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Enhancing broadly neutralising
antibody suppression of HIV
by immune modulation
and vaccination
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Although HIV infection can bemanaged with antiretroviral drugs, there is no cure

and therapy has to be taken for life. Recent successes in animal models with HIV-

specific broadly neutralising antibodies (bNAbs) have led to long-term virological

remission and even possible cures in some cases. This has resulted in substantial

investment in human studies to explore bNAbs as a curative intervention for HIV

infection. Emerging data are encouraging, but suggest that combinations of

bNAbs with other immunomodulatory agents may be needed to induce and

sustain long-term viral control. As a result, a number of clinical trials are currently

underway exploring these combinations. If successful, the impact for the millions

of people living with HIV could be substantial. Here, we review the background to

the use of bNAbs in the search for an HIV cure and how different adjunctive

agents might be used together to enhance their efficacy.
KEYWORDS
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1 Introduction

Human Immunodeficiency virus (HIV) infection continues to impact the lives of

millions of people despite the availability of effective antiretroviral therapy (ART, 1). ART

inhibits viral replication and maintains undetectable plasma viral loads in the majority of

people with HIV (PWH, 2). Although ART has improved the length and quality of life for

PWH there are unresolved issues (3, 4). Oral ART formulations need to be taken daily, can

be associated with side effects and may interact with other medications (5). Furthermore,

HIV has a rapid mutation rate causing the emergence of drug-resistant variants if the

stringent regimen is not adhered to (6). These effects may impact children to a larger degree

as they are still in an early immunological developmental phase, drug metabolism may be

different (7, 8), and adherence can be problematic (9, 10). This highlights the need for

therapies which are long-acting or have the potential to lead to drug-free virological
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remission and even cure, particularly in regions with the highest

prevalence and incidence of new infections, such as some sub-

Saharan African countries. Proposals for an optimal target product

profile for such a curative treatment include to be safe and tolerable,

to maintain plasma HIV RNA levels below that at which

transmission may occur (200 copies HIV RNA/ml) for at least >3

years or indefinitely, and to be effective in >90% of individuals.

Additionally, the treatment should result in minimal drug

resistance for effective long-term results (11).
2 Difficulties in developing an
HIV cure

HIV is difficult to eradicate as it establishes itself as a latent viral

reservoir in CD4+ T cells (among other cells) early in infection (12).

When HIV integrates into the human genome it can become a

provirus that is transcriptionally silent – or ‘latent’ - preventing the

presentation of HIV antigens by human leukocyte antigen (HLA)

proteins (13). This prevents these cells from being identified by

cytotoxic T and natural killer (NK) cells, and are therefore “hidden”

from the immune system (14). ART successfully induces viral

suppression but treatment cessation usually results in the return

of plasma viraemia from the latent reservoir (15).

Additionally, some antiretroviral drugs may not fully penetrate

certain anatomical locations known as ‘sanctuary sites’ (e.g. brain,

genital tract, and gut-associated lymphoid tissues) resulting in

suboptimal drug concentrations (16, 17). The varying ability of

HIV drugs to penetrate certain sites depends on numerous factors

such as their physicochemical properties, the rate of perfusion to the

target site, protein-binding specificity and patient-specific

polymorphisms for transporters and metabolic enzymes (17).

Although there is little objective evidence to support on-going

replication due to sub-optimal ART in these sanctuary sites, the

potential adds to the complexity of eradicating the entirety of the

HIV reservoir with ART alone.

Further problems are associated with the methods available for

quantifying the true size of the replication-competent HIV

reservoir. Current assays include, but are not limited to, the

quantitative viral outgrowth assay (QVOA), proviral (total and

integrated) DNA quantitation by the polymerase chain reaction

(PCR) and primer/probe based digital methods [e.g. intact proviral

DNA assay (IPDA, 18); Q4PCR (19, 20)]. There are drawbacks

associated with each of these assays, and their variations, which

prevents consistent determination of the replication-competent

latent reservoir. The QVOA assay often underestimates the true

reservoir size as not all cells with intact provirus are induced with a

single round of activation thus the assay only gives an estimate of

the minimum frequency of latently infected cells (21). Furthermore,

this assay is laborious and costly. In contrast, proviral DNA PCRs

greatly overestimate the replication-competent reservoir as they are

unable to differentiate between defective and replication-competent

provirus (22). The IPDA assay is a digital droplet PCR assay that is

an improvement on the proviral DNA PCR as it is able to infer

intact proviruses that lack common defects (90% of the defective

proviral sequences can be identified and excluded) thereby greatly
Frontiers in Immunology 02
reducing the overestimation observed with the proviral DNA PCR

(23). However, it has been shown that after many years on ART

intact HIV proviruses can become permanently silenced which

highlights the importance of developing an assay that accurately

measures both provirus intactness as well as the inducibility of the

reservoir in all cell types (20). The significant heterogeneity of

sensitivity and specificity of currently available assays is further

hindered by a lack of standardisation across laboratories (24).

Additionally, these assays are generally applied to blood samples,

when the bulk of the reservoir is likely to be found in tissue.

Additional difficulties in finding an HIV cure include the

limitations associated with finding a translatable and ethically

sound model to test potential treatments. Non-human primate

models infected with Simian Immunodeficiency Virus (SIV) or

Simian human immunodeficiency virus (SHIV) have been used

extensively as models for human HIV infection, and proved

valuable in studies using neutralising antibodies to prevent

infection (25–27). In studies assessing the role of bNAbs as

treatment, NHPs infected with SHIV have been seen to be more

sensitive to achieving post-treatment virological control, but this

has not yet been replicated in PWH (28, 29). Lessons may also be

learned from vaccine prevention studies, for example in the STEP

HIV clinical trial, the same Adenoviral 5 vector (containing HIV

instead of SIV), that was highly effective in controlling viremia in

non-human primate challenge studies (30–32), was seen to increase

susceptibility to HIV when tested in healthy people at risk of

developing HIV (33).

Additional complexities to studying viral cure include the lack

of validated biomarkers to reliably predict HIV-infected replication-

competent cells or immune correlates of protection to predict

effective responses (34, 35). Therefore, to accurately test if

investigational treatments are effective in preventing viral

rebound and eliminating virus-infected cells for a prolonged

period, PWH must undergo a period of antiretroviral treatment

interruption (ATI, 36). Although there are associated risks, ATIs

can be highly informative. In non-human primate preclinical trials,

some animals control after ATI and some initially rebound but then

undergo post-rebound viral suppression (37). Animals receiving an

additional intervention, such as broadly neutralising antibodies

(bnAbs) or immunomodulators (including therapeutic

vaccination), have been seen to undergo post-rebound control

more frequently than those receiving only ART (38).

In clinical ATI trials if viral rebound occurs, CD4+ T cell counts

could drop to low levels resulting in the resurgence of opportunistic

diseases (39). Thus, highly stringent trials are designed (involving

regular testing for HIV viremia and CD4+ T cell count) to ensure

people are placed back on ART as soon as viremia reaches a

potentially dangerous level (40). There are various views on what

these viral loads and CD4+ T cell count thresholds should be. Some

groups only necessitate resumption of ART after one reading above

500 000 copies/mL is obtained (41, 42), whilst for others one

reading above 1000 copies/mL triggers ART re-start (43–45);

others require six readings >1000 copies/ml, each one week apart

(46). The risks associated with prolonged viremia as a result of

overly lenient restart criteria include HIV transmission to

uninfected partners, expansion of the viral reservoir, immune
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exhaustion, and emergence of opportunistic infections (47). In

contrast, setting a too stringent threshold may result in potential

post-rebound controllers being missed. Thus, the optimal viral load

threshold to restart ART must balance the risks associated with

prolonged viremia as well as potential immune-mediated viral

control that can arise after initial rebound (48). Restart criteria

were defined in a collaborative meeting as a viral load >1000 copies/

mL for over 4 weeks or any single reading of >100,000 copies/mL,

and a CD4+ T cell count <350 cells/uL; this is due for further review

in 2024 (35). These thresholds can, however, only act as guidelines,

as there are few data available to define a gold standard for all

ATI trials.

Participants undergoing ATI trials have been documented to

have various views on the process. Some people react positively and

enjoy the experience of aiding scientific research whilst others

report feeling nervous and experiencing a sense of failure when

viral loads increase. This highlights the importance of thorough

education and psychological support during ATI trials to ensure

participants fully understand the process and are aware that they

have absolute authority to resume ART at any time point (49, 50).

Despite the limitations associated with the pre-clinical models

and clinical trial designs mentioned above, they have provided

valuable insight into HIV drug development. In this review, the

current cure strategies for HIV will be discussed focusing on bNAbs

used in combination with other treatments such as immune

modulators, chromatin remodellers, and therapeutic vaccines.
3 HIV cure strategies – an overview

An effective, practical cure for HIV is yet to be discovered. Stem

cell transplantation, with donor stem cells containing a CCR5

mutation (CCR5D32/D32) that prevents viral entry, has been the

only successful strategy to date (51). Although this method is highly

effective it has only been performed on patients requiring a

transplant for another life-threatening disease such as leukaemia

or lymphoma. It is too expensive and dangerous to use on every

person with HIV and thus alternative strategies must be identified.

Two different concepts for an HIV cure have been described: a

‘sterilizing’ cure in which HIV is eliminated from the body and a

‘functional’ cure where HIV is still present as a provirus but remains

permanently suppressed without the need for any treatment.

Although these terms are less widely used, different approaches

might be considered if the goal is complete viral eradication versus

long-term control. These strategies might be grouped into three

broad categories: immunological, transcriptional regulation and

genome editing. These strategies aim to either address the

problem of the latent HIV reservoir directly, or enhance immune

responses to eliminate circulating virus and infected cells, or both.
3.1 Immunological

Immunological strategies aim to achieve a functional cure by

enhancing an individual’s immune responses to induce life-long

protection against HIV. These interventions include therapeutic
Frontiers in Immunology 03
vaccines, bNAbs and immune modulators (such as toll-like receptor

(TLR) agonists). Some of these strategies – such as passive infusions

of bNAbs - have been successful in inducing long-term protection

in some individuals. However, as of yet, any desired protective effect

is temporary across most approaches, resulting in eventual viral

rebound in the vast majority of trial participants.
3.2 Regulation of transcription

Two different HIV cure approaches utilise transcriptional

regulation. The first, the “shock and kill” strategy, aims to achieve

a sterilizing cure by reactivating latent HIV provirus using latency-

reversing agents (LRA) such as immune modulators and chromatin

remodellers and then killing newly reactive cells with enhanced

immune responses brought about by increased antigen availability

(52). This strategy is often combined with immunological strategies

such as bNAbs, TLR agonists, Interleukin (IL) agonists, and

vaccines in an attempt to enhance the natural immune responses

required to eliminate the virus. Although this seems achievable in

theory, so far researchers have been unable to reactivate a large

enough proportion of the latent HIV reservoir to cause a significant

effect (53, 54). Furthermore, it is still uncertain whether bNAbs and

immune modulators are capable of enhancing long-term immune

responses that are potent enough to neutralise all circulating virus

and infected cells.

The other approach termed, the “Block and Lock” strategy, aims

to achieve a functional cure by utilizing latency-promoting agents

(LPA) to ‘permanently’ silence proviral genes and other treatments

(e.g. ART/bNAbs) to neutralise residual circulating virus (55). LPAs

must induce epigenetic silencing in all latently infected cells. This

brings about a deep state of latency which would limit viral rebound

after ATI and which is essential for this cure strategy to be effective

(56). So far attempts to achieve a deep, permanent state of latency

have been unsuccessful in clinical studies (57, 58). Regular dosing of

LPAs has not yet been successful in silencing the entire latent

reservoir thus it may be a challenge for permanent silencing to be

achievable with this strategy alone.
3.3 “Genome editing”

A potential exciting approach for a genome editing strategy

involves directly deleting proviral genomes from host cells using

CRISPR/Cas9, Zinc finger nucleases or TALEN-based technologies

and killing residual circulating virus with enhanced immune

responses (59). In theory, this would make viral rebound

impossible resulting in a sterilizing cure. Genome editing has not

yet been perfected for use on humans due to potential off-target

effects and has only been successfully achieved in vitro, in cell

culture, and in vivo with mouse and rat models (59–61). A study

investigating Zinc finger nucleases in vitro was able to successfully

excise full-length proviruses in 30% of cells without any cytotoxicity

(62). Even though this Zinc finger nuclease trial was relatively

successful in vitro, ideal delivery vehicles still need to be developed

that preferably only allow gene editing agents to enter infected cells,
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before this treatment can be tested on humans (55). Additional

strategies employing CRISPR/Cas9 involve mutating integrated

proviral HIV DNA to become replication incompetent, but with

the risk of viral escape through non-homologous end joining repair

of the DNA (63, 64).

An alternative approach is to use Zinc finger nucleases to induce

the CCR5D32 mutation in CD4+ T cells, thereby altering the

person’s own DNA, rendering them resistant to HIV. An example

of such modified cells was made by Sangamo BioScience and have

been used in human studies. In one trial the modified cells were seen

to have an estimated half-life of 48 weeks and declined at a much

slower rate (-1.81 cells/day) than unmodified cells (-7.25 cells/day)

during ATI. Furthermore, blood HIV DNA levels declined in the

majority of the participants with one person achieving undetectable

HIV RNA levels (65). In a different trial most participants only

experienced a slight delay in viral rebound after ATI (about 4

weeks) compared to historical controls receiving no treatment

(about 2 weeks), however, 3/14 participants (of which 2 were

naturally CCR5D32 heterozygous) experienced partial post

rebound viral control (VL<1000 copies/mL) accompanied by the

restoration of CD8+ T cell responses that was not seen with the

other 11 participants (66). The experienced viral control was thus

likely due to a combination of the modified cells preventing viral

entry and CD8+ T cells killing already infected cells. Although

genome editing appears to be an attractive HIV cure approach,

many ethical issues first need to be addressed, especially when

conducting these experiments on human embryos. In 2018, twins

genetically modified using CRISPR-Cas9 (modification in CCR5

gene) to be resistant to HIV were born. This was performed

unethically and illegally, and received serious backlash due to the

full consequences of genetically modifying embryos (such as the

modification being transferred through generations) still being

unknown (67). Despite these challenges, genome editing remains

a potent and promising treatment for a prospective sterilizing cure.
4 Broadly neutralising antibodies

Broadly neutralising antibodies (bNAbs) are antibodies

targeting conserved regions of the HIV Envelope protein (Env)

capable of neutralising multiple, diverse strains (68). These

antibodies either target epitopes in the CD4 binding site (VRC01

and 3BNC17), V1/V2 loop (PG16), V3 loop (10-1074 and PGT121),

membrane-proximal external region or gp120-gp41 proximal

interface of Env (69). The first generation of bNAbs were

produced using phage display and human hybridoma

electrofusion (70). These bNAbs were not very effective in

suppressing viremia and displayed inadequate potency and

breadth causing the rapid emergence of drug-resistant strains

(71). The newest generation of bNAbs were developed using

single-cell antibody cloning methods (based on BCR sequencing

and recombinant expression) and high throughput neutralisation

assays (70, 72–75). These bNAbs showed significant increases in

potency (10 – 100 fold) and breadth (2-fold) compared to the

previous generation (70). In non-human primate trials, animals

treated with these bNAb monotherapies showed rapid declines in
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Gag-specific T-cell responses (76). Additionally, when bNAb

cocktails were administered to non-human primates shortly after

SHIV infection (24hrs) there was no evidence of viraemia or

establishment of viral reservoirs, and although this may arguably

represent highly effective post-exposure prophylaxis in this animal

model (rather than treatment) it demonstrates the potential

antiviral potency of bNAbs (77).

Mixed success has been achieved in clinical trials with viraemic

PWHwhen using short-acting bNAbmonotherapy as resistant viral

variants rapidly emerge (78, 79). The need for broad coverage was

also an issue in two studies of bNAb monotherapy with VRC01 to

prevent infection of healthy people at risk of HIV (the AMP study).

The investigators concluded that there was no protection versus

placebo for the cohort as a whole, but there was evidence of some

protection against VRC01-sensitive strains (75% efficacy, 80, 81).

Administering combinations of bNAbs has proven to be much

more successful for treatment – especially in the context of

concurrent ART - and reduces the frequency of viral escape

mutations when both bNAbs are at therapeutic levels (82).

bNAbs are being optimized to further increase their potency and

breadth. One such optimization is the modification of two amino

acids (M428L and N434S) in the Fc region of the antibody (83).

This renders the antibodies LS variants with an extended half-life

due to their increased binding affinity to the neonatal Fc receptor

which promotes antibody recycling instead of degradation (70, 83).

This modification has been shown to increase the period to post-

treatment viral rebound, in many participants (84), and may have

particular value for hard-to-reach populations.

bNAbs facilitate neutralisation of circulating virus through

direct binding via the Fab fragment thereby preventing viral entry

into cells. They also promote the activation of other components of

the immune system using their Fc fragments by allowing for the

opsonization of virus by antibody-dependent cellular phagocytosis,

antibody-dependent cellular cytotoxicity, and activation of the

complement cascade (Figure 1A, 85). Additionally, it has been

postulated that bNAbs induce a ‘vaccinal effect’ (86). The exact

mechanism underlying this ‘vaccinal effect’ is yet to be proven and it

is still uncertain which immune cells are primarily responsible.

However, it is suggested that the ‘vaccinal effect’ is a process

whereby antibody-virus immune complexes form and enhance

antigen processing, presentation, and subsequently proliferation/

activation of immune cells (86, 87). A person displaying a vaccinal

effect should experience viral control off ART when bNAb levels

have waned to below therapeutic levels, along with the emergence of

a potent, long-lasting immune response.

CD8+ T cells are potentially key to this ‘vaccinal effect’ as seen

in studies of HIV ‘elite controllers’ and demonstrated in some non-

human primate trials (88). The role of CD8+ T cells in viral control

has been observed in macaques receiving only ART. During ATI

CD8+ T cells were shown to be responsible for maintaining a lower

and stable viral setpoint in untreated macaques compared to those

treated with anti-CD8+ monoclonal antibodies (89). In humans,

HIV ‘elite controllers’ are seen to have increased CD8+ HIV-

specific T cell responses compared to non-controllers, thus, CD8+

T cells are suspected to play a critical role in prolonged viral
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suppression (88). Although CD8+ T cells are thought to be a major

factor contributing to viral control it is likely many other

mechanisms are at play. For example, viral relapse has also been

linked to the loss of antibody induction when CD4+ T cells are

depleted suggesting that autologous antibody responses and T cells

combine forces to control HIV, with the former helping prevent

CD8+ T cell escape (90).

In a study by Nishimura et al. a significant proportion (46%) of

SHIV-infected macaques that received bNAb therapy were able to

maintain post-treatment viral suppression (undetectable viral

loads) during ATI and after bNAb levels had waned. When anti-

CD8+ monoclonal antibodies were administered to deplete CD8+ T

cells viral rebound rapidly occurred in all the macaques suggesting

that CD8+ T cells were responsible for maintaining viral

suppression during ATI (91). This highlights that bNAbs could

be part of an effective long-term treatment or cure for HIV, through

CD8+ T cell induction. However, the postulated ‘vaccinal effect’ has

not yet been conclusively observed in bNAb clinical trials and more

studies are needed (92, 93).
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comes from studies in which they are given as passive infusions.

Alternative strategies that allow for long term expression of bNAbs

in vivo have been trialled in non-human primates with promising

results. The intramuscular administration of adeno-associated virus

(AAV) expressing antibody like-neutralising proteins was able to

protect against virulent SIV infection 4 weeks after AAV

administration with 6/9 monkey remaining uninfected after

challenge (94). In a different study a monkey that received a

single dose of AAV coding for an anti-SIV antibody was able to

express antibody continuously for 6 years, withstanding 6 different

SIV challenges of increasing infectious dose (95). Although much

success has been achieved with the long-term expression of bNAbs

in non-human primates, translating these effects to humans is

challenging. In clinical trials testing HIV-bNAb expressing AAVs,

antibody levels are not maintained at high serum titers due to

multiple reasons including anti-drug antibodies and preexisting

immunity to the vector. However, in some participants high bNAb

concentrations have been described in the serum for up to 3 years.
FIGURE 1

Diagram explaining the mechanism of action of HIV treatment strategies involving (A) bNAbs; used in combination with (B) immune modulators,
(C) chromatin remodellers, and (D) therapeutic vaccines. (A) bNAbs mechanism of action has been described as inhibiting viral entry into cells via
direct neutralisation (1), activating various immune cells via opsonization (2), and killing virus-infected cells via ADCC (3). (B) Immune modulators
such as TLR9 agonists bind to receptors that activate signalling cascades in immune cells, resulting in proinflammatory cytokine gene expression,
and as a result, HIV gene expression is also induced in once latently infected cells. Proinflammatory cytokines and bNAbs activate and enhance
specific CD8+ T cell cytotoxic responses (release of perforin and granzyme) which are able to destroy newly activated CD4+ T cells that are
presenting HIV peptides on HLA-I. (C) Chromatin remodellers such as HDAC inhibitors prevent the removal of acetyl groups from histone tails. As a
result, nucleosomes are forced to remain further apart, keeping DNA in an open, transcriptionally active state. HIV gene expression is thus induced,
reactivating the latent reservoir. Virus-infected cells are now recognized by CD8+ T cells that have been activated by bNAbs resulting in infected cell
death. (D) HIV therapeutic vaccines should ideally amplify cellular immune responses, thereby additively enhancing CD8+ T cell activation along with
bNAbs, as well as humoral (B cell) immune responses, initiating the production of neutralising antibodies towards a vast array of conserved epitopes.
Additionally, these effective responses should be retained by memory T and B cells allowing sustained viral suppression when no therapy is taken,
thereby bringing about a functional cure. Ac, acetyl group; ADCC, antibody-dependent cellular cytotoxicity; bNAbs, broadly neutralising antibodies;
HDACi, histone deacetylase inhibitor; HIV, human immunodeficiency virus; NK, natural killer cell; TLR, toll-like receptor.
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None of these clinical trials have tested the treatments’ ability to

suppress HIV off ART (96, 97). Whether the persistent bNAb

expression using AAV delivery also drives a CD8+ T cell

response or ‘vaccinal effect’ (as demonstrated following bNAb

passive infusions) is not known, but raises potentially interesting

questions for further study.

Limitations associated with bNAbs include the prevalence of

pre-existing resistance, that they may only moderately reduce the

size of the latent reservoir, and that resistant viral variants readily

emerge (70, 98). As bNAbs are likely only effective in people

harbouring antibody-sensitive viruses this may necessitate viral

screening before administration. This – and geographical viral

diversity – may impact the full value of bNAbs as therapy. To

date, most studies have taken place in the U.S. and Europe targeting

predominantly B clade HIV, and results may not translate to other

clades and other regions. Although dual bNAb therapy has proven

to be an extremely promising therapy for the treatment of HIV

bNAb induced viral suppression is still temporary and short lived in

some participants. Whether – as for ART – a three bNAb cocktail is

needed for long-term efficacy is not clear. Concerningly, in one

Phase 1 trial testing the bNAbs PGDM1400, PGT121 and VRC07-

523LS on ART naïve PWH, plasma HIV RNA levels were

noticeably decreased after administration, however, viral rebound

occurred within a median of 20 days after nadir (99). How a triple

bNAb regime would sustain control in PWH on ART and then

undertaking a TI is an important follow-up research question.

Other adjunctive treatments such as immune modulators,

chromatin remodellers or vaccines may also enhance the efficacy

of bNAbs, and are the focus of the rest of the review.
5 Enhancing bNAbs with
immune modulation

Combining bNAbs with immune modulators may enhance

their potential for viral suppression and this is being tested in

clinical trials. Current immune modulators being assessed include

signalling agonists (such as TLR, IL, and Interferon (IFN) agonists).

These signalling agonists facilitate the transcription of type I IFN

and proinflammatory cytokine genes via the nuclear factor-kB (NF-

kB) pathway thereby enhancing antiviral/cell-mediated immune

responses (such as phagocytosis, T cell proliferation, dendritic cell

(DC) maturation, and NK cell activation) targeting HIV (100).

Additionally, it has been shown that activation of the NF-kB
pathway via TLR agonist-receptor binding also mediates

activation of the latent integrated HIV provirus (101–104). This

could result in the expression and presentation of HIV proteins on

the HLA-I complex of once ‘hidden’ T cells allowing them to now be

recognized and killed by the immune system (Figure 1B).

A humanized mouse trial testing cytotoxic T-lymphocyte

associated protein 4 (CTLA4), I-BET151 (immune modulators)

and Vorinostat (histone deacetylase inhibitor) with the bNAbs,

3BNC117, 10-1074 and PG16 in one treatment showed that a single

inducer along with the bNAbs had no significant effect on viral

rebound but that a combination of all the inducers with bNAbs

significantly decreased the number of rebounding animals (105).
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This shows how the various inducers and bNAbs might work

synergistically to reduce the chances of viral rebound and

supports the use of combination therapies with bNAbs as a

longer-term treatment for HIV.

Similarly, many non-human primate trials have tested

combinations of immune modulators and bNAbs in SHIV-

infected macaques. Two trials tested the efficacy of the TLR7

agonist, Vesatolimod and bNAb, PGT121. The first trial by

Borducchi et al., initiated the ART and TLR7-bNAb combination

treatment early, during acute SHIV infection (7 days post-SHIV

infection, 106). At the end of the trial, 55% of the animals

rebounded (at a median of 112 days vs 21 days in control) and

no induction of CD8+ T cell responses were seen in any of the

animals. The absence of CD8+ T cell responses was potentially due

to low antigen availability because of early ART treatment

intervention. In all animals that maintained viral suppression,

SHIV RNA remained undetectable after CD8+ T cell depletion

suggesting this combination potentially eliminated the viral

reservoir (106). Although this trial yielded success in maintaining

viral suppression in almost half of the animals, initiating treatment

very early in infection limits the size and diversity of the viral

reservoir and therefore does not resemble what is feasible in the

majority of people living with HIV. The trial by Moldt et al.

translates more readily into a clinical setting as ART was initiated

during chronic infection (a year after SHIV infection, 107). In this

study, the TLR7-bNAb combination treatment was initiated 2.5

years after initiation of ART. After ATI only 50% of the

combination treatment animals rebounded compared to 100% in

the placebo group. Similarly to Borducchi’s study, 71% of the

animals that maintained viral suppression remained aviremic

after CD8 + T and NK cell depletion, suggesting that the

reservoir may have also been eradicated in these animals (107).

These non-human primate trials show that the TLR7 agonist and

PGT121 combination suppresses viral rebound in some SHIV-

infected macaques but that viral suppression is not solely due to

CD8+ T cells and the vaccinal effect, but also reservoir eradication.

There are many clinical trials testing combinations of bNAbs

with immune modulators in the pipeline. Many are still ongoing

(NCT05281510, NCT05245292, NCT04340596, 108–110),

whilst one has presented provisional results at a conference

(NCT03588715 - BEAT-2, 111) and the other is completed and

results have been published (NCT03837756 – TITAN Trial, 112). In

the TITAN trial, the TLR9 agonist, Lefitolimod, and bNAbs (10-

1074 and 3BNC117) were administered in combination and

individually to PWH during ATI (28). The time to viral rebound

was 0.5, 12.5, and 9.5 weeks longer than the placebo in the

Lefitolimod only, bNAbs only, and Lefitolimod plus bNAbs

groups, respectively. In general, HIV-specific CD8+ T cells were

significantly increased in patients with higher viral loads but non-

significantly increased in patients with lower viral loads suggesting

that the increase was not due to the vaccinal effect but rather an

increase in antigen availability. Furthermore, there was no change

seen in Gag-specific CD8+ T cell responses or Gag-induced

cytokine release. The authors proposed that the combination

treatments’ inability to broadly stimulate cellular immunity was

due to low amounts of antigen available at bNAb administration as
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the interventions were administered before ATI was induced. This

suggests that administering immunostimulatory molecules in the

same location and time where antigen is available may be

important. This study showed that the addition of Lefitolimod

added no clinical or immunological benefit to participants during

ATI, and that the co-administration of Lefitolimod with bNAbs

acted antagonistically leading to a significantly faster decline in

bNAb serum concentrations compared to bNAbs alone (28). In the

BEAT-2 trial where the immune modulator peginterferon alfa-2b

and bNAbs (3BNC117 and 10-1074) were co-administered

provisional results show that 86% of the participants maintained

viral suppression for at least 26 weeks with 40% of these individuals

not meeting ART restart criteria (and were still suppressing

viremia) after the 38-week ATI (113). Despite the success of the

treatment in inducing viral suppression, the combination did not

decrease the reservoir size and there was no overall increase in HIV-

specific T-cell responses.
6 Enhancing bNAbs with latency
reversing agents

Chromatin structure plays a role in inhibiting HIV gene

expression in latently infected cells. HIV proteins alter chromatin

remodelling complexes as part of their natural cycle thereby

controlling HIV latency and reactivation (114). Chromatin

remodelling drugs such as histone deacetylase inhibitors (HDACi)

can activate genes by altering the positioning of nucleosomes (115).

HDACi prevent the removal of acetyl functional groups on histone

lysine residues forcing the nucleosomes further apart thereby

allowing DNA to remain in an open, transcriptionally active state

(Figure 1C, 116). Additionally, the ‘Smac mimetic’ AZD5582 (a

mimetic of the second mitochondrial-derived activator of caspases

that antagonises apoptosis inhibitor proteins), can activate the non-

canonical NF-kB signalling pathway and as a result induce HIV or

SIV expression in humanized mice or non-human primates,

respectively, thereby acting as a potent LRA in these models

(117). AZD5582 has been tested in combination with four SHIV-

specific rhesus monoclonal antibodies and the IL-15 superagonist,

N-803 in SHIV-infected, ART supressed rhesus macaques (118).

The trial showed that using AZD5582 in this combination resulted

in a significant reduction of total and replication competent SIV

DNA in lymph node derived CD4+ T cells compared to either of the

treatments alone, indicating this combination successfully reduced

the viral reservoir (118). In this study the bNAb-LRA combination

worked additively to yield a greater effect than each intervention in

isolation. Despite AZD5582 success in isolation and in combination

with bNAbs in non-human primates, the drug has not yet been

optimised for use in humans (119). As of yet, HDAC inhibitors are

the only LRAs that have been used in combination with bNAbs in

clinical trials. The HDAC inhibitors used in these clinical trials

include Vorinostat and Romidepsin. Three clinical trials testing the

combination treatment of bNAbs and HDAC inhibitors have been

published to date.
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Two of these trials tested the efficacy of the bNAb, 3BNC117,

and HDACi, Romidepsin, in PWH during ATI. The trials differed

in that one administered the treatment along with ARVs to people

who had never initiated ARV therapy before (NCT03041012 –

eCLEAR, 120, 121), whereas the other administered the treatment

with ARVs to people who were virologically suppressed and taking

ARVs for at least 18 months (NCT02850016 – ROADMAP, 92,

122). The eCLEAR trial reported increased elimination of plasma

viruses and infected cells after treatment. Additionally, 80% of

participants with pre-ART 3BNC117 sensitive viruses exhibited

ART-free virological control for at least 12 weeks. The

combination treatment also enhanced HIV-Gag-specific CD8+ T

cell immunity (measured by the AIM assay) compared to ART

alone. However, the combination of Romidepsin and 3BNC117 did

not enhance clearance of the viral reservoir and maintain viral

control more than 3BNC117 on its own. Therefore, Romidepsin

exhibited no immunostimulatory or latency-reversing additive

effect. In contrast, the ROADMAP trial yielded disappointing

results with the same combination treatment. The combination

treatment (Romidepsin and 3BNC117) did not significantly reduce

HIV DNA or delay viral rebound when compared to Romidepsin

alone (median time to viral rebound was 18 days and 28 days in the

combination and Romidepsin-only groups, respectively).

Additionally, no change in the size of the latent reservoir and no

enhancement in HIV-specific cellular immunity was observed in

either of the groups. The difference in success observed between the

two trials may be due to the eCLEAR trial containing participants

who were ART naïve at trial commencement. The immune

responses induced by initial antigen availability could have been

enhanced during treatment and throughout ATI as opposed to

participants in ROADMAP where antigen, and as a result, likely

immune responses, had been absent for over a year. Nevertheless,

regardless of when ART was initiated, both trials showed that the

combination of Romidepsin and 3BNC117 was no more effective in

preventing viral rebound, decreasing the latent viral reservoir, and

increasing HIV-specific cellular immunity than bNAbs alone.

The other clinical trial (NCT03803605 - VOR-07, 123) tested

the efficacy of the bNAb, VRC07-523LS, and the HDACi,

Vorinostat in stimulating expression of proviral HIV from resting

CD4+ T cells whilst participants remained on uninterrupted ART

(124). The combination therapy was unable to reduce low-level

viremia or the latent HIV reservoir suggesting that the T cells

induced by the combination treatment may be incapable of

eliminating small populations of persistently infected cells when

viral replication is inhibited by ART. Once again, these studies

question the role of HIV antigen availability in stimulating strong,

HIV-specific CD8 + T cell immune responses (88, 125).
7 Background to therapeutic HIV
vaccines as a potential

The immune responses elicited by HIV ‘elite controllers’ are key

to maintaining viral suppression off ART (88) and are a model that
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aims to be replicated by therapeutic vaccines (126). However,

vaccine development is challenging due to HIV’s vast genetic

diversity and high mutation rate (127). It is extremely difficult to

find immunogens that are capable of eliciting broad and robust

immune responses to all HIV strains and their possible escape

mutants (128, 129). Nevertheless, many HIV therapeutic vaccines

have been able to induce broad and effective cellular and humoral

immune responses but none have been able to reduce the viral

reservoir and prevent viral rebound (93, 130–132), challenging our

understanding of the key correlates of protection.

In attempts to develop a functional cure, many researchers have

designed various types of vaccines against HIV. These include, but

are not limited to, DNA vaccines, viral vectored vaccines, RNA

vaccines, inactivated vaccines and subunit vaccines (133).
7.1 DNA vaccines

DNA vaccines are recombinant bacterial plasmids containing a

target gene encoding the vaccine antigen. In theory, DNA vaccines

should be advantageous over some other vaccine types as they can

induce both cellular (T cell) and humoral (antibody) immune

responses without inducing anti-vector immunity and are easier to

design and manufacture (134). However, in reality, most of these

vaccines are only modestly immunogenic. In attempts to enhance the

immunogenicity of DNA vaccines, adjuvants such as IL-12 and IL-15

have been added to vaccine formulations and methods have been

developed to improve vaccine delivery e.g. through intradermal

routes or electroporation (135, 136). These enhancements have had

varying effects on the immunogenicity of DNA vaccines. In a study

conducted by Jacobson et al. a multi-antigen DNA therapeutic

vaccine was tested that encodes the HIV genes gag, pol, nef, tat, vif

and env (MAG) alone and with a plasmid encoding the IL-12 gene

administered at different concentrations (50ug, 250ug, 1000ug) via

intramuscular injection combined with electroporation (135). The

only significant response (measured by ICS) compared to placebo

was the increase in IL-2-producing CD4+ T cells from baseline to

week 14 in the MAG+IL-12(50ug) group, but no significant CD8+ T

cell responses were observed (135). Seeing as the greatest response

was induced by the lowest concentration of IL-12, higher IL-12

concentrations may induce negative-regulatory pathways that

suppress T-cell responses. Although the MAG+IL-12(50ug) vaccine

combination appeared to perform better than the MAG vaccine

alone, the addition of IL-12 did not increase CD8+ T cell responses.

Some success has been achieved in the HVTN 070 and 080 studies

testing the DNA vaccine PENNVAX-B (PV) alone, with IL-15 (0.8mg

or 2mg) or with IL-12 (1.5mg or 1mg) administered via intramuscular

injection (6mg) or intramuscular injection combined with

electroporation (3mg, 136). The results showed that electroporation

significantly increased the number of CD4+ and CD8+ T cell vaccine

responders compared to intramuscular injection, despite containing

only half the dose. In the electroporation group, the addition of IL-12

insignificantly increased the number of responders however in the

intramuscular group both the addition of IL-12 and IL-15 resulted in a

similar number of responders compared to PV alone. This study
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highlights electroporation ’s superior ability to enhance

immunogenicity and reduce the dose of vaccine required and

demonstrates IL-12s potential to further increase immunogenicity if

administered via electroporation.

Another study testing a multi-HIV antigen DNA vaccine,

encoding Subtype B Rev, Nef, Tat, sections of Gag and an array

of Pol and Env coded CTL epitopes, in ART naïve PWH who were

infected with Subtype C viruses. Despite the discrepancy between

the subtype of the vaccine and virus with which the participants

were infected, significantly enhanced HIV-specific CD4+ and CD8+

T cell immune responses and a slight decrease in viral load were

observed in the test group compared to placebo (137). In other

DNA vaccine trials, although immune responses are sometimes

enhanced, effects on viral load or viral replication are rarely

seen (134).
7.2 Viral vectored vaccines

Viral vectored vaccines are recombinant viruses, containing a

target gene encoding the vaccine antigen, rendered non-pathogenic/

attenuated through the removal of genes involved in virulence. Most

viral vectored vaccines are replication incompetent (genes involved

with replication are removed) to improve their safety profile and to

prevent off-target effects. Common viral vectors used for HIV

vaccines include Poxviruses (e.g. the vaccinia viral vectors, New

York Vaccinia (NYVAC) and Modified Vaccinia Virus Ankara

(MVA), canarypox (ALVAC) and fowlpox), Adenoviruses (e.g.

Chimpanzee Adenovirus (ChAd) and Human Adenoviruses (HAd)

serotypes 5, 26 and 35) and Rhabdoviruses (e.g. Vesicular Stomatitis

Virus (VSV), 138). Viral vectored vaccines are advantageous in that

they elicit both potent antibody responses as well as cell-mediated

immune responses. They are highly immunogenic on their own

(don’t require an adjuvant) and are known to induce long-lasting

immune responses that often only require a single dose (139). A key

disadvantage associated with these vaccines is pre-existing immunity

towards the viral vector. Pre-existing immunity can greatly decrease

the efficacy of the vaccine by accelerating its elimination from the

body or can cause severe side effects as a result of the immune

reaction to the vector (140). Pre-existing immunity is only a problem

when using viral vectors that normally infect humans such as the

human adenoviruses or MVA (often in older people who were

vaccinated against smallpox). There is also conflicting data that

suggests pre-existing immunity may arise when the same viral

vector is repeatedly administered to people as part of the same or

different vaccine regimen thereby potentially neutralising the effect of

other essential vaccines build on the same vector platform, but this is

yet to be fully proven (141, 142).

Pre-existing immunity was seen to be a major problem during

the STEP HIV prophylactic vaccine trial where a Human

Adenovirus type 5 vaccine was used (143). In this trial, the

vaccine group was associated with increased susceptibility to HIV

compared to placebo (144). As a result, when designing viral

vectored vaccines for HIV, one option is to use non-human

adenoviral vectors boosted with a different vector or completely
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different vaccine. However, non-human adenoviral vectors or

vectors with a very low seroprevalence in humans are not without

fault. A rare side effect (Thrombosis with Thrombocytopenia

Syndrome) was observed after vaccination with AstraZeneca’s

SARS-CoV-2 vaccine (ChAdOx1-S) resulting in its withdrawal

from the market in the European Union (145, 146). This vaccine

utilised a Chimpanzee adenoviral vector and thus caution should be

taken when developing HIV vaccines with this vector in the future.

Furthermore, the use of vectors with low pre-existing immunity

does not necessarily make for an effective vaccine as seen with the

Phase 3 Mosaico HIV trial (HPX3002/HVTN706) where a low sero-

prevalent vector, Adenovirus 26, was utilized (Ad26.Mos4.HIV,

147). The study was discontinued as the vaccine was seen to be

ineffective at preventing the acquisition of HIV compared to

placebo (148, 149).

More recently cytomegalovirus vectors (RhCMV) expressing

SIV have been designed and tested in Rhesus macaques. The first

generation of these vectors was effective in eliciting long lasting,

broad cellular immune responses capable of protecting against

pathogenic SIV mucosal challenge (150, 151). The macaques

became infected with SIV after challenge, however, over time viral

replication and spread was completely arrested, resulting in

progressive viral clearance until challenged protected macaques

were indistinguishable from control macaques – this method of

control was termed “control and clear” (150, 152). Despite the

RhCMV vectored vaccines great success, these vaccines were

replication competent making their safety questionable for use in

humans (153). This led to the development of an attenuated SIV

RhCMV vectored vaccine with improved safety and retained ability

to induce effective cellular immune responses capable of protecting

against intravaginal SIV challenge using the “control and clear”

concept. This vaccine was able to clear SIV infection in 59% of

infected macaques and of these macaques 75% were able to control

a second SHIV challenge three years after the last vaccination (153).

Human CMV vectored vaccines harbouring HIV have not yet been

developed and tested in humans but are awaited with interest (154).
7.3 RNA vaccines

mRNA vaccines contain a single-stranded piece of RNA

encoding the target vaccine antigen of interest. Some nucleotides

are modified in the RNA strand to extend half-life, decrease

backbone immunogenicity and enhance translation (155). The

RNA is encapsulated in delivery molecules, l ike lipid

nanoparticles (LNPs), to allow for efficient uptake and expression

by cells (156). mRNA vaccines pose many benefits such as being

highly efficacious in inducing strong immune responses, having

favourable safety profiles, and being easy to design and manufacture

on a large scale (157). mRNA vaccine technology is still relatively

new and thus clinical trials testing HIVmRNA vaccines are yet to be

completed. However, rhesus macaque data is promising with strong

humoral and cellular immune responses being elicited by mRNA

vaccines at relatively low doses (158–160). Two phase 1 mRNA

vaccine clinical trials currently underway in HIV-uninfected adults

include the HVTN302 trial (NCT05217641, 161) testing 3 different
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mRNA vaccines (BG505 MD39.3 mRNA, BG505 MD39.3 gp151

mRNA or BG505 MD39.3 gp151 CD4KO mRNA) and the

IAVIG002 trial (NCT05001373, 162) testing the eOD-GT8 60mer

mRNA Vaccine (mRNA-1644) and Core-g28v2 60mer mRNA

Vaccine (mRNA-1644v2-Core).
7.4 Inactivated vaccines

Inactivated vaccines are composed of whole virus that has been

inactivated or killed via heat, chemicals or radiation - with

formaldehyde and beta-propiolactone being the most common

method for human vaccines (163). Very few inactivated vaccines

have been designed for HIV to date. This is due to potential

concerns of incomplete inactivation, technical challenges involved

with vaccine manufacture and the known poorer immunogenicity

associated with inactivated vaccines (164). However, inactivated

vaccines are beneficial in their ability to present multiple antigens in

their native conformation to the immune system which aids in the

production of broadly neutralising antibodies (164). One intriguing

inactivated HIV vaccine (SAV001) has been developed and tested in

a clinical trial with PWH on ART (NCT01546818, 165, 166).

SAV001 is a clade B HIV-1 virus genetically modified to be less

virulent but more replication efficient (nef and vpu genes deleted)

than the original virus, that is “killed” by inactivation with

aldrithiol-2 and g-irradiation. This vaccine was shown to be safe

and effective in generating antibodies towards HIV p24, p17, gp120,

and gp41 proteins as well as trimeric HIV Env glycoproteins on

infected cells surfaces. Additionally, about 50% of participants

showed an enhancement of broadly neutralising antibodies from

baseline against HIV-1 B (tier I and II), D, and A subtypes using a

luciferase-based assay to measure neutralisation activity. However,

as ATI was not performed it is unknown whether the antibodies

elicited by the vaccine are protective enough and capable of

preventing viral replication.
7.5 Subunit vaccines

Subunit vaccines contain purified or recombinant

immunogenic antigens of the virus that are responsible for

inducing protective immune responses. Subunit vaccines only

contain isolated parts of the virus making them a safe, although

potentially less immunogenic, option. This makes adjuvants an

essential component of the subunit vaccine formulation (167).

Optimal recombinant immunogens that mimic the native

conformation of the viral envelope spike of env are yet to be

designed resulting mostly in a subpar elicitation of broadly

neutralising antibodies by these vaccines (168–170). HIV-1 gp160

and gag p24 subunit vaccines have both been seen to induce HIV-

specific immune responses and improve CD4+ T cell counts (171,

172). Most success has, however, been found when combining

multiple HIV peptides into a singular recombinant subunit

vaccine. An example of such a therapeutic vaccine is Vacc-4x,

which contains four synthetic peptides of the HIV core protein, p24.

Vacc-4x was seen to be safe, immunogenic and effective in reducing
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TABLE 1 Summary of the results of clinical trials involving bNAbs and other therapeutic interventions (immune modulators, chromatin remodellers and therapeutic vaccines).
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NCT02850016 (122) ROADMAP (92) HDACi: Romidepsin
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TABLE 2 Summary of the current and future clinical trials involving bNAbs and other therapeutic interventions registered on clinicaltrial.gov.

Primary endpoint
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inistration

Safety (occurrence of adverse events)
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placebo-controlled, double-blind
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Safety and tolerability; Antiviral activity measured by the
percentage of participants who maintain plasma HIV
RNA <1000 copies/mL; Frequency of epitope recognition
measured by ELISPOT; Total IgG (including subclass)
antibody titre

en-labelled trial
initiated ART during acute
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Safety and time (days) from ATI to sustained viral
rebound of ≥1000 copies/mL for 4 consecutive weeks

open-labelled trial
RT (>18 months)
hout trial

Safety (Grade 3 or above severe local and systemic
adverse events)

two-arm, double-blind placebo-

initiated ART during acute

inistration

Safety (occurrence of adverse events) and number of
participants with viral control during ATI (VL< 1000
copies/mL at week 16)

uble-blinded, placebo-controlled

have or will initiate ART during

atment administration

Safety and impact on viral load setpoint after viral
rebound during ATI

chimpanzee adenoviral vector; ELISPOT, enzyme linked immunospot assay; HDACi, histone deacetylase
IV; RNA, ribonucleic acid; TLR, toll like receptor; VL, viral load.
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Trial Name Intervention Study Design

NCT05281510 (108) GS-US-382-5445 TLR7: Vesatolimod
bNAbs: VRC07-523LS, CAP256V2LS

Phase 2a, open-labelled,
Participants: PWH on A
ATI after treatment adm
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ml)
ATI after treatment adm

NCT04340596 (110) ACTG A5386 IL-15 superagonist complex: N-803
bNAbs: VRC07-523LS, 10-1074

Phase 1, randomised, op
Participants: PWH on A
ATI after treatment adm

NCT04983030 (178) None specified Vaccine: Ad26.Mos4.HIV prime; MVA-BN-HIV boost.
bNAbs: PGT121, PGDM1400, VRC07-523LS

Phase 1/2a, randomised
trial
Participants: PWH on A
ATI after treatment adm

NCT05769569 (179) RV582 Vaccines: Ad26.Mos4.HIV; MVA-BN-HIV; A244d11
gp120/ALFQ
bNAbs: VRC07-523LS, PGDM1400LS
Superagonist IL-15 complex: N-803

Phase 1, randomised, op
Participants: PWH who
infection
ATI after treatment adm

NCT03619278 (181) HIVACAR Vaccine: mRNA encodingHTIwithTriMiXmRNA prime;
MVA.HTI boost
bNAb: 10-1074
HDACi: Romidepsin

Phase 1/2a, randomised
Participants: PWH on A
ART maintained throug

NCT06071767 (180) A5374/HIV-CORE 009 TLR7: Vesatolimod
bNAbs: 3BNC117-LS, 10-1074-LS
Vaccine: ChAdOx1.tHIVconsv1 + 62; MVA.tHIVconsv3
+ 4

Phase 1/2a randomised,
controlled trial
Participants: PWH who
infection
ATI after treatment adm

NCT06484335 (182) ACHIEV Vaccines: ChAdOx1.tHIVconsv1, ChAdOx1.HIVconsv62
prime, MVA.tHIVconsv4, A244d11 gp120/ALFQ
bNAbs: VRC07-523LS, PGDM1400LS

Phase 1, randomised, do
trial
Participants: PWH who
acute infection
ATI during and after tre

Ad26, human adenovirus type 26; ART, antiretroviral therapy; ATI, antiretroviral treatment interruption; bNAbs, broadly neutralising antibodies; ChAdOx
inhibibtors; HIV, human immunodeficiency virus; HTI, HIVACAT T-cell immunogen; IL, interleukin; MVA, modified vaccinia Ankara; PWH, people with H
,

,

,
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viral load (threefold reduction) when tested in a clinical trial,

however, complete viral suppression was not induced (173).
7.6 Therapeutic vaccine combinations
(clinical trials)

In attempts to maximize the benefits associated with the various

vaccines discussed above, many trials use different vaccines in a

combinatorial approach as part of a prime-boost vaccination strategy.

In the majority of HIV vaccine trials using different vaccine

combinations, long-lasting viral suppression is not maintained during

ATI. No significant effect on viral rebound was observed when using an

HIVpDNA/IL-12 prime and rVSV gag boost vaccine (93). However,

more promising results were seen in the AELIX-002 trial

(NCT03204617, 174), which tested the efficacy of three different HIV

therapeutic vaccines containing the HTI (HIVACAT) T-cell

immunogen (175). The vaccine formulations tested in the trial

included DNA.HTI, MVA.HTI and ChAdOx1.HTI. Of the vaccine

recipients with no beneficial HLA class I controller alleles, 40%were able

to continue ATI for 22 weeks as their plasma viral loads were below

10,000 copies/mL compared to only 8% of the placebo recipients.

Additionally, the vaccine combination was able to induce robust,

polyfunctional, and broad CD4+ and CD8+ T cell responses

compared to the placebo group. Despite the vaccine immune

responses being prominent and time to re-starting ART being delayed

in the vaccine group, the criteria for re-start was a plasma viral load
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above 10,000 copies/mL, and a number of participants had detectable

viral loads. This study demonstrates the promise combination vaccines

might hold if administered in tandem with other treatments like LRAs

and bNAbs. The majority of the vaccines described above have been

shown to induce robust T-cell responses whilst LRAs [Romidepsin

(120)]/immune modulators [Lefitolimod (28), peginterferon alfa-2b

(113)], and dual bNAb therapies [10-1074-LS, 3BNC117-LS (82)] are

thought to induce longer-term viral suppression off ART and sometimes

cause reductions in the latent reservoir (69). Thus, the additive effects of

these two treatments could prove to be invaluable in finding a cure or

longer-term treatment for HIV.
8 Enhancing bNAbs with
therapeutic vaccines

Neither bNAbs or vaccines alone have so far been able to

consistently induce sustained viral control off ART in PWH.

However, each has shown potential promise on their own. This

raises the question of whether combining bNAbs with vaccination

(and possibly other immune modulators) might be immunogenic

enough to induce long-term viral remission. If an HIV vaccine

combined with bNAbs is able to produce a strong, long-lasting, and

specific cellular and humoral immune response against HIV, viral

suppression could be mediated by the body’s own cells instead of

ART (Figure 1D). This, in theory, would prevent viral rebound

when no treatment is taken, bringing about a functional cure.
FIGURE 2

Diagram illustrating mechanisms in which different treatment combinations interact to yield various effects. Therapeutics do not always yield additive
effects when used in combination. As seen with the many different types of HIV treatment combinations, the effect can either be antagonistic,
additive, synergistic or neutral. Antagonistic treatment combinations (left) have a reduced effect when used in combination compared to individually.
Non-antagonistic treatment combinations (middle) yield the same effect when used in combination vs individually. Whilst additive/synergistic
treatment combinations (right) have an enhanced effect when used in combination compared to individually. Additive and synergistic both refer to
an enhanced effect but they differ in the magnitude of enhancement. An additive interaction is when the effect of the combination treatment equals
the sum of the effects of each treatment individually whereas a synergistic interaction is when the effect of the combination treatment is greater
than the sum of the effects of each treatment individually. bNAbs, broadly neutralising antibodies.
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A non-human primate trial testing the TLR7 agonist

vesatolimod, bNAb PGT121, and Ad26/MVA vaccination

combination on SHIV-infected macaques supplied evidence for

the potential additive effect of multiple therapeutic interventions

administered together (38). Compared to the control group where

15/15 macaques rebounded, 8/12 (66%) rebounded in the PGT121

plus vesatolimod group (of which one subsequently controlled) and

6/10 (60%) rebounded in the triple combination group, of which

three showed subsequent control. Overall, the triple combination

treatment performed the best with 70% of the animals controlling at

the end of the study compared to 41% and 33% in the Vesatolimod-

bNAb and Vesatolimod-vaccine groups, respectively. This study

supports the concept that vaccines and bNAbs may combine

effectively to achieve viral suppression in the absence of ART.

Many clinical trials incorporating different combinations of

vaccine types, immune modulators, chromatin remodellers, and

bNAbs are in the pipeline. One trial has presented some provisional

results at a conference (NCT04357821, 176, 177). This trial used a

combination treatment comprising of the bNAbs, 10-1074 and

VRC07-523LS, the TLR9 agonist, Lefitolimod, and the IL-12

adjuvanted Gag (p24) conserved element (CE)-targeted DNA

prime and MVA/HIV62B boost vaccines. 70% of the combination

therapy participants maintained at least partial virological control

during ATI (with one participant maintaining complete viral

control for over 18 months off ART) with an overall mean time

to viral rebound of 15 weeks. This study shows promising results for

the use of multiple combination therapies for HIV treatment,

however, the study was single-armed so no results were obtained

comparing the combination treatment to that of a placebo or one

treatment individually. Thus, it is unknown whether the treatments

induced a significant combinatorial effect or if one intervention was

solely responsible for the outcomes.

The results from the ongoing clinical trials NCT04983030 (178),

NCT05769569 (RV582, 179), NCT06071767 (A5374/HIV-CORE

009, 180), NCT03619278 (HIVACAR, 181), NCT06484335

(ACHIEV, 182) and AbVax are awaited with much anticipation as

they are also combining multiple different LRA, bNAb, and vaccine

strategies into one treatment intervention. The NCT04983030 trial

will be testing the bNAbs PGT121, PGDM1400, and VRC07-523LS

along with an Ad26.Mos4.HIV prime and MVA-BN-HIV boost

vaccine. The RV582 trial will be testing three different vaccines

(Ad26.Mos4.HIV; MVA-BN-HIV; A244d11 gp120 with a ALFQ

Liposomal adjuvant) along with the bNAbs VRC07-523LS and

PGDM1400LS and the superagonist IL-15 complex, N-803. The

HIV-CORE 009 trial will be testing the TLR7 agonist, Vesatolimod,

the bNAbs, 3BNC117-LS and 10-1074-LS and the vaccines,

ChAdOx1.tHIVconsv1 + 6 and MVA.tHIVconsv3 + 4. The

HIVACAR trial will be testing the efficacy of the combination

treatment comprising of the LRA, Romidepsin, the bNAb, 10-1074,

and a mRNA encoding HTI with TriMiXmRNAs prime and

MVA.HTI boost vaccine. The ACHIEV trial will be testing the

combination of the bNabs, VRC07-523LS, PGDM1400LS with a

ChAdOx1.tHIVconsv1 and ChAdOx1.HIVconsv62 vaccine prime

and MVA.tHIVconsv4 and A244d11 gp120/ALFQ vaccine boost.
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Lastly, the AbVax trial will test the ability of the combination of three

vaccines (ChAdOx1.tHIVconsv1; ChAdOx1.HIVconsv62 and

MVA.tHIVconsv4) and two bNAbs (10-1074-LS and 3BNC117-LS)

to prevent viral rebound and elicit a vaccinal effect during ATI. The

results from these trials will provide novel insights into whether

combining many different HIV treatments acts synergistically to

eliminate circulating and latently infected virus, antagonistically

(e.g. as a result of overstimulation, immune exhaustion or drug

interactions), or shows no beneficial additive effect.
9 Conclusion

Combinations of bNAbs with immune modulators, chromatin

remodellers, and vaccines remain a promising strategy to achieve an

effective functional or sterilizing cure for HIV. As seen by the clinical

studies conducted above, many of these treatments enhance immune

responses and maintain viral suppression off treatment for a

reasonable period when administered alone, but their efficacy is not

yet proven when administered together. Only a handful of clinical

trials testing these combinations have been published with none yet

available testing bNAb and vaccine combinations (Table 1). More

research is currently on-going to determine which combinations will

work synergistically or additively to amplify the responses achieved

by each of the treatments alone (Table 2, Figure 2). It may very well be

possible that a combination of bNAbs, immune modulators,

chromatin remodellers, and vaccines will be the best strategy to

achieve a cure, which is still desperately needed bymany PWH.Many

HIV combined bNAb-vaccine trials are currently in the pipeline or

recruiting, and results from these trials over the next couple of years

are greatly anticipated.
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