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Introduction: Type 2 diabetes (T2D) is a complex metabolic disorder with

significant global health implications. Understanding the molecular

mechanisms underlying T2D is crucial for developing effective therapeutic

strategies. This study employs single-cell RNA sequencing (scRNA-seq) and

machine learning to explore the the pathogenesis of T2D, with a particular

focus on immune cell infiltration.

Methods: We analyzed scRNA-seq data from islet cells of T2D and nondiabetic

(ND) patients, identifying differentially expressed genes (DEGs), especially those

related to metal ion transport (RMITRGs). We employed 12 machine learning

algorithms to develop predictive models and assessed immune cell infiltration

using single-sample gene set enrichment analysis (ssGSEA). Correlations

between immune cells and key RMITRGs were investigated, and the

interactions among these genes were explored through protein-protein

interaction (PPI) network analysis. Additionally, we performed a detailed cell-

cell communication analysis to identify significant signaling pathways in T2D.

Results: Our analysis identified 1953 DEGs between T2D and ND patients, with

the Stepglm[backward] plus GBMmodel demonstrating high predictive accuracy

and identifying 13 hub RMITRGs. Twelve protein structures were predicted using

AlphaFold 3, revealing potential functional conformations. We observed a strong

correlation between hub RMITRGs and immune cells, and PPI network analysis

revealed key interactions. Cell-cell communication analysis highlighted 16 active

signaling pathways, with CXCL, MIF, and COMPLEMENT linked to immune and

inflammatory responses, and WNT, KIT, LIFR, and HGF pathways uniquely

activated in T2D.
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Conclusion: Our analysis identified genes crucial for T2D, emphasizing ion

transport, signaling, and immune cell interactions. These findings suggest

therapeutic potential to enhance T2D management. The identified pathways

and genes provide valuable insights into the disease mechanisms and potential

targets for intervention.
KEYWORDS

type 2 diabetes, immune cell infiltration, single-cell RNA sequencing, machine learning,
protein-protein interaction, therapeutic targets
Introduction

According to the International Diabetes Federation (IDF), in

2021, diabetes affected an estimated 537 million adults globally,

with type 2 diabetes (T2D) making up approximately 90% of these

cases (1). T2D is characterized by insulin resistance, impaired

insulin secretion, and relative insulin deficiency, with a

pathophysiology influenced by genetic, environmental, and

lifestyle factors, leading to hyperglycemia and severe

complications if not managed effectively (2). Despite standard

care measures including lifestyle changes, oral hypoglycemic

agents, and insulin therapy, many patients struggle to maintain

optimal glycemic control, indicating a significant need for more

effective treatments (3, 4). The heterogeneity of T2D contributes to

the gap in personalized treatment options, underscoring the

necessity to explore new strategies to enhance metabolic control

and improve patient outcomes (5, 6).

Single-cell RNA sequencing (scRNA-seq) has revolutionized

our ability to analyze gene expression at the cellular level (7),

offering detailed insights into the cellular diversity and molecular

changes that occur in T2D (8). Pancreatic islets, which comprise

various cell types, including b cells, a cells, and d cells, are pivotal in
maintaining glucose homeostasis (9). Disruption in the function of

these cells is a key factor in the development of T2D. Understanding

the variations in gene expression and cell-cell interactions within

these islets can uncover crucial pathways and regulatory networks

that drive T2D.

A growing area of research focuses on the role of immune cell

infiltration within pancreatic islets in T2D (10–12). Immune cells,

such as macrophages and T cells, infiltrate pancreatic islets, creating

a chronic inflammatory environment that worsens b-cell
dysfunction. The interaction between these immune cells and islet

cells plays a critical role in disease progression and can significantly

impact the success of T2D management. By examining immune cell

infiltration and its connection to key molecular pathways in T2D,

this research aims to deepen our understanding of the disease’s

immunological landscape and identify potential therapeutic targets.

The role of metal ions, such as zinc, iron, and copper, in cellular

functions has emerged as a critical area of T2D research (13–15).
02
These metal ions are essential for insulin production, secretion, and

activity, with disruptions in their balance linked to metabolic

disorders, including diabetes (16). Our work focuses on the novel

contribution of metal ion transport-related genes (RMITRGs) in

T2D pathogenesis and immune cell infiltration, which are areas that

require further exploration. For instance, zinc transporters are

crucial for insulin storage and release in pancreatic b-cells, and
their dysfunction is associated with reduced insulin secretion in

T2D (15). Similarly, the ATPase Na+/K+ transporting subunit

alpha 1 (ATP1A1), vital for maintaining ion balance across cell

membranes, is a promising target for therapies in T2D (17, 18). Our

study explores these mechanisms further, providing a foundation

for our research on the molecular underpinnings of T2D and

potential therapeutic targets (19, 20).

Machine learning techniques have demonstrated considerable

potential in the biomedical field, particularly in identifying

predictive markers and constructing robust models for disease

classification and prognosis (21). By integrating machine learning

with scRNA-seq data, researchers can pinpoint hub genes and

crucial regulatory networks, thereby advancing our understanding

of disease mechanisms and aiding in the identification of new

therapeutic targets (22, 23).

In this study, we utilized scRNA-seq along with advanced

bioinformatics approaches to explore the expression and role of

genes related to metal ion transport in pancreatic islet cells from

T2D and nondiabetic (ND) patients. We identified differentially

expressed genes (DEGs) associated with metal ion transport and

constructed a protein-protein interaction (PPI) network to reveal

their potential roles in T2D. Additionally, we developed predictive

models using machine learning, explored the relationships between

hub RMITRGs and various metabolic conditions, and assessed

immune cell infiltration within islet tissues.

This study integrates single-cell transcriptomics with

computational modeling, immune infiltration analysis, and

network analysis, providing a comprehensive framework for

uncovering the molecular underpinnings of T2D. The findings

provide valuable insights into the disease mechanisms and suggest

potential targets for therapeutic intervention, paving the way for

more effective treatments in the future.
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Methods

Single-cell RNA sequencing and
data analysis

Single-cell RNA sequencing (ScRNA-seq) data were collected

from pancreatic islet cells of 17 type 2 diabetes (T2D) patients and

27 nondiabetic (ND) individuals from PANC-DB database (24). We

processed the scRNA-seq data using the Seurat package (version

4.4.0) in R. To ensure high-quality data, cells were filtered using the

following thresholds: mitochondrial content less than 15%, cell

count greater than 500, and gene count between 1,000 and

25,000. Highly variable genes were identified using default

parameters, and data were scaled to a maximum value of 10. The

data matrices were normalized (to 1,000 transcripts per cell),

logged, and scaled per gene. Significant dimensions were chosen

based on P values, and principal component (PC) analysis was

conducted. Significant PCs were utilized for graph-based clustering.

Batch effect correction was performed using the ‘RunHarmony’

function. For visualization, T-distributed stochastic neighbor

embedding (T-SNE) was employed to cluster the data and

visualize the major and subcellular types within the islets. Known

marker genes were utilized to annotate the cell clusters (24), and the

proportions of cell types by disease state were calculated.
Identification of genes related to metal
ion transport

Differentially expressed genes (DEGs) were identified by

comparing T2D and ND samples across various cell types using

the Wilcoxon rank-sum test and the thresholds for significance

(adjusted p-value < 0.05). From the GOBP_REGULATION_

OF_METAL_ION_TRANSPORT gene sets, we identified 398

genes related to metal ion transport-related genes (RMITRGs)

through the Molecular Signatures Database (MSigDB) (https://

www.gsea-msigdb.org/gsea/msigdb). The intersection of these

RMITRGs with the identified DEGs yielded hub RMITRGs for

further analysis.
Bulk RNA data processing

T2D datasets GSE54279 (25) and GSE41762 (26) were

downloaded from the GEO database using the GEOquery package

in R. Dataset GSE54279, generated from Homo sapiens using the

GPL6244 platform, included 128 samples from T2D patients.

Dataset GSE41762, also generated from Homo sapiens via the

GPL6244 platform, consisted of 77 samples (20 control and 57

T2D samples). The microarray data from these datasets were

processed using the robust multiarray average (RMA) method for

background correction, normalization, and probe adjustment.

Batch effects were corrected using the Combat method.
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Development of 108 prediction models
using machine learning

To develop predictive models for T2D, we explored 12 machine

learning algorithms combined in 108 different ways. The algorithms

included LASSO, Ridge, Enet, Stepglm, SVM, GlmBoost, LDA,

plsRglm, GBMs, XGBoost, naive Bayes and RF models. These

combinations were evaluated using area under the curve (AUC)

metrics in both training and validation cohorts. The model

construction used the expression data of the 49 RMITRGs

identified in the scRNA-seq analysis. Seventy percent of the

samples from the combined cohort (GSE54279 and GSE41762)

were used for model training, and the remaining 30% were used for

validation. Model performance was determined based on AUC

scores, and the best-performing model was selected accordingly.
Protein structure prediction using
AlphaFold 3

To examine the structural features of hub proteins related to

T2D, we employed AlphaFold 3 (27), an advanced tool for protein

structure prediction. A set of hub RMITRGs associated with T2D,

including ACTN4, ATF4, ATP1A1, B2M, CYBA, GNB2, HES1,

PRNP, TMBIM6, TSPAN13, VMP1, and YWHAE, were selected

for analysis, except for AHNAK, whose sequence length exceeded

the prediction capabilities. AlphaFold 3 was configured with

standard parameters to ensure accurate predictions. The primary

amino acid sequences of the selected proteins were submitted to

AlphaFold 3, with multiple iterations run for each protein to ensure

reliable results. Confidence scores, including pLDDT and pTM,

were calculated to assess the quality of the predicted structures. A

pTM score above 0.5 indicated structural similarity to the true fold,

while scores above 0.8 indicated high-quality predictions.
Immune cell infiltration analysis in T2D and
ND groups

The infiltration scores of immune cell types in T2D andND groups

were calculated using single-sample gene set enrichment analysis

(ssGSEA) through the “gsva” R package with previously published

immune cell markers (28). Visualization was performed with heatmaps

using the “pheatmap” package. The correlations between immune cells

and related functions were assessed with Spearman’s correlation, and

the results were visualized using the “corrplot” R package and

“ggplot2”. R>0.3 were considered to be positive correlation.
Protein-protein interaction
network construction

To elucidate the interactions among the hub RMITRGs and

other related genes, we constructed a PPI network. This network
frontiersin.org
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was built using 50 genes that were closely related to our previously

identified 13 hub RMITRGs, which play significant roles in metal

ion transport and are differentially expressed in T2D and ND

patients. These 50 genes were identified through the STRING

database (https://string-db.org/) (29). The interactions within this

network were visualized using Cytoscape (version 3.8.2). The

cytoHubba plugin in Cytoscape was used to rank the top 10

nodes in the PPI network using five algorithms—MCC, MNC,

EPC, radiality, and closeness—each providing a unique

analytical perspective.
Disease associations via a comparative
toxicogenomic database

The Comparative Toxicogenomics Database (CTD) (30) was

utilized to explore the interactions between the 13 hub RMITRGs

and various diseases, including diabetes mellitus, T2D, glucose

metabolism disorders, and metabolic diseases. Inference scores for

these interactions were calculated and displayed in bar plots.
Cell-cell communication and gene
expression analysis

Cell-cell communication networks for T2D and ND patients

were constructed using scRNA-seq data with the CellChat package

(version 1.5.0) (31). Communication networks were based on the

number of involved genes and interaction strengths across seven

major cell types and subtypes. Information flow analysis identified

signaling pathways active in both conditions and those uniquely

active in T2D. Heatmaps were created to illustrate significant

outgoing and incoming signals for specific cell groups. Receptor-

ligand pair analyses were conducted to identify significant

interactions associated with T2D.
Statistical analysis

All analysis were performed in R (version 4.2.1). A P-value of

less than 0.05 was considered statistically significant.
Results

Study workflow overview

The study’s workflow is depicted in Figure 1. The investigation

commenced with single-cell RNA sequencing (scRNA-seq) analysis

of pancreatic islet cells from type 2 Diabetes (T2D) patients and

nondiabetic (ND) individuals, revealing distinct differentially

expressed genes (DEGs) and cell type distributions (Figure 2).

Subsequent steps involved the development of machine learning

models based on these DEGs, leading to the identification of key

hub genes and the prediction of their protein structures (Figure 3).

The infiltration scores of 22 immune cell types in both T2D and ND
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groups were then computed using single-sample gene set

enrichment analysis (ssGSEA), and correlations between these

immune cells and the identified hub genes were examined

(Figure 4). A protein-protein interaction (PPI) network was

constructed to explore the interactions among these hub genes

(Figure 5), and their associations with various metabolic diseases,

including T2D, were analyzed using data from the Comparative

Toxicogenomics Database (Figure 6). Detailed analyses of cell-cell

communication and gene expression highlighted significant

signaling pathways and receptor-ligand pairs relevant to

T2D (Figure 7).
Mapping gene expression in pancreatic
islet cell types

Building on our comprehensive approach to understanding

T2D, We utilized scRNA-seq profiles from 118,262 cells, derived

from 17 T2D patients and 27 ND individuals, to map gene

expression across various pancreatic islet cell types (Figure 2). T-

SNE analysis of the single-cell data identified seven major cell types

within the islet samples, offering a comprehensive view of cell type

composition (Figure 2A). The identified cell types included

endocrine cells (GCG, INS, TTR markers), stellate cells (IGFBP7,

C11orf96, MGP markers), endothelial cells (GNG11, PECAM1,

PLVAP markers), mast cells (S100A4, TPSB2, TPSAB1 markers),

ductal cells (TACSTD2, LNC2, MMP7 marker), acinar cells

(REG1A, CLPS, PRSS2 markers), and macrophages (CD74, HLA-

DRA, APOE markers). Further T-SNE analysis provided a more

detailed resolution of cell identity and heterogeneity within the

islets (Figure 2B). Clusters were annotated based on known marker

genes, ensuring accurate identification of cell types, including b
cells, a cells, d cells, and other islet cell types (Figure 2C). We

compared our cell type annotations with those from the previous

study (24), highlighting the similarities and differences in cluster

assignments (Supplementary Table S1). Analysis of cell proportions

by disease state highlighted differences in cellular composition

between T2D and ND samples (Figure 2D). A heatmap illustrated

the genes significantly upregulated or downregulated in T2D

patients compared to healthy controls across different cell types

(Figure 2E). This analysis provided critical insights into the

molecular changes associated with T2D, laying the groundwork

for our subsequent investigations into the functional roles of these

genes and their potential as biomarkers or therapeutic targets.
Identification of DEGs and their
functional roles

Continuing from our detailed mapping of gene expression in

pancreatic islet cell types, we explore the molecular signatures that

distinguish T2D from ND states. This led us to the identification of

DEGs, which are crucial for understanding the pathophysiology

of T2D. A total of 1953 DEGs were identified between b cells of

T2D and ND samples (Figure 3A). Among these, 398 metal ion

transport-related genes (RMITRGs) were identified from the
frontiersin.org

https://string-db.org/
https://doi.org/10.3389/fimmu.2024.1479166
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Pu et al. 10.3389/fimmu.2024.1479166
GOBP_REGULATION_OF_METAL_ION_TRANSPORT gene sets.

The intersection of DEGs with these RMITRGs yielded 49 RMITRGs.

Research on these genes is vital as metal ions play critical roles in

various cellular processes, including enzymatic activities, signal

transduction, and maintaining cellular homeostasis. Disruption in

metal ion transport can impact insulin secretion and sensitivity,

potentially contributing to T2D pathogenesis. By identifying and

analyzing these RMITRGs, we can gain a deeper understanding of the

molecular mechanisms underlying T2D and uncover potential

therapeutic targets to improve disease management.
Frontiers in Immunology 05
Development and validation of machine
learning models

Having established the differential gene expression profiles and

the significance of RMITRGs in T2D, we proceeded to leverage

these discoveries in a novel direction—employing machine learning

to predict T2D with greater accuracy. This approach allowed us to

utilize the power of computational algorithms to decipher complex

patterns within the expression data of the 49 RMITRGs identified

through our scRNA-seq analysis.
FIGURE 1

Overview of the study workflow. This figure presents a step-by-step outline of the research process.
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To predict T2D, we explored 12 machine learning algorithms,

combined in 108 different configurations, and evaluated their

performance using AUC metrics in both training and validation

cohorts. The expression data of 49 RMITRGs identified in the

scRNA-seq analysis were used to construct the models. The

combination of Stepglm[backward] and GBM algorithms
Frontiers in Immunology 06
produced the best results, achieving an AUC of 0.999 in the

training cohort and 0.921 in the validation cohort, with an

average AUC of 0.96 (Figure 3B). This high level of accuracy

highlights the model’s robustness in distinguishing between T2D

and ND states. The Stepglm[backward]+GBM model incorporated

13 genes, including ACTN4, AHNAK, ATF4, ATP1A1, B2M,
FIGURE 2

Visualization of gene expression across pancreatic islet cell types. (A) T-SNE plot showing the clustering of single-cell RNA-seq data from 118,262
cells isolated from 17 type 2 diabetes (T2D) patients and 27 nondiabetic (ND) individuals, identifying seven primary cell types within the islets.
(B) Subtype analysis using T-SNE to further distinguish cell subpopulations. (C) Cell clusters were annotated based on established marker genes,
confirming cell identity. (D) Comparative analysis of cell type proportions between T2D and ND samples, displayed by cell type (left) and disease
status (right). (E) Heatmap highlighting genes with significantly altered expression in T2D patients across different cell types.
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CYBA, GNB2, HES1, PRNP, TMBIM6, TSPAN13, VMP1, and

YWHAE, underscoring their potential as biomarkers for T2D.

The protein structures of 12 out of the 13 hub RMITRGs were

successfully predicted using AlphaFold 3, except for AHNAK,

whose amino acid sequence length exceeded the prediction

capacity of AlphaFold 3 (Figure 3C). The structural predictions

provided valuable insights into the potential functional
Frontiers in Immunology 07
conformations of these proteins. The overall predicted folds for

most proteins, including YWHAE, GNB2, B2M, ATP1A1,

TSPAN13, VMP1, ACTN4, CYBA, TMBIM6, and PRNP, were

considered to be reliable, with pTM scores above 0.5, indicating

high confidence in their predicted structures. However, pTM scores

for HES1 and ATF4 were below 0.5, suggesting lower confidence

and the need for further experimental validation. These results
FIGURE 3

Construction and validation of predictive models using machine learning. (A) Identification of 1953 differentially expressed genes (DEGs) between
T2D and ND samples. From the GOBP_REGULATION_OF_METAL_ION_TRANSPORT gene sets, 398 metal ion transport-related genes (RMITRGs)
were identified, with 49 RMITRGs intersecting with DEGs. (B) Performance evaluation of 108 machine learning model combinations, with the
Stepglm[backward]+GBM model achieving the highest accuracy in both training (AUC=0.999) and validation (AUC=0.921) cohorts. (C) Structural
prediction of hub RMITRG proteins using AlphaFold 3, successfully predicting 12 out of 13 proteins, except for AHNAK due to its extensive amino
acid sequence length.
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highlight the potential of combining machine learning and

structural biology approaches to identify and validate key

molecular players in T2D. The identified hub genes and their

predicted structures offer a foundation for future functional

studies and therapeutic targeting, with implications for improving

T2D management.
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Correlation between hub RMITRGs and
immune cells

Expanding on our exploration of the molecular landscape of T2D,

we shifted our focus to the intricate relationship between hub RMITRGs

and immune cell infiltration, a critical aspect of the disease’s
FIGURE 4

Correlation analysis between hub RMITRGs and immune cell types. (A) Heatmap showing the relationship between hub RMITRGs and immune cells
in the training dataset. (B) Corresponding heatmap for the testing dataset. (C) Detailed correlation analysis between selected RMITRGs (AHNAK,
ATF4, B2M, CYBA, GNB2, HES1) and specific immune cell types.
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pathogenesis. This transition allowed us to bridge the gap between

genetic expression and immunological implications, providing a more

comprehensive perspective of T2D’s complex dynamics.

To further investigate immune cell infiltration and function

between T2D patients and ND controls, ssGSEA was used to

evaluate the enrichment scores of various immune cell subsets and

functions. The correlation between 13 hub RMITRGs and immune

cells was analyzed in both the training (Figure 4A, Supplementary

Table S2) and testing sets (Figure 4B, Supplementary Table S3),

revealing strong positive correlations with immune cells for several

genes, including ACTN4, AHNAK, ATF4, ATP1A1, B2M, CYBA,

GNB2, HES1, PRNP, TMBIM6, TSPAN13, VMP1, and YWHAE.

Specifically, AHNAK, ATF4, B2M, CYBA, GNB2, and HES1 showed

strong positive correlations with at least two immune cell types

(Figure 4C). For instance, AHNAK was strongly correlated with

Th1 cells and neutrophils; ATF4 with CD8 T cells and cytotoxic

cells; B2M with macrophages and T helper cells; CYBA with

macrophages and NK CD56dim cells; GNB2 with cytotoxic cells

and Th17 cells; and HES1 with T helper cells, NK CD56dim cells,

neutrophils, and macrophages. Additionally, ACTN4, PRNP,

TMBIM6, TSPAN13, and VMP1 were positively correlated with

neutrophils, mast cells, eosinophils, and T helper cells, respectively

(Supplementary Figure S2). Only ATP1A1 and YWHAE were not

associated with immune cells.

These correlations provide valuable insights into the

immunological aspects of T2D and suggest potential avenues for

therapeutic intervention. They also highlight the need for further

research to elucidate the precise mechanisms through which these

hub RMITRGs influence immune cell behavior and contribute to

the disease’s progression.
PPI network analysis of hub RMITRGs

Building upon our understanding of the correlation between

hub RMITRGs and immune cells, we extended our analysis to

investigate the complex web of interactions that these genes may

participate in within the cellular context of T2D. This led us to

conduct a PPI network analysis, which is crucial for deciphering

how these genes might work in concert or independently to

influence disease outcomes.

The PPI network constructed for 50 genes closely related to the

13 hub RMITRGs provided insights into the molecular interactions

and regulatory mechanisms involved in T2D. Within this network,

GNB2, TMBIM6, ATP1A1, ACTN4, YWHAE, CYBA, ATF4,

PRNP, and B2M exhibited significant mutual interactions,

suggesting their central roles and potential collaborative functions

in disease progression. In contrast, TSPAN13, VMP1, and HES1 did

not interact with other hub RMITRGs, indicating that they might

function independently or within different molecular pathways

(Figure 5). To identify the most critical nodes within the PPI

network, five analytical algorithms—MCC, MNC, EPC, radiality,

and closeness—were used. These algorithms help determine the hub

genes based on different aspects of network topology, such as

connectivity and centrality. The top ten hub genes identified by
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these algorithms were intersected, revealing seven genes

consistently appearing across all methods: MAPK1, MAPK3,

ATP1A1, ATF4, ATP1B4, FXYD2, and CYBA (Supplementary

Figure S2, Supplementary Table S4). This consensus highlights

the importance of these genes in the network and their potential

as key regulators in T2D.

These findings underscore the complexity of T2D at the

molecular level and the potential for targeted therapies that could

disrupt disease progression by modulating these critical interaction

networks. The PPI network analysis not only enhances our

understanding of T2D’s pathophysiology but also shed light for

future research aimed at unraveling the detailed mechanisms

through which these hub genes exert their effects.
Associations between hub RMITRGs and
disease conditions

Following our exploration of the PPI network and the

identification of key genes with significant interactions, we

proceeded to investigate the broader implications of these hub

RMITRGs in the context of various disease conditions. This step

was crucial for understanding the scope of their influence beyond T2D

and for identifying their potential roles in other metabolic disorders.

Analysis using the Comparative Toxicogenomics Database

(CTD) highlighted the relationships between the 13 hub

RMITRGs and various disease conditions. Inference scores were

calculated for T2D (Figure 6A), Diabetes Mellitus (Figure 6B),

Glucose Metabolism Disorders (Figure 6C), and Metabolic

Diseases (Figure 6D), with significant associations displayed in

bar plots. These results provide valuable insights into how these

genes are implicated in various metabolic diseases, emphasizing

their importance in the pathology of T2D.

Specifically, five genes—ATF4, ATP1A1, B2M, CYBA, and

PRNP—emerged with the highest inference scores in the context

of T2D and Diabetes Mellitus, suggesting that these genes play

critical roles in the molecular mechanisms underlying these

conditions. For instance, beta-2-microglobulin (B2M) is integral

to the immune response as a component of MHC class I molecules.

Elevated levels of B2M are associated with inflammation and

metabolic disorders, indicating its role in the inflammatory

processes contributing to insulin resistance and b-cell dysfunction
in T2D.

Furthermore, the prion protein (PRNP), traditionally linked

with prion diseases, also has functions in cellular processes such as

signal transduction, cell adhesion, and protection against oxidative

stress. Its association with T2D suggests broader roles in

maintaining cellular health under metabolic stress conditions. The

analysis extended to glucose metabolism disorders and broader

metabolic diseases, reinforcing the significance of these hub genes

across various metabolic contexts. This consistent identification

across multiple disease conditions underscores their central role in

metabolic regulation and their potential as therapeutic targets.

Other hub RMITRGs, such as HES1, TMBIM6, TSPAN13, and

VMP1, also showed significant associations with metabolic diseases
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(Figure 6D), highlighting the diverse molecular pathways involved

in T2D. HES1, for example, is involved in the regulation of

developmental processes and cell differentiation, and its

association with metabolic diseases suggests a potential role in the

regulation of pancreatic b-cell function and insulin secretion.

TMBIM6 is known for its ability to inhibit apoptosis and regulate

calcium homeostasis, possibly contributing to its protective effects

on b-cells and influence on cellular stress responses in T2D.

TSPAN13 and VMP1 are involved in processes like cell adhesion,

signal transduction, and autophagy, which are critical for cellular

maintenance and response to stress, further implicating them in

T2D pathogenesis.

These findings underscore the complex and diverse

characteristics of the hub RMITRGs and their potential

implications in a range of metabolic conditions, providing a

foundation for future research aimed at elucidating their specific

roles and developing targeted therapeutic strategies.
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Cell-cell communication and gene
expression analysis

Transitioning from the examination of hub RMITRGs and their

association with disease conditions, we shifted our focus to the

intricate realm of cell-cell communication and gene expression,

which are pivotal in understanding the complex dynamics within

the pancreatic islets. This analysis was crucial for elucidating the

molecular dialogues that could influence T2D pathology and

potentially reveal new avenues for therapeutic intervention.

A detailed investigation into cell-cell communication and gene

expression differences between T2D and ND patients was

conducted, focusing on critical interactions and signaling

pathways that play a role in T2D pathology. Communication

network maps of the seven major cell types revealed extensive

interactions, particularly between endocrine cells and other islet cell

types, such as endothelial cells, macrophages, stellate cells, acinar
FIGURE 5

Protein−protein interaction network of hub RMITRGs. A PPI network constructed using 50 genes closely associated with the 13 hub RMITRGs,
illustrating interactions among these genes. Notably, GNB2, TMBIM6, ACTN4, YWHAE, CYBA, ATF4, PRNP, ATP1A1, and B2M exhibited
interconnected interactions, while TSPAN13, VMP1, and HES1 appeared independent. The top ten hub genes were determined via five distinct
algorithms: MCC, MNC, EPC, radiality, and closeness.
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cells, and ductal cells (Figure 7A). The strongest interactions were

observed between b cells and macrophages, indicating that

macrophages may significantly influence b-cell function and

survival in the T2D environment.

Further analysis of subcellular type communication revealed

that b cells, the primary insulin-producing cells, engage in extensive

communication with all subcell types within the islets. The
Frontiers in Immunology 11
strongest interactions were again noted with macrophages,

emphasizing the potential role of immune cells in modulating

endocrine cell behavior in the diabetic state (Figure 7B). This

highlights the critical influence of immune cells on b-cell
dysfunction in T2D.

Information flow analysis identified sixteen signaling pathways

that were active in both T2D and ND conditions. Notably, three
FIGURE 6

Disease associations of hub RMITRGs across multiple conditions. CTD analysis showcasing the connections between the 13 hub RMITRGs and
various diseases, including (A) T2D mellitus, (B) diabetes mellitus, (C) glucose metabolism disorders, and (D) metabolic diseases, with results
presented as bar plots reflecting inference scores.
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pathways—CXCL, MIF, and COMPLEMENT—are associated with

immunity and inflammation, underscoring the chronic

inflammatory state in T2D. In addition, four pathways—WNT,

KIT, LIFR, and HGF—were uniquely activated in T2D, suggesting

their role in disease progression and b-cell dysfunction (Figure 7C).

The unique activation of these pathways in T2D provides insights

into the specific molecular alterations driving the disease and

highlights potential therapeutic targets.

Heatmaps were generated to illustrate the significant

contributions of various signals to outgoing and incoming signals

of specific cell groups, providing a visual representation of the

complex communication networks within the islets. Notably, the

WNT and TGFb pathways were significantly activated in the

outgoing signaling of b cells in T2D, indicating their involvement

in b-cell signaling alterations and possibly in the maladaptive

responses of these cells in the diabetic state (Figures 7D, E).

Receptor-ligand pair analysis revealed that Wnt4-(FZD3

+LRP6) was the most significant pair in T2D, particularly

contributing to communication between b cells and g+d cells.

These findings suggest that Wnt4 signaling plays a crucial role in

the cross-talk between b cells and other islet cell types, potentially

impacting insulin secretion and overall islet function. Additionally,

the TGFB1-(ACVR1B+TGFBR2) receptor-ligand pair was

prominent in communication between b cells and ductal cells,

further highlighting the importance of TGFb signaling in

interactions between b cells and other islet components

(Figure 7F). This comprehensive analysis of altered cell-cell

communication networks in T2D sheds light on critical pathways

and interactions that may contribute to disease progression, offering

potential targets for novel therapeutic strategies aimed at

modulating islet cell interactions and improving b-cell function
and survival in T2D.
Discussion

Addressing the complexities of type 2 diabetes (T2D) (32)

necessitates a deep understanding of the underlying molecular

mechanisms. In this study, we adopted a comprehensive

approach by integrating single-cell RNA sequencing (scRNA-seq),

machine learning, and protein-protein interaction (PPI) network

analysis to unravel these complexities. Our findings shed light on

the intricate gene expression landscape, intercel lular

communication, and key regulatory pathways in pancreatic islet

cells from T2D patients.

The scRNA-seq analysis provided significant insights, revealing

pronounced alterations in the gene expression profiles of pancreatic

islet cells from T2D patients compared to nondiabetic (ND)

controls. T-SNE clustering exposed distinct cellular populations

and highlighted shifts in the proportions of major cell types,

particularly b cells, which are essential for insulin secretion. The

differential gene expression analysis identified 1,953 differentially

expressed genes (DEGs), offering a broad list of genes potentially

implicated in T2D pathogenesis. These results emphasize the

critical role of b-cell dysfunction in T2D and suggest new

molecular targets for therapeutic interventions.
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By integrating machine learning algorithms with scRNA-seq

data, we developed predictive models for T2D. Among the 108

combinations of the 12 machine learning algorithms tested, the

Stepglm[backward]+GBM model achieved the highest predictive

accuracy. This model identified 13 key metal ion transport-related

genes (RMITRGs), with 12 of their protein structures successfully

predicted using AlphaFold 3. However, AHNAK, due to its large

sequence length, could not be modeled, reflecting a limitation of

current computational tools for handling very large proteins. The

identified hub genes are promising biomarkers for T2D diagnosis

and potential targets for novel therapies.

The construction of the PPI network revealed crucial

interactions among the hub RMITRGs, spotlighting key

regulatory nodes such as ATP1A1, GNB2, TMBIM6, and

ACTN4. The identification of top hub genes through multiple

analytical algorithms highlighted their central role within the

network. Further analysis using the Comparative Toxicogenomics

Database (CTD) underscored strong associations between these

hub genes and various metabolic disorders, including T2D, glucose

metabolism disorders, and general metabolic diseases. This

underscores the broad relevance of these genes and their potential

as therapeutic targets.

Our study explore the correlation between hub RMITRGs and

immune cells, revealing significant interactions that offer insights

into the pathogenesis of T2D. The integration of these analyses

provides a comprehensive understanding of the potential roles of

RMITRGs in modulating immune cell behavior and their

infiltration within the islet cells. The detailed biological

mechanisms of RMITRGs and immune cell interactions:
1. Biological Rationale: The role of metal ions in immune cell

function is well-established (33), with ions such as zinc and

iron being critical for cell signaling, redox homeostasis, and

inflammation modulation. Given the central role of these

ions, alterations in the expression of RMITRGs could

influence the local microenvironment, impacting immune

cell infiltration and activity in the islets.

2. Correlation Analysis: Our findings indicate a strong

correlation between hub RMITRGs and immune cells,

suggesting that the differential expression of these genes

could modulate the inflammatory response in T2D. This

correlation underscores the potential for RMITRGs to serve

as regulatory nodes in the immune cell-mediated

inflammatory process within the islets.

3. Mechanistic Relationship: The mechanistic relationship

between RMITRG expression and immune cell

infiltration is multifaceted: (1) Altered Metal Ion

Homeostasis: Changes in RMITRG expression could

disrupt metal ion homeostasis (34), influencing the redox

balance and modulating inflammatory responses within the

islets (35). (2) Inflammatory Signaling Pathways: The

differential expression of RMITRGs could activate

inflammatory signaling pathways, such as NF-kB, central
to immune cell activation and cytokine production (36). (3)

Direct Impact and Implications for T2D Pathogenesis:

Immune cell infiltration, influenced by the expression of
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RMITRGs, plays a pivotal role in b-cell function and the

progression of T2D. Our findings suggest that changes in

RMITRG expression could directly impact b-cell function
by modulating the local islet microenvironment and

influencing the release of cytotoxic molecules from

immune cells. This direct impact on b-cells can lead to
tiers in Immunology 13
dysfunction and apoptosis, which are key hallmarks of T2D

progression. The infiltration of immune cells, modulated by

RMITRG expression, not only disrupts the b-cell function
but also contributes to a chronic inflammatory state within

the islets, further exacerbating insulin resistance and b-cell
failure (37).
FIGURE 7

In-depth exploration of cell−cell communication and gene expression differences between T2D and ND. (A) Network maps displaying cell−cell
communication among seven key cell types, with emphasis on the interaction strengths between endocrine cells and macrophages. (B) Subtype-
specific communication maps, focusing on b-cell interactions with other cell subtypes, notably macrophages. (C) Analysis of information flow within
communication networks, identifying 16 active signaling pathways, with CXCL, MIF, and COMPLEMENT linked to immunity and inflammation, and
WNT, KIT, LIFR, and HGF pathways uniquely activated in T2D. (D, E) Heatmaps illustrating significant outgoing (D) and incoming (E) signaling
pathways, particularly the WNT and TGFb pathways in b cells of T2D patients. (F) Receptor−ligand pair analysis identifying Wnt4-(FZD3+LRP6) as the
most prominent in T2D, primarily influencing b- to g+d-cell communication, with TGFB1-(ACVR1B+TGFBR2) being key in b-cell to ductal
cell communication.
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Understanding the intricate relationship between RMITRG

expression, immune cell infiltration, and b-cell function is crucial

for developing targeted therapies aimed at preserving b-cell
function and reducing inflammation in T2D. By targeting the

molecular pathways that link RMITRGs to immune cell activity,

we may be able to mitigate the detrimental effects of inflammation

on b-cells and slow the progression of T2D. This understanding also

highlights the potential for therapeutic interventions that could

stabilize or even reverse the inflammatory processes contributing to

b-cell dysfunction.
Our study revealed that endocrine cells, particularly b cells,

engage extensively in cell-cell communication within islets, with

macrophages exhibiting the strongest interaction strengths.

Information flow analysis identified unique activation of signaling

pathways in T2D, including WNT, TGFb, KIT, LIFR, and HGF,

highlighting their roles in disease progression. Notably, the WNT

and TGFb pathways were markedly activated in outgoing signaling

from b cells, implicating these pathways in b-cell dysfunction and

the broader pathophysiology of T2D.

The WNT pathway, known for its roles in cell fate determination

and tissue regeneration, appears to regulate b-cell proliferation and

function in T2D (38). While its activation may represent an attempt to

compensate for the loss of functional b-cell mass—a hallmark of T2D

—chronic activation could lead to b-cell exhaustion and failure due to

continuous proliferation without proper differentiation (39). Similarly,

the TGFb pathway, a multifunctional cytokine signaling pathway,

inhibits b-cell proliferation and function while promoting

extracellular matrix deposition, contributing to islet fibrosis and

impaired b-cell functionality (40, 41).
Our receptor-ligand pair analysis further identified Wnt4-

(FZD3+LRP6) and TGFB1-(ACVR1B+TGFBR2) as critical

mediators of intercellular communication in T2D. These findings

underscore the roles of the WNT and TGFb pathways in b-cell
dysfunction and highlight their potential as therapeutic targets for

preserving b-cell function and improving outcomes in T2D.

Our study has uncovered distinct expression patterns of DEGs

between T2D and non-diabetic patients, shedding light on the

molecular signatures that distinguish T2D at the cellular level. The

identification of these DEGs, especially those implicated in metal ion

transport, provides crucial insights into the dysregulated pathways that

contribute to the pathogenesis of T2D. Metal ion transport genes, such

as those encoding zinc and iron transporters, play pivotal roles in

insulin production, secretion, and activity (13–15). Our findings

suggest that disruptions in the normal functioning of these

transporters could lead to impaired insulin secretion and action,

which are hallmarks of T2D. The dysregulation of such genes not

only affects insulin signaling but also influences cellular redox balance

and inflammatory responses within the pancreatic islets, potentially

exacerbating b-cell dysfunction and insulin resistance.

The biological significance of these DEGs extends to the

development of personalized treatment strategies for T2D. The

identification of reliable biomarkers among these DEGs could

facilitate early diagnosis and patient stratification, enabling more

targeted and effective therapeutic interventions. For instance,

understanding the specific roles of metal ion transporters in b-cell
function could lead to the development of therapies aimed at
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normalizing their expression or function, thereby improving

insulin secretion and overall glycemic control.

In our exploration of the molecular mechanisms underlying T2D,

we employed an integrative approach combining scRNA-seq and

machine learning to uncover the role of RMITRGs. Moving beyond

traditional bulk RNA sequencing or single-gene studies, this approach

enabled us to identify a set of hub RMITRGs not previously associated

with T2D. These genes, integrated into predictive models,

demonstrated high accuracy in distinguishing T2D from non-

diabetic states, highlighting their potential as biomarkers and

therapeutic targets. Using AlphaFold 3, we predicted the protein

structures of these hub RMITRGs, providing new insights into their

functional roles and laying the groundwork for future studies.

Our findings also revealed correlations between hub RMITRGs and

immune cell infiltration, offering new perspectives on the immunological

landscape of T2D. Furthermore, the construction of a PPI network and

cell-cell communication analysis provided a systems-level understanding

of molecular interactions in T2D, enhancing our knowledge of the

disease’s pathophysiology. These insights shed light for targeted and

effective treatment strategies, including islet transplantation, which holds

promise for restoring endogenous insulin production and improving

glycemic control in patients with severe insulin dependence.

However, we acknowledge the limitations of our study. One notable

limitation is the inability to predict the structure of the AHNAK gene

using AlphaFold 3 due to its large size, which underscores the need for

alternative structural biology methods such as cryo-electron

microscopy. Additionally, our findings regarding the roles of hub

genes in T2D are preliminary, as they lack in vitro or clinical

validations. The sample size of our study may also introduce

potential biases, and the generalizability of our results is yet to be

confirmed through larger cohort studies andmechanistic investigations.

Future work with larger cohorts and mechanistic studies is

essential for validating our findings and gaining a deeper

understanding of the roles of these genes in T2D. Such studies

will be crucial for translating our results into clinical practice and

for exploring the potential of these genes in diabetes management.

Overall, our study establishes a robust framework for

understanding the genetic and immunological underpinnings of

T2D. By continuing to investigate these hub genes and their

pathways, researchers can advance personalized therapies and

optimize clinical outcomes for T2D management.
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