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Background: Efforts to eradicate tuberculosis (TB) are threatened by diabetes

mellitus (DM), which confers a 3-fold increase in the risk of TB disease. The

changes in the memory phenotypes and functional profiles of Mycobacterium

tuberculosis (Mtb)-specific T cells in latent TB infection (LTBI)-DM participants

remain poorly characterised. We, therefore, assessed the effect of DM on T-cell

phenotype and function in LTBI and DM clinical groups.

Methods: We compared the memory phenotypes and function profiles of Mtb-

specific CD4+ and CD8+ T cells among participants with LTBI-DM (n=21), LTBI-

only (n=17) and DM-only (n=16). Peripheral blood mononuclear cells (PBMCs)

were stimulated with early secretory antigenic 6 kDa (ESAT-6) and culture filtrate

protein 10 (CFP-10) peptide pools or phytohemagglutinin (PHA). The memory

phenotypes (CCR7/CD45RA), and functional profiles (HLA-DR, PD-1, CD107a,

IFN-g, IL-2, TNF, IL-13, IL-17A) of Mtb-specific CD4+ and CD8+ T cells were

characterised by flow cytometry.

Results: Naïve CD4+ T cells were significantly decreased in the LTBI-DM

compared to the LTBI-only participants [0.47 (0.34-0.69) vs 0.91 (0.59-1.05);

(p<0.001)]. Similarly, CD8+ HLA-DR expression was significantly decreased in

LTBI-DM compared to LTBI-only participants [0.26 (0.19-0.33) vs 0.52 (0.40-

0.64); (p<0.0001)], whereas CD4+ and CD8+ PD-1 expression was significantly

upregulated in the LTBI-DM compared to the LTBI-only participants [0.61 (0.53-

0.77) vs 0.19 (0.10-0.28); (p<0.0001) and 0.41 (0.37-0.56) vs 0.29 (0.17-0.42);

(p=0.007)] respectively. CD4+ and CD8+ IFN-g production was significantly

decreased in the LTBI-DM compared to the LTBI-only participants [0.28 (0.19-
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0.38) vs 0.39 (0.25-0.53); (p=0.030) and 0.36 (0.27-0.49) vs 0.55 (0.41-0.88);

(p=0.016)] respectively. CD4+ TNF and CD8+ IL-17A production were

significantly decreased in participants with LTBI-DM compared to those with

LTBI-only [0.38 (0.33-0.50) vs 0.62 (0.46-0.87); (p=0.004) and 0.29 (0.16-0.42)

vs 0.47 (0.29-0.52); (0.017)] respectively. LTBI-DM participants had significantly

lower dual-functional (IFN-g+IL-2+ and IL-2+TNF+) and mono-functional (IFN-g+

and TNF+) CD4+ responses than LTBI-only participants. LTBI-DM participants

had significantly decreased dual-functional (IFN-g+IL-2+, IFN-g+ TNF+ and

IL-2+TNF+) and mono-functional (IFN-g+, IL-2+ and TNF+) central and effector

memory CD4+ responses compared to LTBI-only participants.

Conclusion: Type 2 DM impairs the memory phenotypes and functional profiles

of Mtb-specific CD4+ and CD8+ T cells, potentially indicating underlying

immunopathology towards increased active TB disease risk.
KEYWORDS

latent tuberculosis infection, diabetes mellitus, T cells, memory phenotypes,
functional profiles
Introduction

Despite significant efforts made to control tuberculosis (TB), the

increasing burden of diabetes mellitus (DM) threatens the progress

registered in reducing the global burden of TB, especially in low and

middle-income countries (LMICs) (1). According to the 2021

International Diabetes Federation (IDF) estimates, approximately

537 million adults (aged between 20 and 79) live with DM. This

figure is projected to rise to 783 million by 2045, with the most

significant increase in Africa (2). Tuberculosis remains one of the

leading causes of death from a single infectious agent, Mtb,

worldwide (3). Globally, approximately 7.5 million people were

newly infected withMycobacterium tuberculosis (Mtb) or diagnosed

with TB in 2022, with nearly 1.3 million deaths occurring (3).

Epidemiologically, DM confers a 3-fold increase in the risk of

developing TB disease and is associated with TB treatment failure

and drug resistance (4). Indeed, it was recently reported that

participants aged ≥ 40 years had increased odds of TB-DM

comorbidity (5) and that Africans with DM have an increased

latent TB infection (LTBI) risk (6). The risk for the development of

active TB (ATB) is thought to be due to the immune-compromised

status, but the underlying susceptibility mechanisms remain

largely unknown.

The quality of the T-cell response is essential forMtb immunity.

CD4+ and CD8+ T cells are pivotal for immune control in Mtb-

infected humans and murine TB models (7, 8). T-cell memory

phenotypes are induced during LTBI and Bacillus Calmette-Guerin

(BCG) vaccination that play a protective role in humans and in

mice models (9–12). It is reported that LTBI is characterised by

differential expression of functional markers, including decreased
02
HLA-DR expression, a marker that distinguishes LTBI and ATB

(13, 14), upregulated PD-1 expression, a marker that inhibits T-cell

effector functions (15, 16), as well as downregulated Th1 (7) and

Th17 (17, 18) cytokine production. Examining cytokine T-cell

polyfunctionality is essential as these cells have been associated

with resistance to infection (19, 20). Elevated frequencies of mono-

functional and dual-functional CD4+ Th1 cells are reportedly a

hallmark of active TB and DM (TB-DM) comorbidity (21). This

shows that type 2 DM modulates T-cell immune responses to Mtb,

which could profoundly affect TB pathogenesis. However, the

underlying immunological mechanisms for TB susceptibility

during DM remain to be elucidated, specifically with phenotypes

and functional markers during LTBI.

In this study, we hypothesised that type 2 DM modulates the

Mtb-specific memory phenotype and functional profiles of T cells

among participants with LTBI, leading to impaired responses and

potentially promoting TB susceptibility, progression or reactivation.

We aimed to assess the Mtb-specific CD4+ and CD8+ T-cell

memory phenotypes and functional profiles. We compared the T-

cell memory, activation, degranulation, exhaustion and cytokine

polyfunctionality profiles among participants with LTBI-

DM comorbidity.
Materials and methods

Study population and setting

Participants with LTBI and DM (LTBI-DM) and DM-only

participants were enrolled from October 2018 to March 2019 at
frontiersin.org
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the DM clinic at Kiruddu National Referral Hospital. This was part

of the Tuberculosis and Diabetes (TAD) study (22), a longitudinal

study which explored isoniazid prophylaxis outcomes among DM

participants with LTBI and ATB. Participants with LTBI-only were

enrolled in a TB household contact cohort [Kampala TB (KTB)]

study fromMay 2011 to January 2012, Kampala, Uganda, at Kisenyi

and Kitebi Health Centre IVs, as previously described (23). To get a

proper negative control group, the study utilised LTBI-only PBMC

samples from the KTB study, which did not collect DM-related

parameters [weight, random blood sugar (RBS), blood pressure and

HbA1c]. While LTBI-DM and LTBI-only are the main comparator

groups, the DM-only group was included as a negative control to

compare and assess how DM alone (without LTBI) might impact

immune function.
Study methods

Peripheral blood mononuclear cell samples taken from 54

participants were assayed using flow cytometry (LTBI-DM

[n=21], LTBI-only [n=17] and DM-only [n=16]). Diabetes

Mellitus was diagnosed based on the American Diabetes

Association (ADA) criteria (glycated haemoglobin [HbA1c] levels

≥ 6.5%), with normal ranges between 4% and 5.6% (24). Latent TB

infection was diagnosed based on positive results for QuantiFERON

TB-Gold (QFT)-Plus and QFT In-Tube assays. All participants

were adults and HIV-negative.
Peripheral blood mononuclear
cell isolation

Ten millilitres of heparinised blood collected by venepuncture

was transported within 4 hours to the immunology laboratory at the

College of Health Sciences, Makerere University and the MRC/

UVRI and LSHTM Uganda Research Unit, Kampala, Uganda, for

processing. Peripheral blood mononuclear cells (PBMCs) were

isolated using Ficoll-Histopaque density gradient centrifugation.

The Cells were counted and resuspended in cold foetal bovine

serum (FBS) supplemented with 10% dimethyl sulfoxide (DMSO).

Cells were then adjusted to a final concentration of 3x106 cells/ml.

Cells were transferred to a cold Mr Frosty™ freezing container

overnight at -80°C and then moved to liquid nitrogen (-197°C) for

long-term storage.
Cell stimulation and culture

Upon retrieval from liquid nitrogen, frozen cell vials (6x106

cells) were thawed at a 37°C water bath in R20 (RPMI with 20%

FBS, 1% Penicillin/streptomycin, 2mM Glutamine, 25mM HEPES).

The PBMCs were rinsed and rested in R10 (RPMI with 10% FBS,

1% Penicillin/streptomycin, 2mM Glutamine, 25mM HEPES)

media in a humidified incubator at 5%CO2, 37°C for 4 hours.

The cells (200µl/2x106, resuspended in R20) were stimulated in a

humidified incubator at 37°C, 5%CO2 for 18 hours (overnight) with
Frontiers in Immunology 03
Mtb-specific peptide pools of early secreted antigenic target-6 kDa

[ESAT-6 (21-peptide array; 10µg/ml)], and culture filtrate protein-

10 kDa [CFP-10 (22-peptide array; 10µg/ml)], all from BEI

Resources (Manassas, VA). The peptides consist of 15- or 16-

mers peptides (overlapping by 11 or 12 amino acids) spanning

the entire amino acid sequences for the ESAT-6 and CFP-10.

Phytohemagglutinin-lectin (PHA-L [10µg/ml, Millipore, Sigma])

was used as a positive control, and unstimulated cells (R20 media)

as a negative control. Stimulations were performed for 2 hours, after

which Brefeldin A (5µg/ml, BioLegend) was added to all tubes. Cells

were further incubated and stimulated for 16 hours. All experiments

were performed in the presence of co-stimulatory antibodies, anti-

CD28 and anti-CD49d (1µg/ml each, BD Biosciences) and CD107a

brilliant violet (BV) 605 (H4A3, BioLegend) antibody for the

18 hours.
Cell staining

After stimulations, cells were washed with Dulbecco’s

phosphate buffered saline (PBS [1X, Sigma-Aldrich]), followed by

staining with a fixable viability dye, zombie aqua (BioLegend) at

room temperature for 20 minutes in the dark. Cells were then

washed with cell staining buffer (BioLegend), blocked for Fcg
receptors using BD Fc block (2.5µg/ml, BD Biosciences) at room

temperature for 10 minutes in the dark. Cells were surface stained at

4°C for 30 minutes in the dark with the following antibodies: CD3

FITC (UCHT1; BioLegend), CD4 PerCP-Cyanine5.5 (A161A1;

BioLegend), CD8 BV650 (SK1; BioLegend), CCR7 PE-CF594 (2-

L1-A; BD Biosciences), PD-1 BV785 (EH12.2H7; BioLegend),

HLA-DR PE-Fire 640 (L243; BioLegend), and CD45RA APC-Cy7

(HI100; BioLegend). For intracellular cytokine staining, cells were

washed, fixed using fixation buffer (4% paraformaldehyde,

BioLegend), and permeabilised using working strength

intracellular staining permeabilisation wash buffer (1X,

BioLegend) according to manufacturer’s recommendations. Fixed

cells were intracellularly stained at room temperature for 20

minutes in the dark with the following antibodies: IFN-g PE/Cy7

(4S.B3; BioLegend), TNF APC (MAb11; BioLegend), IL-2 PE

(MQ1-17H12; BioLegend), BCL-2 BV421 (100; BioLegend), IL-

17A APC-R700 (N49-653; BD Biosciences) and IL-13 Alexa Fluor

(AF) 350 (32116; R&D Systems). The cells were immediately

acquired on the CytoFLEX LX flow cytometer (Beckman

Coulter). The flow cytometry antibody panel, including clone and

catalogue number, is shown in Supplementary Table S1.
Data and statistical analysis

The flow cytometry data from this study was normalised to

minimise batch effects across the two study PBMC T-cell responses

using the ComBat algorithm from the “sva” package. The data was

then analysed using FlowJo v.10.10.0 (BD Biosciences, San Jose, CA,

USA) for Mac. Gating was standardised and set using Fluorescence

Minus One (FMO) and compensation controls to correct for

spectral overlap. Boolean combination gating was used to
frontiersin.org
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calculate frequencies corresponding to seven different combinations

of cytokines, including IL-2, TNF and IFN-g. The gating strategy is
shown in Supplementary Figure S1. The data was Arcsine

transformed, and a linear regression model was fitted with age as

a covariate in all groups using R(v.4.4.0). The linear regression

results are reported in Supplementary Table S2. Statistical tests were

performed using GraphPad Prism (v.10.1.1; GraphPad Software, La

Jolla, CA, USA). To compare the memory phenotypes and

functional profiles of Mtb-specific CD4+ and CD8+ T cells

between participant groups, we used the Kruskal–Wallis with

Dunn’s tests for multiple comparisons for more than two

participant groups. Mann-Whitney U test was used for two-group

comparisons. The data was reported after background

(unstimulated) subtraction. Unless otherwise stated, all data were

reported for ESAT-6 and CFP-10 peptide stimulations. A p-value

<0.05 was considered statistically significant.
Results

Baseline characteristics of the
study participants

The baseline demographic and clinical characteristics of the

study participants are summarised in Table 1. Age (p<0.0001) and

systolic blood pressure (p=0.037) were statistically different between

the study participants. Particularly, LTBI-only [24 (24–32)]

participants had a lower median age compared to LTBI-DM [50

(47-56)] and DM [48 (39-54)] participants.

Type 2 DM alters the memory phenotype of Mtb-
specific CD4+ and CD8+ T cells

We performed a memory phenotypic analysis of CD4+ and CD8+

T-cell subsets in participant PBMC samples with LTBI-DM, LTBI-only
Frontiers in Immunology 04
and DM-only. Flow cytometry was used to identify four categories of

T-cell memory phenotypes based on the expression of CD45RA and

CCR7 as a percentage of total CD4+ and CD8+ T cells. The T-cell

memory phenotypes were defined as naïve (CD45RA+CCR7+), central

memory (CM; CD45RA−CCR7+), effector memory (EM;

CD45RA−CCR7−), and terminally differentiated effector memory

(TEMRA; CD45RA+CCR7−) (Figures 1A, B). Naïve CD4+ T cells

were significantly decreased in the LTBI-DM compared to the LTBI-

only participants (p<0.001), with naïve CD8+ T cells being slightly

decreased in the same participants (p=0.112) (Figures 1C, E, D, F).

Additionally, central memory CD4+ and CD8+ T-cell frequencies were

significantly increased in the LTBI-DM compared to the LTBI-only

participants [(p=0.002) and (p=0.044)] respectively (Figures 1C, E, D,

F). Compared to LTBI-only, participants with LTBI-DM had

significantly increased effector memory CD4+ T cells (p=0.012)

(Figures 1C, E). No differences were observed for TEMRA CD4+ and

CD8+ T cells.

Type 2 DM impairs Mtb-specific CD4+ and CD8+

T activation, exhaustion and degranulation
HLA-DR, an activation marker, is expressed on several cellular

populations, including CD4+ and CD8+ T cells (Figures 2A, B).

Mtb-specific HLA-DR expression on CD8+ T cells was significantly

decreased in LTBI-DM (Figure 2B) compared to LTBI-only

participants (p<0.0001). Interestingly, Mtb-specific CD4+ and

CD8+ T-cell PD-1 expression was significantly upregulated in the

LTBI-DM compared to the LTBI-only participants [(p<0.0001) and

(p=0.007)] respectively (Figures 2C, D). PBMCs were stained with

CD107a (during incubation) to determine CD107a production.

Compared to LTBI-only, participants with LTBI-DM had

significantly impaired CD107a production by CD4+ T cells

(p<0.0001) (Figure 2E). Though non-significant, LTBI-DM

participants had slightly impaired CD107a production by CD8+ T

cells compared to the LTBI-only participants (p=0.161) (Figure 2F).
TABLE 1 Baseline characteristics of study participants.

Overall
(n=54)

LTBI-DM
(n=21)

LTBI (n=17) DM (n=16) p-value

Age, years (median [IQR]) 43 (30-52) 50 (47-56) 24 (24-32) 48 (39-54) <0.0001

Sex, n 0.287

Female (%) 35 (64.8) 11 (52.4) 13 (76.5) 11 (68.8)

Male (%) 19 (35.2) 10 (47.6) 4 (23.5) 5 (31.2)

Weight, Kg (median [IQR])* 71.8
(61.3- 87.3)

68.0
(58.2- 82.2)

75.2
(63.0- 91.2)

0.464

RBS, mmol/L (median [IQR])* 7.3 (3.5-13.1) 6.6 (0.0-9.0) 9.4 (5.5-14.2) 0.147

Systolic blood pressure, mm Hg (median [IQR])* 134 (125- 151) 147 (127-171) 129
(120- 138)

0.037

Diastolic blood pressure, mm Hg (median [IQR])* 83 (75-95) 90 (76-103) 81 (72- 85) 0.156

HbA1c, % (median [IQR])* 7.0 (6.0-9.1) 7.3 (6.2-9.1) 6.6 (5.5-9.3) 0.308
*Missing in the LTBI-only group.
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Type 2 DM impairs the production of Mtb-
specific Th-1, Th-2 and Th-17 cytokines by CD4+

and CD8+ T cells
To determine CD4+ and CD8+ T-cell functionality in terms of

cytokine expression, PBMCs were stained with TNF, IFN-g, IL-2,
IL-13 and IL-17A (intracellularly) (Figure 3). Of the Th-1 cytokines,

CD4+ and CD8+ T-cell Mtb-specific IFN-g production was

significantly decreased in the LTBI-DM compared to the LTBI-

only participants [(p=0.030) and (p=0.016)] respectively

(Figures 3A, B). Additionally, CD4+ T-cell Mtb-specific TNF

production was significantly decreased in participants with LTBI-

DM compared to those with LTBI-only (p=0.004) (Figure 3E).

Finally, CD8+ T-cell Mtb-specific IL-13 and IL-17A production

were increased and decreased in the LTBI-DM compared to the

LTBI-only participants, respectively [(p=0.033) and (0.017)]

(Figures 3H, J).

Type 2 DM impairs dual and mono-functional
Mtb-specific CD4+ and CD8+ T-cell responses

To further analyse the quality ofMtb-specific CD4+ and CD8+ T-

cell responses, we defined the polyfunctional potential ofMtb-specific

CD4+ and CD8+ T-cell responses based on their capacity to co-

express IFN-g, IL-2 or TNF by applying the Boolean gating strategy to
all samples using FlowJo and subtracting the non-specific

polyfunctional responses (Figure 4). LTBI-DM participants had
Frontiers in Immunology 05
significantly lower frequencies of dual-functional IFN-g+IL-2+

(p=0.018) and IL-2+TNF+ (p=0.006) CD4+ T cells compared to

LTBI-only participants (Figure 4A). Additionally, mono-functional

IFN-g+ (p<0.0001) and TNF+ (p<0.001) CD4+ T-cell responses were

significantly decreased in participants with LTBI-DM compared to

those with LTBI-only (Figure 4A). Regarding CD8+ T-cell

polyfunctionality, only mono-functional IFN-g+ responses

decreased significantly in participants with LTBI-DM compared to

those with LTBI-only (p=0.033) (Figure 4B).

Type 2 DM impairs triple, dual, mono-functional
Mtb-specific central and effector memory CD4+

T cell responses
Following on from our previous result, Boolean gating strategy

was further applied to all samples’ CD4+ T-cell central and effector

memory responses to determine their polyfunctional capacity to

produce Mtb-specific IFN-g, IL-2 or TNF after non-specific

polyfunctional cytokine production subtraction (Figure 5). With

regards to central memory CD4+ T-cell responses, LTBI-DM

participants had decreased dual-functional IFN-g+IL-2+ (p=0.002)

and IL-2+TNF+ (p<0.001) frequencies compared to LTBI-only

participants (Figure 5A). Additionally, mono-functional IFN-g+

(p=0.001), IL-2+ (p=0.011) and TNF+ (p<0.0001) central memory

CD4+ T-cell responses were significantly decreased in participants

with LTBI-DM compared to those with LTBI-only (Figure 5A).
FIGURE 1

Type 2 DM alters the memory phenotype of Mtb-specific CD4+ and CD8+ T cells. (A, B) Representative flow cytometry plots are shown for CD4+

and CD8+ CCR7/CD45RA-defined T-cell memory subsets, respectively. PBMCs were stimulated and cultured for 18 hours with ESAT-6 and CFP-10
peptide pools plus brefeldin A and stained for surface markers. (C, D) Percentage expression of memory phenotypes in CD4+ and CD8+T cells,
respectively. (E, F) Heat maps for the percentage distribution of all memory phenotypes in the three CD4+ and CD8+ T cell participant groups. Size
of participant groups: LTBI-DM (n = 21), LTBI (n = 17), DM (n = 16). Data represent medians and interquartile ranges. The non-parametric Kruskal-
Wallis and Mann-Whitney U tests were used to determine the statistical significance between the medians. p<0.05 (*), p< 0.01 (**), p<0.001 (***).
Non-significant p-values were not shown.
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Regarding effector memory CD4+ T-cell responses, LTBI-DM

participants had decreased triple functional IFN-g+IL-2+TNF+

(p=0.033), dual-functional IFN-g+ TNF+ (p=0.004) and IL-

2+TNF+ (p<0.001) frequencies compared to LTBI-only

participants (Figure 5B). Additionally, mono-functional IFN-g+

(p<0.0001) and TNF+ (p<0.0001) effector memory CD4+ T-cell

responses were significantly decreased in participants with LTBI-

DM compared to those with LTBI-only (Figure 5B).
Discussion

Immunological dysregulation is one mechanism that accounts

for TB susceptibility and severity in DM, but it is not well elucidated

and remains poorly characterised. We performed an extended

analysis of the memory phenotypes and functional responses of

Mtb-specific CD4+ and CD8+ T cells to identify immunological

differences between LTBI-DM, LTBI-only and DM-only
Frontiers in Immunology 06
participants. Our study identified three key points: 1) Type 2 DM

alters the memory phenotype of CD4+ and CD8+ T cells; 2) Type 2

DM impairs T-cell activation and degranulation but promotes T-

cell exhaustion; 3) Type 2 DM impairs the CD4+ and CD8+ T-cell

Th1, Th2 and Th17 cytokine responses, as well as the polyfunctional

(triple, dual, mono) capacity of the CD4+ T-cell, and central and

effector memory CD4+ T-cell subsets. We showed that type 2 DM is

associated with profound impairment of Mtb-specific T-cell

responses, which could increase TB susceptibility.

This study reveals that naïve CD4+ T cells were decreased,

whereas the CD4+ and CD8+ T-cell central and effector memory

phenotypes were increased in the LTBI-DM compared to the LTBI-

only participants. The reduction in naïve CD4+ T cells is similar to a

study by Kumar and colleagues, who reported decreased naïve CD4

T cells in active TB with DM participants (25). The decrease

indicates a potential compromise towards delayed or insufficient

immune responses against Mtb reactivation, allowing Mtb to

potentially proliferate and increase susceptibility to active TB
FIGURE 2

Type 2 DM impairs the HLA-DR, PD-1, and CD107A expression of Mtb-specific CD4+ and CD8+ T cells. The PBCMs were surface stained with HLA-
DR and PD-1 antibodies after 18 hours of incubation with ESAT-6 and CFP-10 peptide pools and brefeldin A. (E, F) For degranulation analysis of
CD4+ and CD8+ T cells, CD107a was added during stimulation. (A-D) Representative plots for HLA-DR and PD-1. Size of participant groups: LTBI-
DM (n = 21), LTBI (n = 17), DM (n = 16). Data represent medians and interquartile ranges. The non-parametric Kruskal-Wallis and Mann-Whitney U
tests were used to determine the statistical significance between the medians. p< 0.05 (*), p< 0.01 (**), p<0.001 (***) and p< 0.0001 (****). Non-
significant p-values were not shown.
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disease (26). The significant increase of central and effector memory

T-cell frequencies in LTBI-DM participants implies a shift towards

an activated memory T-cell phenotype. Memory T cells are crucial

for long-term immune surveillance (27, 28) and rapid response

upon re-exposure toMtb (29). This increase may reflect an immune

response to chronicMtb stimulation or a compensatory mechanism

in response to impaired naïve T-cell function. This could have

implications for both TB protection and disease progression, as an

increased T-cell memory phenotype could potentially contribute to

Mtb-related chronic inflammation, resulting in T-cell memory cells

with impaired immune function, including exhaustion, activation,

homing and cytokine production (30). Type 2 DM orchestrated T-

cell memory alteration may potentially decrease the overall

robustness of the T-cell memory response, potentially increasing

susceptibility to active TB disease.

The functional profiles and fitness of the T cells are significant

factors to consider when assessing Mtb-specific responses in the

face of DM. Our study reports significant upregulation of PD-1 on

T cells in the LTBI-DM participants, a consensus to several studies

that reported upregulation of PD-1 expression on T cells during

Mtb infection and active TB disease (15, 16). PD-1 impairs T-cell

proliferation during active TB disease (16) and Th1 immune

function during Mycobacterium bovis BCG vaccination (31). Type

2 DM promoting increased PD-1 expression could have severe

implications for other T-cell functional responses, including

activation, degranulation and cytokine production. Interestingly,

we report that type 2 DM impairs T-cell activation and
Frontiers in Immunology 07
degranulation. CD8+ T-cell HLA-DR expression was decreased in

the LTBI-DM participants compared to the LTBI-only group, an

association with a lower activation state, and consistent with

another human study that reported impaired HLA-DR expression

on H37Rv-infected monocyte-derived macrophages of DM patients

(32). HLA-DR is an activating receptor that binds and presents

antigens to T cells, thereby activating immune responses, including

cytokine and cytotoxicity functions to clear Mtb-infected cells (33).

Its expression has also been characterized with effector T cells (34).

The decrease in the CD8+ T-cell activation state in the face of DM

could impair their cytotoxic functions (33), leading to increased risk

for LTBI acquisition and ATB progression. However, our study

reports that fewer CD8+ (but not CD4+) T cells were activated. This

needs a cautious interpretation, as TB immune impairment is often

related to CD4+ T-cell HLA-DR dysfunction (35). Interestingly,

HLA-DR expression has previously been described as a biomarker

that distinguishes LTBI from ATB (36). Whether HLA-DR

expression could be used as a biomarker for identifying and

distinguishing TB phenotypes in coincident DM remains to be

assessed. In addition, our study reports that type 2 DM is associated

with compromised CD4+ and CD8+ T-cell CD107a, a marker for

degranulation and cytotoxicity function (37). Similar results have

been reported for which type 2 DM compromises the cytotoxic

effects of CD8+ T and NK cells during active TB (38). CD4+ and

CD8+ T cells have been reported to kill Mtb-infected monocytes

directly by perforin and Fas/Fas Ligand independent pathways (39).

It is important to note differences in the expression profiles of PD-1
FIGURE 3

Type 2 DM impairs the production of Mtb-specific Th-1, Th-2 and Th-17 cytokines by CD4+ and CD8+ T cells. The PBMCs were cultured and
stimulated for 18 hours with ESAT-6 and CFP-10 peptide pools, brefeldin A, and intracellularly stained for cytokines. (A-J) Representative plots for
CD4+ and CD8+ T-cell producing TNF, IFN-g, IL-2, IL-13, IL-17A cytokines. Size of participant groups: LTBI-DM (n = 21), LTBI (n = 17), DM (n = 16).
Data represent medians and interquartile ranges. The non-parametric Kruskal-Wallis and Mann-Whitney U tests were used to determine the
statistical significance between the medians. p< 0.05 (*), p< 0.01 (**). Non-significant p-values were not shown.
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and HLA-DR in LTBI-DM and DM groups. These differences may

reflect distinct mechanisms of immune activation in the DM group

that are not directly related to Mtb-specific immune responses in

the LTBI-DM group. PD-1 and HLA-DR can be influenced by

various factors, including metabolic dysregulation caused by DM

(40, 41). Taken together, impairment of HLA-DR expression and

CD107a production by DM could promote heightened Mtb

replication and increased TB risk.

Next, we assessed the effect of DM on CD4+ and CD8+ T-cell

cytokine production, and we observed marked differences in

cytokine expression profiles for IFN-g, IL-2, TNF, IL-13 and IL-

17A. CD4+ T-cell IFN-g and TNF, as well as CD8+ T-cell IFN-g and
IL-17A production, were decreased, whereas CD8+ T-cell IL-13

production was increased in the LTBI-DM participants compared

to LTBI-only participants. CD4+ and CD8+ T-cell IFN-g production
mediates TB protection by controlling the Mtb burden and

promoting host survival in mice (7) and humans (8). In addition,

T-cell-derived TNF plays a crucial role in the early control of TB

infection and promotes the formation of mature granulomas and
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the activation of infected macrophages in mice (42). Similarly, T-

cell IL-17A, a Th17 family cytokine, recruits immune cells to Mtb-

infected sites by upregulating chemokine expression, thereby

contributing to granuloma formation and stability (43, 44). On

the contrary, increased production of IL-13 is associated with lung

damage and the formation of necrotic lesions in mice, which

promotes and is consistent with human TB pathology (45, 46).

Impairment of the CD4+ and CD8+ T-cell cytokine responses by

DM in the face of TB infection could promoteMtb replication, thus

promoting TB pathology.

Lastly, we assessed the effect of DM on combinations of

polyfunctional Th1 cytokine co-expression profiles of CD4+ and

CD8+ T cells, as well as CD4+ T-cell memory phenotypes. Several

studies that have profiled the role of polyfunctional CD4+ T cells in

producing multiple Th1 cytokines (IFN-g, IL-2, TNF) during TB

infection have associated polyfunctional CD4+ T cells with

protection against TB (47–51). It is conceivable that

polyfunctional T cells are more effective at controlling infection

than those producing single cytokines. Whether these can be used
FIGURE 4

Type 2 DM impairs dual and mono-functional Mtb-specific CD4+ and CD8+ T-cell responses. (A) Polyfunctional Mtb-specific CD4+ T-cell responses.
(B) Polyfunctional Mtb-specific CD8+ T-cell responses. The X-axis represents the frequencies of Mtb-specific CD4+ T cells producing all possible
IFN-g, IL-2 and TNF combinations. Data represent medians and interquartile ranges. The non-parametric Kruskal-Wallis and Mann-Whitney U tests
were used to determine the statistical significance between the medians. p< 0.05 (*), p< 0.01 (**), p<0.001 (***) and p< 0.0001 (****).
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as targets for TB vaccination in the face of DM remains to be

assessed in more extensive studies. Our study is among the first to

evaluate the impact of type 2 DM on CD4+ and CD8+ T-cell

polyfunctionality, as well as the CD4+ T-cell central and effector

memory polyfunctionality. Interestingly, BCG vaccination in mice

and humans has been reported to induce polyfunctional CD4

central and effector memory T cells that confer protective

memory immunity against TB in a mice model (11, 12). Our data

reveals that DM significantly impairs the dual (IFN-g+IL-2+ and IL-

2+TNF+) and mono (IFN-g+ and TNF+)-functional capacity ofMtb-

specific CD4+ T cells in the LTBI-DM compared to the LTBI-only

participants. Additionally, DM significantly impaired the triple

(EM: IFN-g+IL-2+TNF+), dual (CM: IFN-g+IL-2+ and IL-2+TNF+;

EM: IFN-g+ TNF+ and IL-2+TNF+), and mono (CM: IFN-g+, IL-2+

and TNF+; EM: IFN-g+ and TNF+)-functional capacity of the Mtb-

specific CD4+ T-cell central and effector memory responses,

contributing to first evidence of DM immune impairment on

polyfunctional CD4+ T-cell memory responses. The results are
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consistent with a study by Kumar et al. and colleagues (52) that

reported diminished frequencies of dual- and mono-functional

CD4+ T cells in LTBI-DM participants. Moreover, Kamboj et al.

(53) reported improved Mtb clearance after restoring dual

functional IFN-g+TNF+ CD4+ T cells, further highlighting the

importance of polyfunctional T cells as correlates of TB

protection. This study demonstrates DM immune-modulatory

effects and impairment of both Mtb-specific CD4+ T cells and

their central and effector memory polyfunctional responses during

TB progression. This may promote increased TB disease risk and

increase active TB progression.

This study faces limitations, including a limited sample size. It is

also important to note that the data generated after in vitro culture

may not represent what occurs in vivo. In addition, HbA1c and

other DM-related parameters were not collected for participants in

the LTBI-only group as these were from another control group

comprised of household contacts of TB index patients (KTB study).

As a result, our analysis could not adjust for HbA1c levels across all
FIGURE 5

Type 2 DM impairs triple, dual, mono-functional Mtb-specific central and effector memory CD4+ T-cell responses. (A) Polyfunctional Mtb-specific
central memory CD4+ T-cell responses. (B) Polyfunctional Mtb-specific effector memory CD4+ T-cell responses. The X-axis represents the
frequencies of Mtb-specific central and effector memory CD4+ T cells producing all possible combinations of IFN-g, IL-2 and TNF. Data represent
medians and interquartile ranges. Kruskal-Wallis and Mann-Whitney U tests were used to determine the statistical significance between the medians.
p< 0.05 (*), p< 0.01 (**), p<0.001 (***) and p< 0.0001 (****). CM, Central memory; EM, Effector memory.
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groups. Hence, there remains a possibility of residual confounding

related to diabetes severity, which could influence some of the

observed immune differences between groups. Lastly, this focused

exclusively on T-cell responses to peptides derived from ESAT6 and

CFP10 peptides, representing only a subset of the numerous

antigens expressed by Mtb. Consequently, the findings related to

T-cell responses in this study may not be fully generalizable to the

overall T-cell response to Mtb.

In summary, this study advances the understanding of immune

impairment in the LTBI-DM comorbidity. Type 2 DM impairs the

memory phenotype and polyfunctional profiles of Mtb-specific

CD4+ and CD8+ T cells, which could influence the LTBI-DM

immunopathology towards increased TB disease risk.
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