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Gene expression-based
modeling of overall
survival in Black or African
American patients with
lung adenocarcinoma
Bin Zhu, Stephanie S. McHale, Michelle Van Scoyk,
Gregory Riddick, Pei-Ying Wu, Chu-Fang Chou, Ching-Yi Chen
and Robert A. Winn*

Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond,
VA, United States
Introduction: Lung cancer is a leading cause of cancer-related deaths

worldwide. Black/African American (B/AA) populations, in particular, exhibit the

highest incidence and mortality rates of lung adenocarcinoma (LUAD) in the

United States.

Methods: This study aims to explore gene expression patterns linked to LUAD in

B/AA and case-matched white patients, with the goal of developing predictive

models for prognosis. Leveraging RNA sequencing data from The Cancer

Genome Atlas (TCGA) database, genes and pathways associated with overall

survival (OS) were identified.

Results: The OS-associated genes in B/AA patients were distinct from those in

white patients, showing predominant enrichment in immune-related pathways.

Furthermore, mRNA co-expression network analysis revealed that OS-

associated genes in B/AA patients had higher levels of interaction with various

pathways, including those related to immunity, cell-ECM interaction, and specific

intracellular signaling pathways. Notably, a potential B/AA-specific biomarker,

C9orf64, demonstrated significant correlations with genes involved in immune

response. Unsupervised machine learning algorithms stratified B/AA patients into

groups with distinct survival outcomes, while supervised algorithms

demonstrated a higher accuracy in predicting survival for B/AA LUAD patients

compared to white patients.

Discussion: In total, this study explored OS-associated genes and pathways

specific for B/AA LUAD patients. Further validation and clinical application of

these findings are warranted to address disparities and improve outcomes in

diverse patient populations.
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Introduction
Lung cancer continues to be one of the leading causes of cancer-

related deaths worldwide (1). Moreover, significant differences in

incidence and mortality rates have been observed across various

racial and ethnic groups (2). Black/African American (B/AA)

populations have the highest incidence rate of lung cancer in the

United States (2). Previous research has highlighted the importance

of understanding the molecular mechanisms underlying the

oncogenesis of lung cancer, particularly at the genomic level (3,

4). Despite advances in treatment modalities, racial disparities in

survival outcomes persist, emphasizing the need for targeted

approaches to address lung cancer in diverse patient populations.

Lung adenocarcinoma (LUAD) is the most common type of

lung cancer and is a subtype of non-small cell lung cancer (NSCLC).

The landscape of LUAD research has been dominated by studies

involving predominantly white and Asian patients (4, 5). Moreover,

there is a notable lack of racial and ethnic diversity in cell lines used

for lung cancer research (6). Therefore, the lack of representation in

the research field and clinical trials result in a limited understanding

of the disease’s etiology and progression among B/AA lung

cancer patients.

Efforts have sought to address this race disparity in LUAD. For

example, higher frequencies of mutations in JAK2 and PTPRT genes

have been observed in B/AA LUAD patients compared to European

Americans (7). Interestingly, growing evidence suggests that race-

related disparities in cancer are also present at the epigenetic level.

For instance, differentially expressed genes, e.g., immune system-

related genes, have been identified between B/AA and white groups

across various types of tumors (8, 9). Therefore, using epigenetic

data from a specific racial and ethnic group to model LUAD could

be beneficial for precision medicine and has the potential to reduce

racial disparities in LUAD therapy.

Previous work has established models to predict the survival of

LUAD patients based on the expression of specific gene sets, e.g.,

metabolism-associated genes (10), tumor microenvironment-

associated genes (11), and CDK2-related genes (12). In particular,

genes involved in the immune system have been reported in several

studies that contribute to predicting prognosis of LUAD patients

(13, 14). Furthermore, a high-level expression of immune-related

genes is beneficial for longer survival (14). However, none of these

studies have specifically focused on B/AA patients to investigate

racial disparities in their analyses.

The objectives of this study are to explore gene expression

patterns linked to LUAD in B/AA patients and develop predictive

models with potential clinical applications for prognosis. Through

analysis of RNA sequencing data from The Cancer Genome Atlas

(TCGA) database, epigenetic biomarkers and pathways associated

with overall survival (OS) at the transcriptional level were

uncovered. By analyzing the OS-associated gene expression

profiles using unsupervised machine learning algorithms, the B/

AA patients were stratified into two distinct groups with

significantly divergent survival outcomes. Additionally, survival

outcomes among B/AA patients were predicted using supervised

machine learning algorithms. Furthermore, all the outcomes for B/
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AA participants were compared with case-matched white

individuals and race disparities were examined.
Methods

Data source

RNA-seq data and metadata were downloaded from the TCGA,

PanCancer Atlas cohort (https://www.cbioportal.org/), which

contains 52 B/AA participants. A case-matched design was

performed where the 52 B/AA participants were matched with 52

white participants by choosing the same sex, tumor stage, smoking

status, and similar ages. Most outcomes in this study were evaluated

using the TCGA cohort. To further assess the association between

gene expression levels and OS of lung cancer patients, a second

cohort was used (GEO number: GSE101929) (15). This cohort

included tumor samples from 16 pairs of B/AA and white non-

small cell lung cancer patients, with mRNA expression analyzed

through microarray sequencing.
OS analysis

RNA-seq RSEM values were normalized by the VST method

and were classified into two levels, i.e., high and low. The Kaplan-

Meier survival curve analysis was performed using the ‘survfit’

function in R. P-values were adjusted by the Benjamini–Hochberg

procedure. The association between multiple variables in the

metadata and OS was tested by the Cox proportional hazards

regression using the ‘coxph’ function in R. The association

between each variable in the metadata and OS was tested by the

Kaplan-Meier survival curve analysis.
Pathway enrichment

Pathway enrichment for the OS-associated genes and genes in

each module in co-expression network analysis was measured by

the ‘compareCluster’ function in R using the KEGG pathway (16).

Pathway enrichment for genes correlated with four potential

biomarker genes, i.e., C9orf64, CUBN, REEP2, and MRAS, was

tested using the DAVID online tool (17) and enriched biological

processes classified by the Gene Ontology database (18) are shown.

P-values were adjusted by the Benjamini–Hochberg procedure.
Unsupervised algorithms to classify
expression profiles of OS-associated genes

RNA-seq RSEM values were normalized by the average RSEM

value of seven housekeeping genes, i.e., ACTB, GAPDH, HPRT1,

B2M, TBP, RPL13A, and RPS18. The expression profiles of OS-

associated genes were clustered by PCA analysis using the ‘prcomp’

function in R. Alternatively, Bray-Curtis distance among patients

was calculated based on the profiles of the 1589 OS-associated
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genes. Patients were clustered by the NMDS algorithm using the

‘metaMDS’ function in R. The difference of the expression profiles

associated with survival status was measured by a PERMANOVA

test using the ‘adnois’ function in R.
Supervised algorithms to predict
survival status

RNA-seq RSEM values were normalized by the average RSEM

value of seven housekeeping genes, i.e., ACTB, GAPDH, HPRT1,

B2M, TBP, RPL13A, and RPS18. Unless otherwise specified, to

reduce the risk of overfitting in the modeling process, a repeated 2-

fold cross-validation with 100 repeats resampling strategy was

applied in all predictions. To compare the performance of

different algorithms, genes were selected using Spearman’s

correlation, and only genes significantly correlated with survival

status were used for the prediction. Five algorithms, i.e., random

forest, k-Nearest Neighbors, support vector machines with linear

kernel, eXtreme gradient boosting, and boosted generalized linear

model, were tested using the ‘train’ function in R with the ‘method’

parameter set as ‘rf’, ‘knn’, ‘svmLinear’, ‘xgbLinear’, and ‘glmboost’,

respectively. Two feature selection strategies, i.e., Spearman’s

correlation and recursive feature elimination (RFE), were

performed using ‘cor.test’ and ‘rfe’ functions, respectively, in R.
Co-expression network analysis

Spearman’s correlation was employed to measure gene co-

expression among VST-normalized RSEM values of all genes. The

co-expression network was constructed and visualized using Gephi

software (19), applying the ForceAtlas2 algorithm. Modularity

analysis was performed using the ‘modularity’ function in Gephi

with default parameters to categorize genes into different modules.

An overall representation analysis was conducted to assess the

enrichment of KEGG pathways in each module using the ‘phyper’

function in R. P-values were adjusted by the Benjamini–

Hochberg procedure.
Differential gene expression analysis

The RSEM values of the RNA-seq data were converted to

integers and were input into the DESeq2 software for the

differential gene expression analysis (20).
Results

Cohort selection

To focus our study on B/AA LUAD patients, we selected the

TCGA, PanCancer Atlas cohort (https://www.cbioportal.org/),

which contains 52 B/AA participants. A case-matched design was

performed where the 52 B/AA participants were matched with 52
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white patients by choosing the same sex, tumor stage, smoking

status, and similar ages (Supplementary Table S1).

The influence of race, age, sex, tumor stage, and smoking on OS

probability was systematically tested by the Cox proportional

hazards regression (Supplementary Figure S1A). The results

showed only a significant association between tumor stage I and

OS. Alternatively, the Kaplan-Meier survival curve analysis was

performed to test the influence of each individual variable on OS,

and similarly, only the tumor stage had a significant association

with OS (Supplementary Figures S1B–F). Although race (21), age

(22), and smoking (23) have been reported to impact OS of lung

cancer patients, since the cohort size is small, there could be

potential sampling bias and randomness that led to different

observations compared with results in large-scale epidemiological

studies. Diverse experimental designs could also lead to

varied outcomes.
Genes and pathways associated with
overall survival

The RNA sequencing data with RSEM values downloaded from

the TCGA database was normalized by variance stabilizing

transformation (VST). The VST values were classified into two

levels, i.e., high and low, and were utilized to determine the

association between gene expression and OS. The Kaplan-Meier

survival curve analysis discovered four genes, i.e., C9orf64, CUBN,

REEP2, and MRAS, with expression significantly (false discovery

rate (FDR) ≤ 0.05) associated with OS in the B/AA patients, where

high-level expression of C9orf64 shortened the OS but that of

CUBN, REEP2, and MRAS led to longer survival (Figure 1A).

Furthermore, the four identified potential biomarkers were

significantly (P- but not FDR-values ≤ 0.05) associated with OS

in both B/AA males and females (Supplementary Figure S2) but not

in white patients (Figure 1A and Supplementary Data Sheet 1).

Thus, the four genes seem to be potential race- but not sex-specific

biomarkers. To further assess the reliability of the four identified

biomarkers, their associations with OS was evaluated using the

same methodology in an independent cohort case-matched between

16 pairs of B/AA and white LUAD patients [GEO number:

GSE101929 (15)]. The results in this second cohort were

consistent with those observed in the TCGA cohort

(Supplementary Figure S3). However, due to the small sample

size, the P-values in the second cohort were less significant

compared to those in the TCGA cohort. Additionally, since this

second cohort was sequenced using microarray technology, C9orf64

was not included in the dataset.

Limited by the sample size, most FDRs of the association

between gene expression and OS in the TCGA cohort were larger

than 0.05 (Supplementary Data Sheet 1). To explore biological

functions associated with OS, the gene set with significant P- but

not FDR-values was selected for functional enrichment analysis.

Although false-positive results could exist in the analysis outcomes,

true-positive results were also included. We identify shared

characteristics in the enriched pathways. There were 1589 genes

associated with OS (P ≤ 0.05) in the B/AA patients (Figure 1B).
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Surprisingly, 459 genes in the white patients were detected to be

associated with OS (P ≤ 0.05), but only 44 OS-associated genes

overlapped between the B/AA and white participants (Figure 1C).

A functional enrichment analysis on the 1589 B/AA-specific

OS-associated genes identified 17 enriched KEGG pathways (P ≤

0.01). The P-values for the pathway enrichment were insignificant

after multiple testing corrections and false-positive outcomes could

exist. However, most of the 17 KEGG pathways were related to the

immune system, as the top three significantly enriched pathways

were B cell receptor signaling, chemokine signaling, and T cell

receptor signaling pathways (Figure 1D). Other pathways, e.g.,

Yersinia, Salmonella, and Human immunodeficiency virus 1

infections, might be enriched because genes involved in these

pathways overlapped with immunity-related genes in LUAD.

Since a similar trend is observed in these enriched pathways, it

seems that the immune system plays an essential role in the OS of

the B/AA patients. Furthermore, most OS-associated genes in the

pathways had high-level expression in the B/AA participants who
Frontiers in Immunology 04
survived longer (Figure 1D). In other words, a more activated

immune system in the B/AAs could prolong the time of survival.

The only outlier pathway was the PD-L1 expression and PD-1

checkpoint pathway in cancer, where high-level expression of more

than half of the genes were associated with shorter survival. When

PD-1 on T-cells binds to PD-L1 or PD-L2 on cancer cells, it inhibits

the activity of the T-cells (24). Therefore, the result of the PD-1

pathway is consistent with other observations.

The same functional enrichment analysis was performed on the

459 OS-associated genes in the white patients, which only enriched

the protein digestion and absorption pathway (P ≤ 0.01)

(Figure 1D). This pathway seems to serve as a fundamental

process that impacts multiple systems, including the immune

system. Previous studies have shown a critical influence of the

immune system on LUAD in cohorts of predominantly white

patients (13, 14). Thus, these results implied that the immune

system in the white patients was statistically less essential than in

the B/AA LUAD patients in the case-matched TCGA cohort.
FIGURE 1

Genes and pathways associated with overall survival. (A) The RNA-seq RSEM values were normalized by the variance stabilizing transformation
method. Kaplan-Meier survival curve analysis on genes associated with overall survival (OS) in the Black or African American (B/AA) and case-
matched white lung adenocarcinoma (LUAD) patients is shown. (B) Number of genes that are significantly (P or FDR ≤ 0.05) associated with OS in
the B/AA patients. (C) Venn diagram illustrating the overlap of OS-associated genes (P ≤ 0.05) between the B/AA and white patients. (D) Functional
enrichment of OS-associated (P ≤ 0.05) genes in the B/AA and white patients was performed using the ‘compareCluster’ function in R. Significant
enrichment (P ≤ 0.01) of KEGG pathways is displayed. The pie chart depicts the proportion of genes within each pathway that exhibit higher
expression levels associated with longer survival durations in patients. Specifically, the pie chart for the protein digestion and absorption pathway
describes the relationship for the white patients, while all other pie charts are for the B/AA patients.
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Modeling of 20-month survival

Because similar characteristics associated with OS were

observed in the pathway enrichment analysis in the B/AA

participants (Figure 1D), we classified the B/AA patients by the

expression of the 1589 OS-associated genes. The RSEM values were

normalized relative to a set of housekeeping genes and subjected to

PCA analysis. Most B/AA patients who died after 20 months were

separated from the survival patients on the PCA plot (Figure 2A).

Alternatively, the Bray-Curtis distance among the B/AA patients

was calculated based on the normalized RSEM values of the 1589

OS-associated genes, and the similarity of the patients was

compared by the NMDS algorithm. Again, the B/AA patients

were stratified into clearly distinct groups based on their 20-

month survival status (Figure 2B). Furthermore, an Adonis test

demonstrated a significant difference in the Bray-Curtis distance

between the expression profiles of the 1589 OS-associated genes

among B/AA patients who survived versus those who were deceased

after 20 months.

Various machine learning algorithms were employed to predict

the 20-month survival status (see details in the Methods). To

mitigate overfitting, a resampling strategy involving repeated 2-

fold cross-validation with 100 repeats was utilized. In other words,

half of the samples were randomly picked up to train a random

forest model and the other half were used to evaluate performance.
Frontiers in Immunology 05
The process was repeated 100 times. To speed up the training

process, only genes significantly associated with the 20-month

survival status were selected for the modeling. The performance

of the prediction was determined by the accuracy. The results

suggested that the random forest algorithm had the best

performance (Figure 2C). Therefore, the random forest algorithm

and the same resampling strategy was applied in the modeling

process described below.

Considering potential clinical applications, we aimed to

streamline the model using a feature selection procedure to

identify the most predictive genes. Initially, when all the genes

were utilized for prediction, the median area under the ROC curve

(auROC) value across 100 repeats was approximately 0.8

(Figure 2D). The first feature selection strategy involved a filter

approach employing Spearman’s correlation to retain only genes

significantly associated with OS. This approach maintained an

average of 700 genes in each prediction (Figure 2E). Alternatively,

a wrapper approach called recursive feature elimination (RFE) was

employed, wherein the model was iteratively trained and less

important genes were systematically removed, resulting in an

average of fewer than 150 genes retained for modeling

(Figure 2F). The auROC values were slightly but not significantly

reduced by the feature selections (Figure 2D). Notably, a linear

relationship was observed between the likelihood of a particular

gene being selected in the recursive feature elimination and the P-
FIGURE 2

Modeling of LUAD survival. The RNA-seq RSEM values were normalized relative to a set of housekeeping genes (see Methods). (A) PCA analysis on
the profiles of the OS-associated genes in the B/AA patients is shown. (B) Bray-Curtis distance among the B/AA patients was calculated based on the
profiles of the 1589 OS-associated genes. The similarity of the patients compared by the NMDS algorithm is visualized. The difference of the
expression profiles associated with survival status was measured by a PERMANOVA test using the ‘adnois’ function in R. (C) Accuracy comparison of
various machine learning algorithms in predicting 20-month survival of the B/AA patients. (D) Application of the Random Forest algorithm to predict
20-month survival of B/AA patients using repeated 2-fold cross-validation with 100 repeats. Three feature selection strategies were applied: no
feature selection, selection using Spearman’s correlation, and selection using recursive feature elimination (RFE) method. auROC values indicating
prediction performance are presented. (E) Number of genes selected by the Spearman’s correlation in 100 repeats. (F) Number of genes selected by
the RFE in 100 repeats. (G) Linear relationship between the likelihood of a particular gene being selected in RFE and the P-value of the gene’s
association with OS in Kaplan-Meier survival curve analysis quantified by the ‘lm’ function in R. (H) Random Forest algorithm with repeated 2-fold
cross-validation and feature selection using Spearman’s correlation to predict 20-, 24-, and 36-month survival of B/AA patients, case-matched white
patients, white males, and white females, respectively. auROC values and differences between B/AAs and other groups tested by Mann–Whitney U
test are presented.
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value of the gene’s association with OS in the Kaplan-Meier survival

curve analysis (Figure 2G). These results indicated that genes more

significantly associated with OS were more likely to be selected for

predicting 20-month survival.

The frequency of genes selected during the RFE procedure for

predicting OS in B/AA LUAD patients is shown in Supplementary

Data Sheet 3. To further assess the potential clinical utility of the

RFE strategy, only 90 genes, selected at least 20 times across 100

individual RFE iterations (Supplementary Data Sheet 3), were used

to predict OS in these B/AA LUAD patients, employing a Leave-

One-Out strategy as previously described (25). The resulting

auROC of 0.936 demonstrates strong predictive performance with

just 90 genes as input features (Supplementary Figure S4). This gene

set size is practical for clinical applications, as a custom microarray

can efficiently analyze the expression of 90 genes simultaneously.

Overall, the results suggest that the 20-month survival of the 52

B/AA LUAD patients are predictable and genes more significantly

associated with OS are more important in the prediction.

Using the same algorithm and resampling strategy, along with

all genes, we attempted to predict the survival of the 52 white

patients. However, the auROC values obtained were significantly

lower compared to the models for B/AA participants (Figure 2H).

This observation aligns with the findings indicating fewer enriched

pathways associated with OS in the white patients, suggesting less

shared characteristics in OS-associated gene expression patterns in

white than B/AA patients involved in this case-matched cohort.
mRNA co-expression network in the B/AA
LUAD patients

To investigate the roles of the potential OS-associated

biomarker genes in the B/AA patients, a gene co-expression

network was constructed using Spearman’s correlation among the
Frontiers in Immunology 06
VST-normalized RSEM values of all genes. In this network, each

node represents a gene, and each edge signifies a significant

correlation (FDR ≤ 0.05) between two genes. The network

encompassed 10,575 genes, each of which exhibited at least one

significant correlation with another gene.

The network was analyzed and visualized by the Gephi software

(19). Specifically, the network was generated utilizing the

ForceAtlas2 algorithm, and modularity analysis was performed to

categorize genes into approximately 80 modules (Figure 3A). The

top 8 primary modules each comprises at least 279 genes, and the

proportions of OS-associated genes within these modules are

depicted (Figure 3B). Conversely, the remaining modules contain

a limited number of genes (≤ 16 genes). To assess the enrichment of

OS-associated genes within the 8 modules, an overall representation

analysis (ORA) was conducted. This analysis revealed that modules

41 and 45 exhibited significantly higher proportions of OS-

associated genes (FDR ≤ 0.05). Notably, modules 41 and 45 were

also closely situated in the network (Figure 3A), suggesting a more

robust correlation between these two modules.

To elucidate the biological functions of the modules, KEGG

functional enrichment analysis was conducted. The results revealed

that module 41 was significantly enriched (FDR ≤ 0.05) in pathways

associated with the immune system, including the chemokine

signaling pathway, intestinal immune network for IgA

production, cytokine-cytokine receptor interaction, and Th17 cell

differentiation (Figure 4). Moreover, most pathways enriched in the

OS-associated genes (as shown in Figure 1D), e.g., B cell receptor

signaling, chemokine signaling, T cell receptor signaling pathways,

and natural killer cell-mediated cytotoxicity, overlapped with the

pathways enriched in module 41. These findings illustrate that the

OS-associated genes not only exhibit functional enrichment in the

immune system but also demonstrate a relatively higher degree of

correlation with other genes involved in the immune system

compared to genes in other modules or with other functions.
FIGURE 3

Gene co-expression network in B/AA LUAD patients. (A) Spearman’s correlation was employed to measure gene co-expression among VST-
normalized RSEM values of all genes. The co-expression network was constructed and visualized using Gephi software, applying the ForceAtlas2
algorithm. Modularity analysis categorized genes into 77 modules. Primary modules containing at least 279 genes in each module are color-coded.
(B) An overall representation analysis (ORA) was conducted to assess the enrichment of KEGG pathways within the 8 modules. The numbers of total
genes and OS-associated genes, along with ORA P-values, are displayed.
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Thus, the results underscore the significance of the immune system

in influencing OS in the B/AA patients.

Module 45 contains 15 enriched pathways (Figure 4). The

overlapped biological meaning in the 15 pathways revolves around

the regulation of cell-ECM interactions, intracellular signaling

pathways, and cytoskeletal dynamics, e.g., ECM−receptor
Frontiers in Immunology 07
interaction pathway, PI3K-Akt and calcium signaling pathway, and

regulation of actin cytoskeleton pathway. These pathways have

implication in various physiological and pathological processes,

including cell adhesion, migration, proliferation, and collectively

contribute to the maintenance of cellular homeostasis and the

response to extracellular cues in lung cancer (26–28).
1 8 10 41 45 53 62

Cellular senescence
Proteasome

Small cell lung cancer
Motor proteins

Fanconi anemia pathway
Epstein Barr virus infection

p53 signaling pathway
Base excision repair

Progesterone mediated oocyte maturation
Oocyte meiosis

Human T cell leukemia virus 1 infection
Mismatch repair
DNA replication

Cell cycle
Huntington disease

Amyotrophic lateral sclerosis
Dilated cardiomyopathy

Amoebiasis
AGE RAGE signaling pathway in diabetic complications

Complement and coagulation cascades
Calcium signaling pathway

Proteoglycans in cancer
Human papillomavirus infection

Renin secretion
Regulation of actin cytoskeleton
cGMP PKG signaling pathway

Vascular smooth muscle contraction
PI3K Akt signaling pathway

Protein digestion and absorption
ECM receptor interaction

Focal adhesion
African trypanosomiasis

Measles
Toll like receptor signaling pathway

Ras signaling pathway
Transcriptional misregulation in cancer

JAK STAT signaling pathway
TNF signaling pathway

Acute myeloid leukemia
Yersinia infection

Lipid and atherosclerosis
Legionellosis

Chagas disease
Lysosome

Fc gamma R mediated phagocytosis
C type lectin receptor signaling pathway

Influenza A
Fc epsilon RI signaling pathway

Neutrophil extracellular trap formation
NOD like receptor signaling pathway
Leukocyte transendothelial migration

Platelet activation
Human cytomegalovirus infection

Malaria
Pertussis

PD L1 expression and PD 1 checkpoint pathway in cancer
Systemic lupus erythematosus

Human immunodeficiency virus 1 infection
Kaposi sarcoma associated herpesvirus infection

Toxoplasmosis
Asthma

NF kappa B signaling pathway
T cell receptor signaling pathway

Inflammatory bowel disease
Natural killer cell mediated cytotoxicity

Osteoclast differentiation
Th1 and Th2 cell differentiation

Leishmaniasis
Primary immunodeficiency

Antigen processing and presentation
Tuberculosis

Viral myocarditis
Rheumatoid arthritis

B cell receptor signaling pathway
Staphylococcus aureus infection

Phagosome
Type I diabetes mellitus

Autoimmune thyroid disease
Th17 cell differentiation

Cytokine cytokine receptor interaction
Intestinal immune network for IgA production

Cell adhesion molecules
Graft versus host disease

Allograft rejection
Viral protein interaction with cytokine and cytokine receptor

Chemokine signaling pathway
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Pathway enrichment of genes in each module of the co-expression network for B/AA LUAD patients. The enrichment was tested by the
‘compareCluster’ function in R. Enriched pathways with FDR ≤ 0.05 are shown.
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Potential biomarker genes in the mRNA
co-expression network for B/AA
LUAD patients

C9orf64 has been reported as an epigenetic biomarker that

distinguishes patients with NSCLC from those with nonmalignant

lung disease at the transcriptional level (29) and has a higher level of

methylation in ovarian cancer (30). However, the biological

function of C9orf64 has not been characterized in previous

studies. In this study, C9orf64 was found to be significantly (FDR

≤ 0.05) correlated with 212 genes. Moreover, these 212 genes

exhibited significant (FDR ≤ 0.05) functional enrichment in

innate immune response (Figure 5A). Therefore, these findings

suggest that the expression of C9orf64 is associated with the

expression of immunity-related genes. This implies that C9orf64

could potentially serve as a biomarker or play a certain role in the

immune system in B/AA LUAD patients.

Similar tests were conducted on CUBN, REEP2, and MRAS.

Previous studies have indicated that MRAS can regulate mitogen-

activated protein kinase (MAPK)/extracellular signal-regulated

kinase and phosphatidylinositol 3-kinase signaling pathways,

thereby modulating various cellular processes related to cell

growth, survival, and metabolism (31). Consistent with these

findings, enrichment analysis revealed that the 113 genes

correlated with MRAS in the network were significantly

associated with the positive regulation of the protein kinase B and

phosphatidylinositol 3-kinase signaling pathways and cell

migration (Figure 5B). However, the role of MRAS in cancer

remains obscure (32). Additionally, there was no pathway

significantly enriched in genes correlated with CUBN or REEP2.
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Difference in gene expression between B/
AA and white LUAD patients

A comparable gene co-expression network was constructed for

the matched white LUAD patients using the same methods. The

majority of genes present in the network for B/AA patients also

featured in the network for white participants (Figure 6A).

However, there was only an 8% overlap between correlations in

the networks for the B/AA and white patients (Figure 6B). For

instance, while 23 C9orf64-associated genes were identified in the

white patient network, only one of these genes correlated with

C9orf64 in the network for the B/AA participants (Figure 6C). The

immune response pathway exhibited significant enrichment among

the 212 C9orf64-correlated genes in the B/AA patients (Figure 5A).

Conversely, there was no significantly enriched pathway among the

23 C9orf64-associated genes in the white patient (data not shown).

These findings underscore a pronounced racial disparity in gene

expression interaction among B/AA and white LUAD patients.

Differentially expressed genes between the B/AA and white LUAD

patients were detected by the DESeq2 software (20). The results,

including the 20 most significantly differentially expressed genes and

the four identified potential B/AA-specific biomarkers in OS, were

illustrated in Figure 6D. Interestingly, most genes associated with OS

did not show differential expression between the two racial groups

(Figure 6D and Supplementary Data Sheet 1, 2). Furthermore,

pathway enrichment analysis did not identify any biological

functions (Figure 6E) that overlapped with OS-associated pathways

(Figure 1D). These results suggest that the racial disparities highlighted

earlier may not stem from differences in gene expression levels but

rather from divergent interactions among gene expressions.
FIGURE 5

Pathway enrichment of genes correlated with potential biomarker genes. Pathway enrichment analysis was performed for genes correlated with four
potential biomarker genes, i.e., C9orf64, CUBN, REEP2, and MRAS, utilizing the DAVID online tool. Enriched biological processes, classified by the
Gene Ontology (GO) database, are depicted for genes correlated with C9orf64 (A) and MRAS (B). Notably, no pathways were found to be
significantly enriched in CUBN- and REEP2-correlated genes
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Discussion

The study’s cohort selection addresses a crucial gap in lung

cancer research by focusing on B/AA LUAD patients, a

demographic historically underrepresented in clinical studies. The

identified potential biomarker, C9orf64, exhibited significant

correlations with genes enriched in immune system-related

pathways. Moreover, the 1589 OS-associated genes (P ≤ 0.05)

demonstrated functional enrichment in the immune system.

Additionally, these OS-associated genes were notably enriched in

module 41 during network analysis, where module 41 also displayed

functional enrichment in the immune system. Collectively, these

findings underscore the influence of the immune system on OS

outcomes in B/AA LUAD patients.

The activation of the OS-related immune pathways identified in

the B/AA patients can lead to better immune responses, more

efficient destruction of cancer cells, and improved control of tumor

growth and metastasis. Several pathways, such as T cell receptor, B

cell receptor, and natural killer cell signaling, directly enhance

immune surveillance and tumor cell killing (33). Others, like

efferocytosis, chemokine signaling and leukocyte transendothelial

migration, support the recruitment and activation of immune cells

to the tumor site (33).

Previous studies have demonstrated the prognostic significance

of immune-related biomarkers in lung cancer (13, 14), including the

role of immune checkpoint inhibitors in improving outcomes in

certain patient subgroups (34). Particularly, several cytokines are

specific biomarkers for lung cancer diagnosis in B/AA patients (35).

The findings of this study further support the potential prognostic

and therapeutic implications of targeting immune-related pathways

in LUAD patients. It is worth noting that race disparities between B/

AA and white individuals in LUAD have been demonstrated in this
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study, with evidence suggesting that more immune-related genes

and pathways are associated with OS in B/AA patients.

Consequently, utilizing genes involved in these immune pathways

for LUAD prognosis and immune checkpoint inhibitors for lung

cancer treatment could potentially be more effective in B/AA

patients. In previous studies primarily comprising white

participants (13, 14), the influence of the immune system on the

survival of LUAD patients has been established. Consequently, the

comparatively weaker association observed between the immune

system and OS in the white patients within this study may stem

from a smaller sample size in the case-matched design.

Although different patterns in gene co-expression networks

were observed between the B/AA and white LUAD patients, the

mechanism by which immune-related genes exert a more

pronounced influence on the survival of the B/AA patients

remains obscure. Consistent with our findings, two studies

demonstrate enhanced efficacy of immunotherapy in prolonging

survival among advanced NSCLC patients who are non-Hispanic

Black (36) or of African ancestry (37). However, another study has

not identified a significantly higher survival rate in B/AA NSCLC

patients compared to white patients who have received

immunotherapy (38). Nevertheless, it is evident that B/AA

patients face significantly lower odds of receiving immunotherapy

(39). Therefore, the role of the immune system may be more critical

for survival in LUAD patients who have a lower chance of receiving

immunotherapy, such as B/AA patients. The lower odds of

receiving immunotherapy could be associated with an averagely

lower socioeconomic status of B/AA population (40, 41). Hence, the

lack of information on immunotherapy as well as other potential

impact factors, e.g., socioeconomic status, education, and

comorbidities in this cohort, limited the exploration of

mechanisms of race disparity in this study. Further investigation
FIGURE 6

Difference in gene expression between B/AA and white LUAD patients. A comparable gene co-expression network was constructed for the matched
white LUAD patients using the same methods. The numbers of total genes (A), significant correlations (B), and C9orf64-associated correlations (C) in
the networks for the B/AA and white patients are compared. (D) The differentially expressed genes between the B/AA and white patients tested by
DESeq2 are illustrated, where the 20 most significant outcomes and the four identified potential B/AA-specific biomarkers in OS are annotated.
(E) Pathway enrichment analysis was performed for genes differentially expressed in the B/AA and white patients. Significantly enriched biological
processes, classified by the GO database, are depicted.
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is warranted to elucidate the mechanisms underlying the observed

disparities with more clinical and demographical metadata.

The mechanism leading to the different patterns in gene co-

expression networks is also unclear. Previous studies have shown

both genetic (7) and environmental (42) differences, e.g., different

SNPs and socioeconomic status, between B/AA and white

populations. The association between these factors and gene co-

expression patterns, as well as whether gene co-expression patterns

mediate the influence of the aforementioned factors on LUAD,

remains to be determined.

Overfitting may be a concern given the small cohort size. To

mitigate this issue, a repeated 2-fold cross-validation with 100

repetitions was employed during the modeling process.

Specifically, the average auROC approached 80% across 100

individual tests, which suggested that such modeling strategies,

i.e., the random forest algorithm, normalization method using

housekeeping genes, and RFE procedure, was reliable in this

cohort. Although the small cohort lacks full representation of the

entire LUAD population, pathway enrichment analyses revealed

shared gene expression characteristics among B/AA LUAD

patients, and the modeling auROC values demonstrated that the

OS of B/AA LUAD patients was predictable using RNA sequencing

data. Therefore, these modeling strategies could have potential

applications in larger cohorts to evaluate their clinical utility in

guiding treatment decisions.

To enhance the feasibility of the pipeline for clinical application,

the RNA-seq data were normalized using housekeeping genes in

predictive modeling. Similar prediction accuracy was obtained

when the RNA-seq data were normalized by the VST method

(data not shown). Additionally, given that, on average, fewer than

200 genes were required for prediction, qPCR or microarray could

be a viable alternative to RNA-seq, ensuring accurate prediction in

clinical settings.

To simplify the model for clinical application, other types of

data such as methylation or copy number alteration were not

included in the analysis. Instead, metadata such as age and

smoking status, which were readily available in clinical settings,

were merged with the RNA-seq data in the modeling process.

However, the inclusion of metadata did not significantly impact

the quality of the models (data not shown). A plausible reason for

the lack of impact could be that these factors were not significantly

associated with OS within this particular cohort. It remains possible

that these metadata may prove beneficial for prediction in another

cohort where they may exhibit a stronger association with OS.

The mRNA co-expression network analysis offers valuable

insights into the biological functions of OS-associated biomarkers

and their interactions with other genes in B/AA LUAD patients.

The function of the uncharacterized gene, C9orf64, was inferred by

analyzing the functions of its co-expressed genes within the

network. Given the specificity of the network for B/AA patients,

it holds potential for studying other uncharacterized race-specific

gene interactions in the B/AA population. This approach could

facilitate a deeper understanding of genetic mechanisms underlying

disease outcomes in this demographic group.
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Overall, findings in this study contribute to a deeper

understanding of the mechanisms underlying OS in B/AA

patients with LUAD. By elucidating potential biomarkers,

pathways, and gene co-expression networks associated with

survival outcomes, this research lays the groundwork for future

studies aimed at improving personalized treatment strategies and

addressing disparities in LUAD outcomes among different racial

and ethnic groups.
Data availability statement

Publicly available datasets from TCGA were downloaded from

the cBioPortal (https://www.cbioportal.org/). The dataset for the

GSE101929 cohort was downloaded from the Gene Expression

Omnibus (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?

acc=GSE101929).
Ethics statement

The studies involving humans were approved by the Virginia

Commonwealth University institutional review board under

protocol IRB # HM20022764. The studies were conducted in

accordance with the local legislation and institutional

requirements. The participants provided their written informed

consent to participate in this study.
Author contributions

BZ: Conceptualization, Data curation, Formal analysis,

Methodology, Project administration, Resources, Software,

Validation, Visualization, Writing – original draft, Writing –

review & editing. SM: Conceptualization, Writing – review &

editing. MS: Conceptualization, Writing – review & editing. GR:

Writing – review & editing. P-YW: Writing – review & editing.

C-FC: Writing – review & editing. C-YC: Writing – review &

editing. RW: Conceptualization, Funding acquisition, Project

administration, Supervision, Writing – review & editing.
Funding

The author(s) declare financial support was received for the

research, authorship, and/or publication of this article. This work

was funded by grant P20CA252717 (RW) from the National

Institutes of Health.
Acknowledgments

We acknowledge The Cancer Genome Atlas (TCGA) for public

data sharing.
frontiersin.org

https://www.cbioportal.org/
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE101929
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE101929
https://doi.org/10.3389/fimmu.2024.1478491
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhu et al. 10.3389/fimmu.2024.1478491
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated
Frontiers in Immunology 11
organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online

at: https://www.frontiersin.org/articles/10.3389/fimmu.2024.1478491/

full#supplementary-material
References
1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer
statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36
cancers in 185 countries. CA Cancer J Clin. (2018) 68:394–424. doi: 10.3322/caac.21492

2. Harrison S, Judd J, Chin S, Ragin C. Disparities in lung cancer treatment. Curr
Oncol Rep. (2022) 24:241–8. doi: 10.1007/s11912-022-01193-4

3. Herbst RS, Morgensztern D, Boshoff C. The biology and management of non-
small cell lung cancer. Nature. (2018) 553:446–54. doi: 10.1038/nature25183

4. Network CGAR. Comprehensive molecular profiling of lung adenocarcinoma.
Nature. (2014) 511:543. doi: 10.1038/nature13385

5. Chen J, Yang H, Teo ASM, Amer LB, Sherbaf FG, Tan CQ, et al. Genomic
landscape of lung adenocarcinoma in East Asians. Nat Genet. (2020) 52:177–86.
doi: 10.1038/s41588-019-0569-6

6. Leon C, Manley E, Neely A, Castillo J, Ramos Correa M, Velarde DA, et al. Lack of
racial and ethnic diversity in lung cancer cell lines contributes to lung cancer health
disparities. Front Oncol. (2023) 13:1187585. doi: 10.3389/fonc.2023.1187585

7. Mitchell KA, Nichols N, Tang W, Walling J, Stevenson H, Pineda M, et al.
Recurrent PTPRT/JAK2 mutations in lung adenocarcinoma among African
Americans. Nat Commun. (2019) 10:5735. doi: 10.1038/s41467-019-13732-y

8. Singh U, Hernandez KM, Aronow BJ, Wurtele ES. African Americans and
European Americans exhibit distinct gene expression patterns across tissues and
tumors associated with immunologic functions and environmental exposures. Sci
Rep. (2021) 11:9905. doi: 10.1038/s41598-021-89224-1

9. Lei B, Jiang X, Saxena A. TCGA expression analyses of 10 carcinoma types reveal
clinically significant racial differences. Cancers. (2023) 15:2695. doi: 10.3390/
cancers15102695

10. He L, Chen J, Xu F, Li J. Prognostic implication of a metabolism-associated gene
signature in lung adenocarcinoma. Mol Ther-Oncol. (2020) 19:265–77. doi: 10.1016/
j.omto.2020.09.011

11. Wu J, Li L, Zhang H, Zhao Y, Zhang H, Wu S, et al. A risk model developed
based on tumor microenvironment predicts overall survival and associates with tumor
immunity of patients with lung adenocarcinoma. Oncogene. (2021) 40:4413–24.
doi: 10.1038/s41388-021-01853-y

12. Liu T-T, Li R, Huo C, Li J-P, Yao J, Ji X, et al. Identification of CDK2-related
immune forecast model and ceRNA in lung adenocarcinoma, a pan-cancer analysis.
Front Cell Dev Biol. (2021) 9:682002. doi: 10.3389/fcell.2021.682002

13. Zhang Y, Yang M, Ng DM, Haleem M, Yi T, Hu S, et al. Multi-omics data analyses
construct TME and identify the immune-related prognosis signatures in human LUAD.Mol
Ther-Nucleic Acids. (2020) 21:860–73. doi: 10.1016/j.omtn.2020.07.024

14. Zeng W, Wang J, Yang J, Cui Y, Li Q, Ding H, et al. Identification of immune
activation-related gene signature for predicting prognosis and immunotherapy efficacy
in lung adenocarcinoma. Front Immunol. (2023) 14:1217590. doi: 10.3389/
fimmu.2023.1217590

15. Mitchell KA, Zingone A, Toulabi L, Boeckelman J, Ryan BM. Comparative
transcriptome profiling reveals coding and noncoding RNA differences in NSCLC from
African Americans and European Americans. Clin Cancer Res. (2017) 23:7412–25.
doi: 10.1158/1078-0432.CCR-17-0527

16. Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K. KEGG: new
perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. (2017) 45:
D353–61. doi: 10.1093/nar/gkw1092

17. Sherman BT, Hao M, Qiu J, Jiao X, Baseler MW, Lane HC, et al. DAVID: a web
server for functional enrichment analysis and functional annotation of gene lists (2021
update). Nucleic Acids Res. (2022) 50(W1):W216-21. doi: 10.1093/nar/gkac194

18. Aleksander SA, Balhoff J, Carbon S, Cherry JM, Drabkin HJ, Ebert D, et al. The
gene ontology knowledgebase in 2023. Genetics. (2023) 224:iyad031. doi: 10.1093/
genetics/iyad031
19. Bastian M, Heymann S, Jacomy M. Gephi: an open source software for exploring
and manipulating networks. Proc Int AAAI Conf Web Soc media. (2009) 3(1):361–2.
doi: 10.1609/icwsm.v3i1.13937

20. Love M, Anders S, Huber W, Love MM, BiocGenerics I, Biobase B, et al.
biocViews sequencing R, chIPSeq rnas, SAGE D. Package ‘DESeq2.’. (2018).

21. Li T, Pan K, Ellinwood AK, Cress RD. Survival trends of metastatic lung cancer
in california by age at diagnosis, gender, Race/Ethnicity, and histology, 1990-2014. Clin
Lung Cancer. (2021) 22:e602–11. doi: 10.1016/j.cllc.2020.11.005

22. Pilleron S, Maringe C, Charvat H, Atkinson J, Morris E, Sarfati D. Age disparities
in lung cancer survival in New Zealand: the role of patient and clinical factors. Lung
Cancer. (2021) 157:92–9. doi: 10.1016/j.lungcan.2021.05.015

23. Moolgavkar SH, Holford TR, Levy DT, Kong CY, Foy M, Clarke L, et al. Impact
of reduced tobacco smoking on lung cancer mortality in the United States during 1975–
2000. J Natl Cancer Inst. (2012) 104:541–8. doi: 10.1093/jnci/djs136

24. Tang Q, Chen Y, Li X, Long S, WuW, Han L, et al. The role of PD-1/PD-L1 and
application of immune-checkpoint inhibitors in human cancers. Front Immunol.
(2022) 13:964442. doi: 10.3389/fimmu.2022.964442

25. Alnowami MR, Abolaban FA, Taha E. A wrapper-based feature selection
approach to investigate potential biomarkers for early detection of breast cancer. J
Radiat Res Appl Sci. (2022) 15:104–10. doi: 10.1016/j.jrras.2022.01.003

26. Götte M, Kovalszky I. Extracellular matrix functions in lung cancer.Matrix Biol.
(2018) 73:105–21. doi: 10.1016/j.matbio.2018.02.018
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