suggested as

a novel therapeutic approach for pancreatic cancer treatment.
3 CSF1/CSF1R signaling pathway

CSF-1, derived from fibroblasts, tumor cells, etc., is produced in

membrane-bound form, secreted glycoproteins and proteoglycans.

Currently, CSF-1R is considered to be the sole receptor for CSF-1.

These cells regulate macrophage growth, differentiation and function

by secreting CSF1. Colony-stimulating factor receptor (CSF1R), a

type I single-transmembrane protein, is ubiquitously expressed in

myeloid cells such as monocytes, macrophages, neuroglia, and

osteoblasts. CSF1R induces receptor homodimerization by binding

to either CSF-1 or IL-34, followed by activation of receptor signaling

and activation of extracellular pro-cell-survival kinase cascades,

including PI3K, ERK1/2, and JNK (35–38).
FIGURE 1

Integrative approaches in pancreatic cancer: targeting tumor microenvironment and macrophage modulation via ultrasound and CSF1/CSF1R
pathway inhibition. (A) Pancreatic cancer TME composition. (B) Modulation of pancreatic cancer cells by TAM subtypes: The red “T” symbol indicates
inhibitory effects, while the green arrow represents promotive actions within the signaling pathways. (C) Role of ultrasound in pancreatic cancer
diagnosis and treatment. (D) Targeting the CSF1/CSF1R signaling pathway.
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3.1 Role of CSF1/CSF1R in TME

The CSF1/CSF1R-mediated signaling pathway is critical for the

differentiation and recruitment of the mononuclear phagocyte

system, particularly macrophages. In TME, activation of the

CSF1/CSF1R signaling pathway plays a critical role by promoting

the transformation of macrophages to an immunosuppressive

phenotype (i.e., M2-type macrophages) (39). These M2-type

macrophages inhibit anti-tumor immune responses and promote

tumor growth and metastasis by secreting a variety of

immunosuppressive factors (e.g., IL-10, TGF-b) and factors that

promote tumor angiogenesis (e.g., VEGF). In addition, the CSF1/

CSF1R signaling pathway maintains the immunosuppressive state

of the TME by regulating the recruitment and survival of

TAMs (35).

CAFs are present in tumors at all stages, are heterogeneous, and

their primary function is to synthesize, deposit, and remodel the

ECM. However, CAFs also secrete cytokines, chemokines, growth

factors, and angiogenic factors. In the TME, CAFs and TAMs can

interact via the CSF1-CSF1R axis (40). For example, CSF1

expression was positively correlated with the abundance of CSF1R

+ CD163+ macrophages in skin cancer patients, which is consistent

with a role for CSF1 in mediating macrophage survival (41). In

addition to fibroblasts, tumor cells can also secrete CSF1, suggesting

that it may play a pro-tumorigenic role. Consistent with this, in

metastatic PDAC, tumor cell-derived CSF1 induces macrophages to

produce granulin, a secreted glycoprotein that promotes fibroblast

activation and stimulates tumor growth (42).

Since the presence of CSF1R+ macrophages within tumors

correlates with poor survival in various tumor types, targeting

CSF1/CSF1R signaling pathway transduction that promotes

tumor growth is an attractive strategy to eliminate TAMs, reduce

M2 macrophage recruitment, or repolarize them (43).
3.2 Relationship between CSF1/CSF1R and
macrophage exhaustion

The CSF1/CSF1R signaling pathway plays an important role in

macrophage exhaustion, and its activation induces macrophage

exhaustion, causing them to lose their anti-tumor function and

instead support tumor growth and immune escape (44). Studies

have shown that macrophage polarization in the TME is highly

dependent on the presence of cytokines originating from the tumor

cells, from other stromal cells (e.g., immune cells or fibroblasts), and

from the local cytokine environment of the macrophages

themselves. M2 TAM is the result of the persistence of growth

factors such as CSF1 and cytokines such as IL-4 and IL-10 (45–47).

M2 TAM, in addition to its direct tumor growth-promoting ability,

suppresses immune effector cell function, thereby contributing to

the elimination of tumor cells. This silencing of immune effector

cells is achieved through the production of cytokines and enzymes

that inhibit effector cells either directly or indirectly through other

immune cell types such as intratumoral dendritic cells (DCs), Treg

cells, and type 2 helper T cells (48–50).
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In addition, over-activation of the CSF1/CSF1R signaling

pathway not only leads to increased expression of macrophage

surface inhibitory receptors, which further inhibits the function of

immune cells, such as macrophages and T-cells, but also induces

metabolic changes in macrophages, such as a decrease in oxidative

phosphorylation and an increase in glycolysis, which can lead to

their functional depletion (51–53).
4 Combination therapeutic strategies
targeting macrophage exhaustion

4.1 Therapies targeting
macrophage exhaustion

Therapeutic strategies targeting macrophage exhaustion focus

on improving the suppressive TME and enhancing anti-tumor

immune responses by inhibiting macrophage recruitment,

reprogramming TAMs, and directly depleting TAMs. These

strategies have shown promising potential in preclinical studies

and are expected to play an important role in future cancer therapy.

The CSF1/CSF1R signaling pathway plays a key role in the

recruitment and maintenance of TAMs. By inhibiting this signaling

pathway, the recruitment of macrophages to the TME can be effectively

reduced, decreasing their number and immunosuppressive function.

CSF1R inhibitors such as Pexidartinib (PLX3397) have shown

promising anti-tumor effects in preclinical and clinical studies (54).

TAMs in the TME usually behave as M2-type macrophages,

which have immunosuppressive and tumor growth-promoting

functions. Reprogramming TAMs to reverse-polarize them to M1-

type macrophages can enhance their anti-tumor functions. Methods

include the use of TLR agonists, IFN-g and CSF1R inhibitors, etc.

(55–59), which promote the production of pro-inflammatory

cytokines and anti-tumor factors by altering the polarization state

of macrophages to enhance the overall anti-tumor immune response.

Depletion of TAMs is another effective therapeutic strategy that

can significantly improve the anti-tumor immune environment by

directly targeting and removing these immunosuppressive cells.

Targeted drugs commonly used today, such as anti-CSF1R

antibodies, can induce apoptosis or functional inhibition of

TAMs by blocking the CSF1/CSF1R signaling pathway (60).

Cytotoxic drugs, such as Clodronate Liposomes, also deplete

TAMs by inducing apoptosis (61).
4.2 Interventions targeting the CSF1/CSF1R
signaling pathway

Interventions targeting the CSF1/CSF1R signaling pathway

reduce the number and function of macrophages, improve the

immunosuppressive state in the TME, and reverse immune

depletion through multiple mechanisms (Table 1) (Figure 1C). In

combination with other immunotherapies, it is expected to further

improve the therapeutic efficacy and provide a new treatment strategy

for pancreatic cancer patients (43, 62, 63).
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CSF1R inhibitors inhibit the activation of downstream signaling

pathways by blocking the binding of CSF1 to CSF1R, thereby

reducing macrophage survival, proliferation and recruitment to

the TME. Currently, several CSF1R inhibitors have shown

promising anti-tumor effects in clinical trials. For example,

Pexidartinib (PLX3397) significantly reduced the number of

TAMs and enhanced T-cell-mediated anti-tumor immune

responses in multiple tumor models (82).

Monoclonal antibody targeting CSF1R is also an effective

strategy.CSF1R antibodies kill CSF1R-expressing macrophages by

blocking CSF1/CSF1R signaling, inducing receptor internalization

and degradation, and by antibody-dependent cell-mediated cellular

cytotoxicity (ADCC) effects. For example, Emactuzumab, a

monoclonal antibody targeting the CSF1R, has demonstrated

potential therapeutic efficacy in a variety of solid tumors (76, 77, 83).

Bispecific antibodies are an emerging strategy for targeting both

CSF1Rs and other tumor-associated antigens to enhance anti-tumor

effects. Several studies are developing bispecific antibodies targeting
Frontiers in Immunology 05
CSF1R and PD-L1 to enhance therapeutic efficacy by simultaneously

inhibiting immunosuppressive signaling and activating immune effects.

Small molecule inhibitors are also effective tools for targeting

the CSF1R signaling pathway. These inhibitors block downstream

signaling by competing with the ATP-binding site of CSF1R and

inhibiting its kinase activity. For example, Sotuletinib(BLZ945), a

potent small molecule inhibitor of CSF1R, has shown the ability to

enhance immune responses in a variety of cancer models.

Combining inhibitors of the CSF1/CSF1R signaling pathway

with other immunotherapies may further enhance therapeutic

effects (84, 85). For example, in patients with advanced pancreatic

cancer, CSF1R inhibitors in combination with PD-1/PD-L1

inhibitors may simultaneously deregulate immune checkpoint

inhibition and reduce the number of immunosuppressive

macrophages, thereby enhancing the anti-tumor response of T

cells (86). In addition, CSF1R inhibitors may also be able to be

used in combination with chemotherapy, radiotherapy, or other

targeted therapies to enhance the tumor cell killing effect.
TABLE 1 CSF1/CSF1R inhibitors as monotherapy in current clinical development.

Class Compound Action mechanism Clinical stage indication Reference

Small
molecule
inhibitors

Pexidartinib(PLX3397)

By blocking the binding of CSF1
and CSF1R, the activation of
downstream signaling pathway
is inhibited

Phase III
Tenosynovial giant cell
tumour (TGCT),
various malignancies

(54, 64, 65)

Sotuletinib(BLZ945)
Competes with the ATP-binding site
of CSF1R, inhibiting its kinase
activity and downstream signaling

Phase I/II Advanced Solid Tumors (66, 67)

ARRY-382
The activity of CSF1R kinase was
blocked and downstream signaling
was inhibited

Phase I/II
Chronic lymphocytic
leukemia (CLL), advanced
or metastatic cancer

(68)

Edicotinib(JNJ-40346527)
Blocking CSF1R kinase activity
reduces macrophage survival
and recruitment

Phase II
Alzheimer's disease,
rheumatoid arthritis and
HL (Hodgkin lymphoma)

(69, 70)

Vimseltinib (DCC-3014)
The activity of CSF1R kinase was
blocked and downstream signaling
was inhibited

Phase III TGCT (71, 72)

Sulfatinib (Surufatinib, HMPL-012)
Inhibition of tumor cell growth and
angiogenesis through multi-
target mechanisms

Phase III/Phase II
NET, thyroid cancer, biliary
tract carcinoma and soft
tissue sarcoma, SCLC, etc

(73–75)

Monoclonal
antibodies

Emactuzumab

Blocking CSF1/CSF1R signaling,
inducing receptor internalization
and degradation, and killing
macrophages through ADCC action

Phase I

Advanced/metastatic solid
tumors, such as pancreatic
cancer, or non-small cell
lung cancer (NSCLC)

(76, 77)

AMG 820
CSF1/CSF1R signal transduction is
blocked to reduce the number
of TAMs

Phase II Advanced solid tumors (78)

Cabiralizumab (FPA008)
CSF1/CSF1R signaling was blocked,
and macrophage recruitment and
survival were inhibited

Phase II
RA (Rheumatoid
arthritis), LC

(79)

LY3022855
The activity of CSF1R kinase was
blocked and downstream signaling
was inhibited

Phase I
Advanced refractory breast
or prostate cancer

(80)

Axatilimab (SNDX-6352)

Blocking CSF1/CSF1R signaling can
affect the migration, proliferation,
differentiation and survival of
monocytes and macrophages

Phase I
Chronic graft-versus-host
disease (cGVHD) and
tumor diseases

(81)
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4.3 Combined ultrasound and macrophage
exhaustion in an integrated
treatment program

At the diagnostic and staging level, FNA and CNB are precise

methods used for the diagnosis and staging of pancreatic cancer.

These techniques accurately localize the tumor and the associated

microenvironment through real-time imaging, obtaining cell and

tissue samples from the tumor and its surrounding tissues (15, 16).

These samples can be further used to analyze the status of

macrophages in the TME, to understand their depletion and

immunosuppressive properties, and to provide a basis for

subsequent treatment.

On the other hand, at the therapeutic level targeting the TME, RFA

and PEI performed under ultrasound guidance can effectively ablate

tumor tissues while reducing immunosuppressive macrophages in the

TME (17, 18). RFA ablates the tumor cells by thermal effects, while PEI

by injecting ethanol causes cell dehydration and necrosis. Used in

combination with immunomodulators, such as CSF1R inhibitors and

anti-PD-1 antibodies, the macrophage exhaustion state can be further

suppressed and the anti-tumor immune response enhanced.

In addition, ultrasonography can dynamically assess tumor blood

flow and tissue properties, indirectly reflecting macrophage activity

(19). Specifically, ultrasonography combined with nanotechnology

for real-time in situ imaging of macrophages can directly and

dynamically monitor changes in the number of TAMs in the TME

(20). Through ultrasound monitoring, treatment plans can be

promptly adjusted to effectively alleviate macrophage exhaustion,

thereby enhancing overall treatment efficacy (Figure 1D).
5 Discussion

Although the therapeutic strategy of ultrasound combined with

macrophage exhaustion has demonstrated significant potential in

preclinical and clinical studies, some limitations remain, such as

individual variability of treatment and unclear long-term effects on

the TME in pancreatic cancer (87–89). Exploring different

immunomodulator combinations with ultrasound is crucial to

overcome patient variability. Optimizing dosage, managing side

effects, and creating standardized protocols are essential for long-

term treatment success (21).

Applying ultrasound combined with macrophage exhaustion in

clinical settings presents challenges, such as determining optimal

dosage, managing side effects, and establishing standardized
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protocols. Overcoming these challenges is crucial for clinical

translation and improving treatment efficacy for pancreatic cancer

patients. Evidence from other clinical applications, like ultrasound-

guided hormone injections, shows enhanced treatment outcomes

and supports the potential effectiveness of combining ultrasound

with immunomodulatory therapies.

Macrophage exhaustion plays a critical role in tumor progression

and immune suppression. Targeting and reversing macrophage

exhaustion with ultrasound therapy can improve the TME and

enhance anti-tumor immune responses (90). Future research

should focus on increasing the specificity and efficacy of this

strategy to address the complexity of pancreatic cancer. Overall,

optimizing these protocols will improve patient outcomes and

survival rates (91–93).
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