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Nanchong, Sichuan, China, 2Department of Rheumatology and Immunology, Affiliated Hospital of
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Hospital of North Sichuan Medical College, Nanchong, China
Background: Inflammation of the spine and sacroiliac joints is a hallmark of the

chronic, progressive inflammatory illness known as ankylosing spondylitis (AS).

The insidious onset and non-specific early symptoms of AS often lead to delays in

diagnosis and treatment, which may result in the onset of disability. It is therefore

imperative to identify new biomarkers.

Methods: In this study, datasets GSE73754 and GSE25101 were derived from the

Gene Expression Omnibus (GEO). Key genes were identified through differential

expression analysis and weighted gene co-expression network analysis

(WGCNA). A model was then established using LASSO regression, and then it

was subjected to the receiver operating characteristic (ROC) curve analysis for

evaluation of the diagnostic accuracy of the genes. Subsequently, immune

infiltration analysis was conducted to demonstrate the immune infiltration

status of the samples and the correlation between key genes and immune

infiltration. Finally, the expression levels of key genes in peripheral blood

mononuclear cells (PBMCs) and their correlation with clinical indicators were

validated via RT-qPCR assay.

Results: Through WGCNA and differential expression analysis, 6 genes were

identified. Ultimately, five key genes (ACSL1, SLC40A1, GZMM, TRIB1, XBP1) were

determined using LASSO regression. The area under the ROC curve (AUC) for

these genes was greater than 0.7, indicating favorable diagnostic performance.

Immune infiltration analysis showed that AS was associated with infiltration levels

of various immune cells. RT-qPCR validated that the expression of ACSL1,

SLC40A1, GZMM, and XBP1 was consistent with the predictive model, whereas

TRIB1 expression was contrary to the predictive model. Clinical correlation

analysis of key genes revealed that ACSL1 was positively linked to hsCRP levels,

GZMM was negatively linked to, hsCRP levels, and neutrophil absolute values,

SLC40A1 was positively linked to ESR, hsCRP levels and neutrophil absolute

values, and XBP1 was negatively linked to ESR, hsCRP levels, and neutrophil

absolute values.

Conclusion: This study identified key genes that may reveal a potential

association between AS and ferroptosis, demonstrating high diagnostic value.

Furthermore, the expression levels of these genes in peripheral blood
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Abbreviations: ESR, Erythrocyte Sedimentation Rate; h

C-Reactive Protein; ANC, Absolute Neutrophil Count.
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mononuclear cells (PBMCs) are strongly correlated with disease activity. These

findings not only suggest potential biomarkers for the diagnosis of AS but also

offer important references for exploring new therapeutic targets, highlighting

their substantial clinical applicability.
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1 Introduction

Ankylosing spondylitis (AS) is a chronic, progressive

inflammatory disease involving the spine and sacroiliac joints (1,

2). The prevalence of AS varies significantly across different regions,

ranging from 0.74% in Africa to 3.19% in North America (3). In

addition to inflaming the sacroiliac joints and spine, AS can cause

extra-articular symptoms such as anterior psoriasis, uveitis, or

inflammatory bowel disease (4). In severe stages of the disease,

persistent inflammation can cause fibrosis and calcification of spinal

joints, restricting joint mobility and potentially leading to joint

fusion, which may ultimately result in disability (5). Due to the

insidious onset and subtle early symptoms of AS, its diagnosis is

often delayed. For instance, in the United States, the average time

from symptom onset to referral is approximately one year, whereas

in Western Europe and other regions, this time can exceed three

years, frequently leading to missed treatment opportunities and

delayed therapy (6).

Although the exact cause of AS is sti l l unknown,

environmental and genetic factors such as autophagy,

inflammatory cytokines, certain bacterial infections, and

macrophage activation are thought to have a role in its

pathogenesis (7). Due to a strong familial predisposition of AS,

early research highlighted the significance of genetic factors in its

pathogenesis. However, as our understanding of the disease has

deepened, it has become evident that the currently used

biomarkers, such as HLA-B27 status, C-reactive protein (CRP),

and erythrocyte sedimentation rate (ESR), provide only moderate

diagnostic and prognostic utility. There is a pressing need for

improved biomarkers in AS to facilitate early diagnosis, improve

prediction of therapeutic responses, and facilitate the assessment

of long-term outcomes in AS. Recent advancements in

transcriptomics technologies and statistical methodologies offer

promising opportunities to identify and develop more informative

biomarkers for such clinical applications (8, 9).

RNA sequencing (RNA-seq) has become a novel high-

throughput sequencing technique in recent decades. It is capable

of recognizing abnormally spliced genes, detecting allele-specific
sCRP, High-Sensitivity
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expression, and identifying differentially expressed genes (DEGs)

(10). Bioinformatics analysis has been utilized to elucidate

abnormal biological processes underlying disease pathogenesis

and can leverage sequencing data to assess an organism’s genome,

transcriptome, and proteome information (11). To date, several

studies have identified DEGs implicated in the pathogenesis of AS

using microarray and RNA-seq techniques. Peripheral blood is

widely recognized as a promising resource for identifying

transcriptomic biomarkers (12). Notably, peripheral blood

biomarkers have achieved significant success in predicting tumor

onset and progression, such as in lung and breast cancers, as well as

in the detection and drug development of Alzheimer’s disease

(13–15). Nevertheless, the DEG levels in the peripheral blood of

AS patients have yet to be fully elucidated, and the aforementioned

molecular mechanisms remain to be further validated.

In this study, gene microarray expression data from GSE73754

and GSE25101 were obtained from the GEO database. Using

bioinformatics analysis, DEGs in the serum of patients with AS

and normal controls were identified. Gene Ontology (GO), Kyoto

Encyclopedia of Genes and Genomes (KEGG), and Gene Set

Enrichment Analysis (GSEA) were performed to explore their

functions and pathways. Then, key genes were identified, and

further receiver operating characteristic (ROC) analysis of these

key genes was conducted. This study identified a strong association

between the key genes and ferroptosis, a newly recognized form of

programmed cell death with a critical role in various inflammatory

diseases. In patients with ankylosing spondylitis (AS), abnormalities

in iron metabolism and oxidative stress are hallmark pathological

features, suggesting that ferroptosis may significantly contribute to

the development and progression of AS (16). Furthermore, through

immune infiltration analysis, this study explored the disease

microenvironment of AS, uncovering the potential involvement

of immune cells in its pathogenesis. As AS is a chronic

inflammatory disease characterized by immune abnormalities, the

findings on immune infiltration offer deeper insights into its

immunopathological mechanisms (2). Finally, the expression

levels of key genes and their correlation with various clinical

indicators were validated by real-time quantitative PCR. In

addition to offering fresh information on the pathological

mechanisms of AS, the study suggested new potential biomarkers

and targets for AS diagnosis and treatment.
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2 Materials and methods

2.1 Data collection

Gene expression data GSE73754 and GSE25101 were derived

from the GEO database (17, 18). Based on the GPL10558 platform,

the GSE73754 dataset included 72 samples, of which 52 were

peripheral blood samples from patients with AS while 20 were

from healthy controls. Based on the GPL6947 platform, the

GSE25101 dataset included 32 samples, comprising peripheral

blood samples from 16 patients with AS and 16 healthy controls.
2.2 Differential expression analysis and
enrichment analysis

In the GSE25101 and GSE73754 datasets, DEGs were screened.

DEGs were identified using the Limma R package, with a

significance threshold defined when the P-value was less than

0.05 and the FoldChange was greater than 1.2 (19). The R

packages “ggplot2” and “pheatmap” were utilized to visually

present the DEGs via volcano plots and heatmaps (19). GO and

KEGG functional enrichment analyses were executed via the

“clusterProfiler” and “enrichplot” R packages. Additionally, GSEA

was conducted based on GSE73754 using the “clusterProfiler” and

“ReactomePA” R packages to identify relevant enriched signaling

pathways (20, 21).
2.3 Weighted gene co-expression network
construction and module analysis

Each gene’s median absolute deviation (MAD) was determined,

and the top 50% of genes were chosen based on their MAD values.

To examine the connection between co-expressed genes and

phenotypes, a gene co-expression network was built (22). Gene

comparison was done via average linkage methods and Pearson

correlation matrices. By utilizing the weighted adjacency matrix and

the soft-thresholding parameter b, a scale-free co-expression

network was established. The adjacency matrix was raised to the

power of 14 to convert into a topological overlap matrix (TOM),

which was used to gauge the network connectivity of genes. With

the average linkage hierarchical clustering and TOM-based

dissimilarity measures, the correlation among modules was

identified, with the minimum gene module size set to 10.
2.4 Core gene selection and logistic
regression model construction

The intersection of co-expressed DEGs from GSE73754 and

GSE25101 datasets with WGCNA module genes identified 6 genes.

LASSO regression was then adopted to simplify the model,

identifying 5 key genes, which were utilized to establish a
Frontiers in Immunology 03
diagnostic model for AS (23). The diagnostic performance of key

genes and the logistic regression model were evaluated using the R

package “ROCR”. Subsequently, a nomogram for predicting AS risk

based on characteristic genes was constructed using the R package

“rms”, and its predictive efficacy was estimated through

calibration curves.
2.5 Immune analysis algorithm

Based on the expression levels of genes relevant to immune

cells, the ssGSEA algorithm was adopted to determine the

infiltration levels of different immune cells. An immune cell

composition matrix for analysis was created by integrating the

output data for 28 different categories of immune cells. The

correlation between core biomarkers and immune infiltrating cell

expression was analyzed using non-parametric Spearman

correlation. The “corrplot” R package was then employed to draw

correlation heatmaps.
2.6 Study procedure

From Mar. 2024 to Jun. 2024, 24 drug-naive patients with AS

meeting the modified New York diagnostic criteria (1984) were

selected from the Affiliated Hospital of North Sichuan Medical

College, and blood samples were collected from 24 healthy male

volunteers (healthy control group, HC group) (24). All participants

had no history of cardiovascular disease, diabetes mellitus, hepatitis,

malignancies, or other autoimmune and inflammatory diseases.

The study was approved by the Affiliated Hospital of North Sichuan

Medical College’s Ethics Committee, with informed consent

obtained from all participants (Approval No.: 2024ER268-1). 4

mL of heparin-anticoagulated peripheral venous blood was used

for the isolation of peripheral blood mononuclear cells (PBMCs).

The Trizol technique was utilized to extract total RNA. Gene

primers were designed as per the gene sequences of ACSL1,

SLC40A1, GZMM, TRIB1, and XBP1 in PubMed Gene and

synthesized by Sangon Biotech (Shanghai) Co., Ltd. (Table 1).
2.7 Statistical analysis

All bioinformatics statistical analyses and visualizations were

performed using R (version 4.3.2). Values from the experiment were

reported as mean ± standard deviation (SD). In addition, to verify

the data normality, the Shapiro-Wilk test was adopted. The t-test or

the Mann-Whitney U test was adopted for the analysis based upon

whether the data set exhibited a normal distribution, while Pearson

or Spearman tests were utilized for correlation analysis. All

experimental statistical analyses were conducted using SPSS v27

or GraphPad Prism (v10.2.3). At least three independent

replications of each experiment were conducted. P < 0.05 was

used to define significance.
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3 Results

3.1 DEG identification in
ankylosing spondylitis

The flowchart of this study is illustrated in Figure 1. We

investigated high-throughput sequencing data from the GSE73754

and GSE25101 databases, pertaining to patients with AS and

healthy controls. A total of 196 DEGs were successfully identified
Frontiers in Immunology 04
from the GSE73754 dataset, including 121 upregulated genes and 75

downregulated genes. From the GSE25101 dataset, 576 DEGs were

identified, comprising 297 upregulated genes and 279

downregulated genes. These DEGs were visualized using volcano

plots (Figures 2A, B), and the top 100 DEGs were presented in

heatmaps (Figures 2C, D). Based on the differential gene expression

trends from these two datasets, 9 co-expressed DEGs were obtained,

with 5 upregulated genes (Figure 2E) and 4 downregulated

genes (Figure 2F).
FIGURE 1

Flow diagram of the study.
TABLE 1 Primer sequences of mRNA for qRT-PCR.

Primer sequence, 5’–3’
Forward

Reverse

Gene (hum)

b-Actin GAGCTACGAGCTGCCTGACG GTAGTTTCGTGGATGCCACAG

ACSL1 CTTATGGGCTTCGGAGCTTTT CAAGTAGTGCGGATCTTCGTG

GZMM ACACCCGCATGTGTAACAACA GGAGGCTTGAAGATGTCAGTG

SLC40A1 CTACTTGGGGAGATCGGATGT CTGGGCCACTTTAAGTCTAGC

TRIB1 GCTGCAAGGTGTTTCCCATTA TCCCCAAAGTCCTTCTCAAAGA

XBP1 CCCTCCAGAACATCTCCCCAT ACATGACTGGGTCCAAGTTGT
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3.2 Potential function and pathway analysis

GSEA analysis of the GSE73754 dataset showed significant

downregulation of rRNA processing and translation processes

(Figure 3A), indicating that these key biological processes were
Frontiers in Immunology 05
potentially suppressed under the studied conditions. Additionally,

osteoclast differentiation-, Streptococcus infection-, and

tuberculosis-related genes were significantly upregulated, while

oxidative phosphorylation process-related genes were

downregulated (Figure 3B), suggesting changes in immune
FIGURE 2

DEGs and enrichment analysis of AS. (A, B) Volcano plot of DEGs between AS and HC groups in GSE73754 and GSE25101. (C, D) Heatmap of top
100 DEGs in GSE73754 and GSE25101. (E) Commonly upregulated differentially expressed genes. (F) Commonly downregulated differentially
expressed genes.
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response and metabolic activity in AS. GO and KEGG enrichment

analyses were performed on the 9 co-expressed DEGs obtained by

integrating the GSE73754 and GSE25101 datasets. GO analysis

identified 188 significantly different GO terms, including 162

biological processes, 3 cellular components, as well as 23

molecular functions. These genes were enriched in key biological

processes such as leukocyte-mediated immunity and positive

regulation of angiogenesis. Regarding the cellular component, the

peroxisomal membrane and phagocytic vesicle membrane were

highlighted. In terms of the molecular function, growth factor

binding and protein kinase regulator activity pathways were

enriched (Figure 3C). These genes are mainly involved in

immune response, cytotoxicity, and regulatory processes,

indicating a close association between AS and abnormal immune

responses and cellular regulatory mechanisms. KEGG analysis

unraveled that 11 pathways were enriched, including ferroptosis,

fatty acid metabolism, mineral absorption, as well as Th1, Th2, and

Th17 cell differentiation (Figure 3D). The enrichment of these

pathways indicated substantial alterations in immune response,

metabolic activity, and cell death mechanisms in AS, offering

crucial insights into the underlying biological processes.
Frontiers in Immunology 06
3.3 Construction of weighted gene
co-expression network

By WGCNA, co-expressed gene clusters with differential

expression in the GSE73754 dataset were identified, and the

relationship between combined modules and disease traits was

calculated (Figure 4C). The soft-threshold power was set to 15

(Figures 4A, B), and 4 modules were identified (Figure 4D). The

grey module showed the most robust positive correlation with the

occurrence of AS (r = 0.48), and 121 genes from the grey module

were screened (Figure 4E).
3.4 Validation of the diagnostic model
based on key genes

The intersection of the 9 co-expressed DEGs from the

GSE73754 and GSE25101 datasets with the 121 grey module

genes identified by WGCNA resulted in 6 core genes (Figure 5A).

Using LASSO regression to simplify the model (Figures 5B, C), 5

key genes (ACSL1, SLC40A1, GZMM, TRIB1, and XBP1) were
FIGURE 3

Result of functional enrichment analysis. (A) The significant GSEA sets in GO. (B) The significant GSEA sets in KEGG pathways. (C) GO analysis of co-
DEGs. (D) KEGG pathways of co-DEGs.
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identified. Box plots were then adopted to show the expression

trends of these 5 key genes in the GSE73754 and GSE25101 datasets

(Figures 5E, F). Subsequently, ROC analysis was made to evaluate

the potential of these 5 key genes as diagnostic biomarkers for AS

(Figure 5D). All key genes had an AUC greater than 0.7, indicating

favorable clinical diagnostic performance. A nomogram predicting
Frontiers in Immunology 07
AS risk based on these 5 key genes was constructed (Figure 6A),

with each gene corresponding to a scoring standard. The calibration

curve attested to the favorable predictive performance of the model

(Figure 6B). Additionally, the ROC curve analysis showed that the

overall AUC of the model was 0.807 (Figure 6C), indicating that the

core genes have high diagnostic performance.
FIGURE 4

WGCNA. (A, B) Determination of an optimal soft-thresholding power b by calculating the scale-free topology model fit and mean connectivity.
(C) The cluster dendrogram of mRNAs in GSE73754, revealing different mRNA co-expression modules marked with colors. (D) The heatmap for
module-traits relationships, showing the correlation of different modules with AS or HC. (E) Relationship between Module Membership and Gene
Significance for AS.
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3.5 Correlation analysis concerning
immune cell infiltration and key genes

An analysis of the infiltration of 28 immune cell subtypes

between the AS group and the control group revealed that six

immune cell subsets showed statistically significant differences

(Figure 7A). In the AS group, central memory CD8 T cells and

neutrophils were increased, while activated CD8 T cells, activated

dendritic cells, type 1 helper T cells, and gdT cells were decreased

(Figure 7B). Furthermore, the correlation analysis between key
Frontiers in Immunology 08
genes and the aforementioned differential immune cell subsets

showed that ACSL1, SLC40A1, and TRIB1 were positively linked

to neutrophil infiltration, whereas GZMM and XBP1 were

negatively linked to neutrophil infiltration. GZMM and XBP1

were positively linked to gdT cell infiltration, while ACSL1 was

negatively linked to gdT cell infiltration. TRIB1 was positively

linked to central memory CD8 T cell infiltration. GZMM and

XBP1 were positively linked to activated CD8 T cell infiltration,

while ACSL1, SLC40A1, and TRIB1 were negatively linked to

activated CD8 T cell infiltration (Figure 7C).
FIGURE 5

Validation of core genes diagnostic models. (A) Intersection of genes identified by WGCNA and co-expressed genes. (B) Selection of optimal
parameters (lambda) in the LASSO model. (C) Five core genes identified by the optimal lambda. (D) ROC curves for each core gene. (E) Core gene
expression levels in GSE73754. (F) Core gene expression levels in GSE25101.
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3.6 RT-qPCR expression and
clinical correlation

To validate the role of key genes, an RT-qPCR assay of the

mRNA expression levels of the five key genes in PBMCs from AS

patients and healthy individuals was performed (Figures 8A–E).

The results showed that, compared to healthy controls, the

expression level of ACSL1 and SLC40A1 was upregulated in AS,

while GZMM and XBP1 expression was downregulated, consistent

with the expression trends predicted by the model. However, TRIB1

expression was downregulated, contrary to predicted expression by

the model (Figures 5E, F). Correlation analysis between the five key

genes and clinical indicators (including blood analysis, hsCRP, ESR,

HLA-B27, gender, and age) (Table 2) showed that ACSL1 was

positively linked to patient hsCRP levels (r = 0.7965, P < 0.0001).

GZMM was negatively linked to patient ESR levels (r = -0.5542,

P < 0.05), hsCRP levels (r = -0.8941, P < 0.05), and neutrophil count

(r = -0.4244, P < 0.05). SLC40A1 was positively linked to patient

ESR levels (r = 0.54, P < 0.01), hsCRP levels (r = 0.8440, P < 0.0001),

and neutrophil count (r = 0.4945, P < 0.05). XBP1 was negatively
Frontiers in Immunology 09
linked to patient ESR levels (r = -0.4085, P < 0.05), hsCRP levels

(r = -0.4703, P < 0.05), and neutrophil count (r = -0.4077, P < 0.05)

(Figures 8F–O).
4 Discussion

This study identified five key genes (ACSL1, SLC40A1, GZMM,

TRIB1, and XBP1) as potential biomarkers for AS by analyzing the

GSE73754 and GSE25101 datasets from the GEO database. The

mRNA expression levels of these key genes in PBMCs from AS

patients and healthy individuals were validated using RT-qPCR

assay. Furthermore, these genes may be linked to disease activity

and may be useful in the diagnosis of AS, according to the

correlation analysis between the key gene expression and

clinical data.

AS typically leads to calcification and bone formation,

accompanied by destructive bone lesions. New bone formation

within the axial skeleton is a characteristic of post-inflammatory

AS (25). Innate cytokines, specifically the interleukin-23/17 axis,
FIGURE 6

(A) Nomogram model of AS. (B) Calibration curve of the nomogram testing the predictive performance of the model. (C) AUC of the diagnostic
model based on core genes.
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have been shown in recent research to have a critical role in the

pathogenesis of AS (26, 27). Clinically, anti-IL-17 therapy has been

proven effective in improving bone destruction in AS, but some

patients do not respond to IL-17 treatment (28). Our study found

that the IL-17 pathway was also enriched in the co-expressed trend

genes identified, consistent with current research. Additionally,

KEGG analysis revealed that were adipocytokine signaling

pathway, mineral absorption pathway, PPAR signaling pathway,

and Th1 and Th2 cell differentiation pathways were enriched, all of

which have been reported to have significant value in bone

metabolism research (29–32). The study also identified several

genes related to bone metabolism and osteocyte function. GO

analysis revealed multiple biological processes related to osteocyte

differentiation and bone metabolism, such as bone mineralization,

osteoblast differentiation, and osteoclast differentiation. GSEA

uncovered key pathways, including osteoclast differentiation,

suggesting the active role of osteoclasts in AS. Additionally, GSEA

revealed metabolic pathways such as oxidative phosphorylation.

These pathways are closely related to osteoclast function and

bone metabolism.
Frontiers in Immunology 10
Among the core genes in this study, ACSL1 is a key enzyme in

fatty acid metabolism, mainly responsible for converting long-chain

fatty acids into acyl-CoA, a prerequisite for fatty acids to participate

in metabolic pathways such as b-oxidation and lipid synthesis (33).

Studies have shown that lipid molecules containing 18:3 chains

significantly decline in cells lacking ACSL1, while the presence of

ACSL1 increases the synthesis and accumulation of these lipids,

which may promote ferroptosis through oxidation (34–36). The

experiment results demonstrated that ACSL1 was upregulated in

AS patients and exhibited a positive correlation with hsCRP levels.

This suggested that ACSL1 may promote ferroptosis through fatty

acid metabolism, thereby enhancing the inflammatory response in

AS. SLC40A1 is an iron transporter protein responsible for

transporting intracellular iron to the extracellular space, playing an

important role in iron metabolism. SLC40A1 influences the iron

content and function of immune cells such as dendritic cells by

regulating iron export, thereby modulating immune responses (37,

38). According to the findings of our investigation, AS patients had

upregulated SLC40A1, which positively linked to both hsCRP and

ESR. This finding suggests that it may indirectly enhance the
FIGURE 7

(A) Heatmap of the proportions of 28 immune cells in the AS and HC groups. (B) Boxplot of the immune cell proportions in AS and HC groups. “ns” means
“not significant”. (C) Correlation analysis between core genes and differential immune cell subsets.
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inflammatory response in AS by affecting the iron content of immune

cells like dendritic cells. As a serine protease belonging to the

granzyme family, GZMM is mostly released by cytotoxic

lymphocytes, including CD8+ T cells and natural killer cells. It

plays a role in immune defense and target cell lysis (39, 40). In this

study, GZMMwas downregulated in patients with AS and negatively

linked to multiple immune cell infiltrations, suggesting that GZMM

may inhibit inflammation by modulating the activity of neutrophils
Frontiers in Immunology 11
and gdT cells. Notwithstanding its lack of catalytic activity, the

pseudokinase TRIB1 is crucial in cell signaling and gene expression

regulation. It has an impact on various cellular processes, such as

metabolism, inflammation, and cell differentiation (41). In this study,

the RT-qPCR expression of TRIB1 in AS patients contradicted the

predictive model, which may be attributable to various factors. The

model’s prediction of elevated TRIB1 expression might reflect its role

in diverse and complex cellular signaling pathways. In contrast, the
FIGURE 8

(A-E) Differences in relative expression levels of five core genes between AS group and HC group. – (A) ACSL1 – (B) GZMM – (C) SLC40A1 – (D)
TRIB1 – (E) XBP1. (F-O) Correlation analysis between core genes and clinical data. – (F) Correlation between SLC40A1 and hsCRP- (G) Correlation
between SLC40A1 and neutrophil count – (H) Correlation between SLC40A1 and ESR – (I) Correlation between GZMM and hsCRP – (J) Correlation
between GZMM and ESR – (K) Correlation between GZMM and neutrophil count – (L) Correlation between XBP1 and hsCRP – (M) Correlation
between XBP1 and ESR – (N) Correlation between XBP1 and neutrophil count – (O) Correlation between ACSL1 and hsCRP.
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lower RT-qPCR expression may result from changes in the

proportion of specific cell subsets within PBMCs of AS patients,

potentially affecting overall expression levels. Furthermore, TRIB1

expression could be dynamically regulated by microenvironmental

factors, such as inflammatory cytokines and oxidative stress,

contributing to the observed discrepancies between the model and

experimental data. Moreover, the predictive model, which relies on

big data statistical analysis, may be influenced by sample

heterogeneity and data normalization methods. In comparison, RT-

qPCR results depend on experimental conditions (e.g., RNA quality,

primer design), with these technical differences possibly accounting

for the observed inconsistencies. In this study, TRIB1 was

downregulated in AS patients and positively correlated with

neutrophil and central memory CD8 T cell infiltration, suggesting

that TRIB1 may play a key role in regulating neutrophil activity and

quantity as well as maintaining CD8 T cell stability. XBP1 is an

important transcription factor involved in endoplasmic reticulum

stress, protein folding and degradation, and the regulation of immune

cell functions (42–44). In this study, XBP1 was downregulated in AS

patients and negatively linked to neutrophil infiltration, suggesting

that it may inhibit excessive neutrophil response under specific

conditions, thereby alleviating inflammation.

AS patients often exhibit iron metabolism disorders, such as

anemia and iron overload, accompanied by enhanced oxidative

stress and elevated lipid peroxidation levels, which are hallmark

features of ferroptosis (16, 45). The reduction in antioxidants,

including glutathione (GSH) and antioxidant vitamins, observed

in patients with AS mirrors the inactivation of the glutathione-

dependent enzyme system in ferroptosis (46). This study found that

the upregulation of the iron metabolism-related gene SLC40A1 and

the lipid metabolism-related gene ACSL1 suggests that ferroptosis

may play a critical role in the pathogenesis of AS. The upregulation

of SLC40A1 may lead to intracellular iron accumulation, further

exacerbating lipid peroxidation and activating inflammatory

signaling pathways (37). Similarly, ACSL1 promotes ferroptosis

by enhancing lipid oxidation, which significantly correlates with

inflammatory markers such as hsCRP identified in this study (35,

47). Additionally, the downregulation of antioxidant-related genes

GZMM and XBP1 indicates decreased antioxidant capacity in AS

patients, accelerating lipid peroxide accumulation and driving

ferroptosis (44).In summary, this study reveals that ferroptosis

may contribute to the pathology of AS through disruptions in
Frontiers in Immunology 12
iron metabolism, enhanced lipid peroxidation, and impaired

antioxidant systems.

Additionally, AS is not solely a chronic inflammatory disorder,

but also displays features associated with autoimmune pathology

(2). Research has indicated that neutrophils would accumulate at

inflammation sites in AS, releasing various cytokines and

chemokines that drive inflammation progression (48–50).

Additionally, the proportion of activated CD8 T cells and

dendritic cells is reduced in AS patients (7, 51). This study

analyzed the infiltration of 28 immune cell subsets in the AS

group and the control group, identifying notable discrepancies in

immune cell infiltration levels between the two groups, thereby

reinforcing the autoimmune attributes of AS. We then examined

the relationship between key genes and six significantly different

immune cells, as well as the correlation between key genes and

peripheral blood neutrophils. The results showed that the increase

in neutrophils in AS was positively correlated with these genes. The

study also found a decrease in the proportions of activated CD8 T

cells, dendritic cells, TH1 cells, and gdT cells in AS patients,

indicating that these cells are essential to the immune surveillance

function in AS. Additionally, the AS group showed a notable

increase in central memory CD8 T cells, which may reflect a

sustained immune response and the establishment of memory

cells. These findings provide new clues for further understanding

the pathological mechanisms of AS.

The key genes identified in this study (ACSL1, SLC40A1,

GZMM, TRIB1, and XBP1) demonstrated favorable diagnostic

performance and were associated with disease activity in AS

patients. These biomarkers hold considerable potential for clinical

applications. For instance, their expression levels could serve as

sensitive indicators for early diagnosis, facilitating the identification

of high-risk individuals prior to symptom onset. Additionally,

dynamic monitoring of these genes’ expression levels may help

evaluate disease activity and therapeutic responses, providing

valuable guidance for personalized treatment strategies. Notably,

genes associated with ferroptosis and immune infiltration, such as

ACSL1 and SLC40A1, may serve as promising targets for future

therapeutic interventions. Future research should focus on

validating these biomarkers in larger, multi-center cohorts and

standardizing their use in clinical practice to develop effective

diagnostic tools or therapeutic approaches. Furthermore, these

biomarkers may achieve greater predictive performance when

combined with other clinical parameters, such as imaging or

traditional inflammatory markers, thereby improving the

accuracy of AS diagnosis and comprehensive disease management.

Although this study provides new insights into the molecular

mechanisms of AS, it has several limitations. First, the relatively small

sample size may limit the generalizability of the results. Future

research should address this limitation by replicating these results

in larger, multi-center. Second, this study primarily relies on gene

expression data from PBMCs, which may not fully capture

pathological changes in other relevant tissues or cell types.

Moreover, while gene functions were inferred through

bioinformatics methods, experimental validation is required further

to enhance the reliability and applicability of the study results.
TABLE 2 General information of AS patients and healthy control donors.

AS group (n=24) HC group (n=24)

Gender(male/female) 18/6 17/7

Age (years) 34.6 ± 6.9 36.5 ± 8.2

Positive rate of HLA–B27 91.67% N/A

ESR, mm/hour 23.25 ± 15.41 N/A

hsCRP, mg/L 9.06 ± 8.45 N/A

ANC,109/L 4.38 ± 1.66 N/A
“N/A” means “Not Applicable”.
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5 Conclusion

The core genes identified in our study demonstrated high

diagnostic performance in distinguishing AS patients from

healthy individuals, and their expression levels were associated

with PBMCs and disease activity. Additionally, this study

disclosed a potential association between AS and ferroptosis. Also,

multiple core genes and key pathways related to AS pathogenesis

were identified through comprehensive analysis. These core genes

may serve as potential biomarkers and targets for the diagnosis and

treatment of AS. The findings of our study offered new insights that

will enable a better understanding of the molecular mechanisms

underlying AS and the development of innovative diagnostic and

therapeutic strategies.
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