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Atopic dermatitis (AD) is a chronic disease characterized by relapsed eczema and

intractable itch, and is often triggered by house dust mites (HDM). PAR2 is a G-

protein coupled receptor on keratinocytes and may be activated by HDM to

affect AD processes. We first established a HDM-derived AD mouse model in

wild-type (WT) and Par2-/-mice. Single cell RNA sequencing of the diseased skins

found a stronger cellular communication between the ligand macrophage

migration inhibitory factor (MIF) from keratinocytes and its receptors on

antigen-presenting cells, suggesting the critical role of MIF in AD. HDM-WT

mice showed severer skin lesions and pathological changes with stronger

immunofluorescence MIF signals in skin sections than HDM-Par2-/- mice.

Primary keratinocytes from WT mice stimulated with HDM or SLIGRL (PAR2

agonist) secreted more MIF in cultured medium and induced stronger

immunofluorescence MIF signals than those from Par2-/- mice. The skin

section of HDM-WT mice showed higher immunofluorescence signals of P115

(relating to MIF secretion) and KIF13B (possibly relating to intracellular trafficking

of MIF) than that of HDM-Par2-/- mice. Acetylation of a-tubulin increased after

stimulation by SLIGRL in WT keratinocytes but not in Par2-/- keratinocytes. HDM-

WT mice treated with the MIF antagonist ISO-1 displayed improvement of AD-

like presentations and lower expressions of IL-4, IL-13, TSLP and Arg1 (a

biomarker of M2 macrophage) mRNAs. We conclude that MIF is an important

cytokine and is significantly increased in the AD model. PAR2 affects AD changes

by regulating the expression, intracellular trafficking, and secretion of MIF

in epidermis.
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1 Introduction

Atopic dermatitis (AD) is a recurrent, pruritic, inflammatory

skin disease as well as the earliest manifestation of atopic march.

Many patients with atopic dermatitis have increased reactivity to

aeroallergens and food allergens. House dust mites (HDM), the

most common environmental allergens, are considered to be

important in the initiation and exacerbation of AD (1). AD

patients have higher HDM-specific IgE levels, and HDM

desensitization can improve the AD clinical symptoms effectively

(2). Furthermore, HDM stimulates keratinocytes to release Th2-

associated cytokines such as interleukin-(IL-)25 and IL-33 in AD to

aggravate the immune reactions (3).

Protease activated receptor 2 (PAR2), a seven-transmembrane

G protein-coupled receptor, is vital in developing AD. PAR2

hyperactivation triggers AD onset or worsens its symptoms (4).

Mite proteases impact epithelial cells by causing barrier

dysfunction, skin itching, and cytokine release. HDM also directly

mediates the neuroimmune response in AD rather than

compromising the skin barrier (5). HDM-derived serine protease

cleaves an N-terminal peptide of PAR2, inducing Ca2+ mobilization

through PAR2 activation (6). In asthma models, HDM-activated

PAR2 increases expression of IL-33 and thymic stromal

lymphopoietin (TSLP) from bronchial epithelial cells (7).

However, the disruptions of the AD immune microenvironment

following PAR2 activation by HDM remain poorly understood.

Macrophage migration inhibitory factor (MIF) is a

multifunctional protein crucial in inflammatory and autoimmune

diseases. MIF is involved in delayed hypersensitivity reactions, with

its expression correlating with hypersensitivity severity, marking its

role as a pro-inflammatory factor in allergic disorders (8). Inhibiting

MIF in HDM-induced asthma models significantly reduces

inflammation and airway hyper-responsiveness (9). Elevated MIF

levels are observed in the serum and skin lesions of AD patients,

making it an AD severity indicator (10, 11). MIF is secreted as a

cytokine and can also be encapsulated in exosomes for delivery within

the body. PAR2 activation increases the extracellular release of MIF

and its carrier, Golgi vesicle transporter protein P115, through a non-

inflammatory mechanism (12). However, the precise mechanism of

PAR2-mediated MIF release in keratinocytes is unknown.

In this work, we established a novel HDM-induced AD mice

model and demonstrated that PAR2 affected MIF release by

regulating the binding of KIF13B to the MIF-P115 transport

complex in kerat inocytes , which influences ce l lu lar

communication between epidermal cells and MIF-related antigen-

presenting cells.
2 Methods

2.1 Mice and model

Adult male (8-10 weeks) Par2-/- and wild type C57BL/6J mice

were used in this study (Par2-/- mice were purchased from Jackson

Laboratory). The mice were housed at 23°C with a 12:12 light/dark

circle and 50 ± 10% humidity under specific pathogen-free
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conditions with food and water available ad libitum. All

experimental procedures were approval by the Animal Studies

Committee at Peking University First Hospital.

To induce the HDM-allergic AD mice model, calcipotriol

(MC903; 6 nmol/60 mL; Tocris Bioscience, UK) dissolved in

ethanol was topically applied to a shaved area on mouse neck (2.5

cm × 2.5 cm) daily for seven days. Then, 100 mg of HDM ointment

(Biostir AD, Japan) was topically applied to the same area, followed

by MC903 application three times weekly. After six HDM

treatments, the mice were euthanized, and back skin specimens

from the treated areas were collected for analysis.

Scratching behavior was observed for 60 minutes at 5-minute

intervals, as described previously (13). The AD severity index

(clinical score) assessed the intensity of skin symptoms, redness,

bleeding, eruptions, and scaling, scored as follows: 0, none; 1, mild;

2, moderate; 3, severe. This index was evaluated weekly throughout

the experiment.
2.2 Single cell RNA-seq and analysis

Freshly collected skin tissues from mice were placed in MACS®

Tissue Storage Solution (Miltenyi Biotec, Germany). Tissue samples

were digested using the Tissue Digestion Kit (Miltenyi Biotec)

according to the instructions. Briefly, tissues were cut up and

placed in a mixed digestive enzyme solution and incubated at 37°

C for 1.5 hours. Single cell suspensions were obtained after filtration

using SmartStrainer filters (Miltenyi Biotec). ScRNA-seq was

conducted using the 10× Genomics Chromium platform. Raw

expression data were processed with the Seurat (v3.1.5) toolkit in

R (v4.0.0) for quality control and downstream analysis.

Unsupervised clustering was performed, followed by visualization

using UMAP. The Seurat ‘findmarker’ function identified

differentially expressed genes for each cluster. Potential

interactions between cell types were identified using the

CellChat function.
2.3 Cell culture

Primary keratinocyte cultures were prepared as previously

described (13). Briefly, the back skin of newborn mouse pups

(P0-P3) was digested with 0.25% Dispase II (Roche, Switzerland)

at 4°C overnight. The epidermis was then separated to obtain a

single-cell suspension. Keratinocytes were cultured in CnT-07

medium (Advanced Cell Systems, Switzerland) with 1%

Penicillin-Streptomycin (Gibco, USA) at 37°C and 5% CO2.
2.4 Immunofluorescence

Mice back skin tissues or primary keratinocytes were incubated

with primary antibodies: anti-MIF antibody (1:100, Cell Signaling

Technology), anti-P115 antibody (1:300, Proteintech), or anti-

KIF13B antibody (1:100, Invitrogen) at 4°C overnight. Slides were

then incubated with secondary antibodies: Alexa Fluor488 goat
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anti-rabbit IgG (1:200, Invitrogen) or Alexa Fluor594 goat anti-

mouse IgG (1:200, Invitrogen) for 2 hours at room temperature.

Sections were counterstained with DAPI and visualized using a

confocal microscope (Leica).
2.5 Real-time quantitative PCR

Total RNA was extracted from mouse back skin tissues using

TRIzol reagent (Invitrogen) according to standard protocol

followed by reverse transcription to generate cDNA by

TransScript IV One-Step gDNA Removal and cDNA Synthesis

SuperMix (TransGen Biotech). Real-time PCR was performed by

using Power SYBR Green PCR Master Mix (Applied Biosystems,

UK) according to the manufacturer’s instructions. The primers used

are listed in Supplementary Table S1.
2.6 ELISA

The cultured medium of mouse primary keratinocytes was

collected after stimulated with Der f1 (10 mg/mL) or SLIGRL (100

mM) over a time course. MIF in the medium was measured using a

mouse MIF ELISA kit (Elabscience) following the manufacturer’s

instruction. This ELISA kit has the sensitivity of 9.38pg/mL and the

detection range of 15.63-1000 pg/mL. The cultured media were

diluted to 1:10 before the measurement.
2.7 Co-immunoprecipitation

Co-immunoprecipitation was conducted using a magnetic IP/

co-IP kit (Invitrogen) according to the standard protocol. Protein

A-G-magnetic beads were incubated with anti-KIF13B antibody (3

mg, Invitrogen) or anti-IgG antibody (3 mg, Invitrogen) at 4°C

overnight. After adding cell lysates (1 mg of protein), each reaction

was incubated at room temperature for 2 hours. The beads were

washed with IP elution buffer. Cell lysates were separated on a 4-

12% Bis-Tris NuPage gel (Invitrogen) and transferred onto a

nitrocellulose filter membrane. The interaction was visualized

using anti-P115 antibody (1:1000, Proteintech).
2.8 Multiplex immunohistochemistry

Co-staining of CD86 (1:200, Cell Signaling Technology) and CD163

(1:300, Abcam) was performed using a three-color mIHC fluorescence

kit (Hunan Aifang Biotechnology) based on tyramide signal

amplification technology according to the manufacturer’s introduction.
2.9 Statistical analyses

Statistical comparisons were performed using GraphPad Prism

(version 10.0) with Student’s t test or one-way ANOVA as indicated
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(*P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001). Results are

presented as mean ± SEM.
3 Results

3.1 The HDM-allergic AD mouse model
shows a significant elevation of MIF
in keratinocytes

HDM derived allergens are important causative factors in the

development of AD (1). To establish a HDM-allergic AD model in

C57BL/6J mice, we first applied MC903 on mice shaved neck to

induce a skin barrier dysfunction and to make it easier for external

allergens entering into skin, then HDM ointment containing

Dermatophagoides farinae1 (Der f1) was topically applied to the

same area (Figure 1A). The HDM group showed severe redness,

swelling and eruption on the skin area compared to the control

group (Figures 1B, D). Skin pathology showed significant

hyperkeratosis and inflammatory cells infiltration in dermis of

HDM group (Figure 1C). In addition, mice scratching bouts

significantly increased in HDM-allergic AD mice (Figure 1E). We

also set a control group applied with MC903 only, which showed

slight pathological changes and pruritus sensation compared to

MC903+HDM mice (Supplementary Figures S1A–C). Therefore,

we have established a HDM-allergic AD mouse model with typical

AD characteristics.

ScRNA-seq analysis was conducted for the skins from control

mice (n=2), HDM-WT mice (n=2) and HDM-Par2-/- mice (n=2),

and obtained a total of 68,939 single-cell transcriptome data of

high-quality. UMAP for dimension reduction to visualize clustering

was used, and a total of 14 cell types could be defined in skin

samples: fibroblast, keratinocyte, T cell, antigen-presenting cell

(APC), pericyte, endothelial cells (EC), Schwann cell, lymphatic

endothelial cell (LEC), neutrophil, mast cell, melanocyte, NKT cell,

sweat gland cell and basophil (Figure 1F). Then we employed

CellChat function of Seurat to investigate the complicate cellular

communication network; the results showed that the

communication between the ligand MIF from keratinocytes and

the receptors of Cd74 and Cd44 on APCs was the strongest

(Figures 1G, H). In other words, keratinocytes secrete MIF after

they contact with the external antigens of HDM, and the MIF as a

ligand binds to the receptors of Cd74 and Cd44 on the APCs nearby

the keratinocytes to initiate the immunologic responses of AD.

To further exclude the role of the MC903 in HDM-allergic AD

model, we also employed oxazolone, a hapten to induce contact

dermatitis, combined with HDM to establish a HDM-allergic AD

model (Supplementary Figure S2A). Oxazolone+HDM mice

displayed severer AD-like symptoms, hyperkeratosis and

lymphocyte infiltration, and higher MIF mRNA and stronger MIF

immunofluorescence signals in skin, similar to MC903+HDMmice;

while oxazolone without HDM mice showed slight AD-like

presentations (Supplementary Figures S2B–G), indicating that Der

f1 rather than MC903 is the main allergen to produce the

AD model.
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3.2 PAR2 regulates MIF expression in
keratinocytes and MIF secretion from
keratinocytes of the HDM-allergic
AD model

The protease activity of HDM may activate PAR2 on

keratinocytes. We therefore investigated the effects of PAR2 on

the HDM-allergic AD model. The HDM-allergic AD model was
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also established in Par2-/- mice, and found that HDM-Par2-/- mice

displayed milder erythema, swelling and eruption, less

hyperkeratosis and lymphocyte infiltration, and a decrease

number of scratch bouts compared to HDM-WT mice

(Figures 1B–E). Immunofluorescence and RT-PCR confirmed that

MIF and its mRNA in skin were higher in HDM-WT mice and

much lower in HDM-Par2-/- mice (Figures 2A–C). Primary

keratinocytes from WT and Par2-/- mice were cultured and
FIGURE 1

MIF expression is increased in HDM-allergic AD mouse model and is regulated by PAR2. (A) Mouse neck skin (2.5cm x 2.5cm) was topically applied
with MC903 once a day for one week, and HDM ointment was then applied following MC903 every other day for 6 times. (B) Skin appearance
showed that HDM-WT mice displayed serious erythema, edema and excoriation, and milder skin changes were found in HDM-Par2-/- mice. (C) H&E
staining of skin sections showed histopathology changes of corresponding mice in panel (B). Bar=50mm. (D) Clinical scores (redness, bleeding and
eruption, each scaled 0 to 3) of the mice. One-way ANOVA, n=6/group, ***P<0.001, ****p < 0.0001. (E) Scratching bouts of mice in 60 minutes at
week 1, week 2 and week 3 were more in HDM-WT mice than in HDM-Par2-/- mice. One-way ANOVA followed by Tukey’s post hoc test, n=6/
group, ***p < 0.001, **** p < 0.0001, vs. control group; #p < 0.01 vs. HDM-WT group. (F) Uniform manifold approximation and projection (UMAP)
plot of the single cell RNA sequencing results of the neck skins from WT control (n=2), HDM-WT (n=2) and HDM-Par2-/- (n=2), revealing 14 cell
populations. (G) Predicted interaction of ligand-receptor between keratinocytes and dermal cells in HDM-WT mice. (H) MIF related signal molecules
expressed in different cell types.
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stimulated with Der f1, and SLIGRL, a PAR2 agonist. Der f1 and

SLIGRL stimulation caused higher expression of MIF in mouse

keratinocytes by immunofluorescence (Figures 2D–F). Moreover,

Der f1 and SLIGRL stimulation induced more MIF released from

WT keratinocytes than from Par2-/- keratinocytes by ELISA

(Figures 2G, H).
3.3 PAR2 is involved in the intracellular
trafficking and secretion of MIF through
regulating the expressions of KIF13B and
P115 and acetylation of a-tubulin
in keratinocytes

MIF has no N-terminal signal peptide for trafficking in

endoplasmic reticulum (14). MIF is therefore secreted in a non-

classical mechanism that does not depend on signal peptide

cleavage (14). Golgi vesicle transporter protein P115 can serve as

a cofactor to help MIF secretion (15). Immunofluorescence of

primary keratinocytes and skin sections found that MIF and P115

expression increased and co-localized in the samples from HDM-

WT mice, and decreased in the samples from HDM-Par2-/- mice

(Figure 2D, Supplementary Figure S3).

To determine the specific subsets of keratinocytes for PAR2-

related MIF release process, the scRNA-seq data from control,

HDM-WT and HDM-Par2-/- groups were further analyzed.

Keratinocytes can be divided into 4 distinct clusters:

undifferentiated keratinocyte (KC), differentiated KC, proliferating

KC and inner root sheath cell (Figure 3A, Supplementary Table S2).

Basal_1, a subtype of undifferentiated KC, was characterized by the

expression of TSLP and IGFPB3, and was important in

inflammation in AD development (Figure 3B). We also calculated

differentially expressed genes (DEGs) from scRNA-seq data to

compare basal_1 subtype in HDM-WT group against that in

HDM-Par2-/- group and revealed the higher expression of Cd74,

TSLP and IGFBP3 in HDM-WT group, indicating the participation

of basal keratinocytes in the inflammation and immunomodulation

of AD (Figure 3C).

Notably, DEGs also showed that KIF13B, a kinesin protein,

was highly expressed in basal_1 subtype of HDM-WT group

(Figures 3C, D). Using immunofluorescence assay, we confirmed

the higher expression of KIF13B in keratinocytes in HDM-WT group

than those in HDM-Par2-/- group (Figures 3E, F). We also proved

that KIF13B, P115 andMIF were co-localized and highly expressed in

HDM-allergicWTmodel by mIHC assay (Supplementary Figure S4).

Protein docking assay predicted the existence of reciprocal interaction

regions in KIF13B and P115 (Figure 3G). P115 and KIF13B were co-

immunoprecipitated in SLIGRL treated primary keratinocytes of WT

mouse, but the co-immunoprecipitation was weaker in those of

Par2-/- mouse (Figures 3H, I).

KIF13B has a motor domain anchored on the microtubules and a

tail region binding to the cargo to mediate transport of cargos on

microtubules (16). We also found that acetylation of a-tubulin
increased after stimulation by SLIGRL in WT keratinocytes but not

in Par2-/- keratinocytes by immunofluorescence (Figures 3J, K) and
Frontiers in Immunology 05
western blotting (Figures 3L–N). In addition, acetylated a-tubulin
protein increased in a time-dependent manner after SLIGRL

stimulation in WT but not in Par2-/- keratinocytes (Figures 3L–N).

These findings indicate PAR2 regulates the expression of KIF13B and

the acetylated a-tubulin in keratinocytes to affect the intracellular

trafficking of MIF.
3.4 In vivo and in vitro experiments using
MIF antagonist ISO-1 demonstrates that
MIF is an important cytokine in the
pathogenesis of AD-like changes in HDM-
allergic AD model

The key role of MIF in the pathogenesis of AD was verified by

the stronger communication between ligand MIF from

keratinocytes and receptors Cd74 and Cd44 on APCs from the

results of scRNA-seq, the higher immunofluorescence signals of

MIF in HDM-WT skin, and the increased MIF secretion from

keratinocytes after Der f1 stimulation. MIF antagonist ISO-1 was

then used to observe its effects on HDM-allergic ADmodel. We first

tested the usefulness of ISO-1 by stimulation of MIF or MIF+ISO-1

to cultured mouse macrophage cell line Raw264.7 cells. Cellular

polarization such as horns and adherence and the expression of Il-

1B, IL-6 and IL-10 mRNAs by RT-PCR were increased in Raw264.7

cells stimulated by MIF, and these changes were significantly

inhibited by MIF+ISO-1 (Figures 4A–F). Moreover, Arg1 mRNA,

a biomarker of M2 macrophage, decreased markedly after ISO-1

treatment by RT-PCR (17) (Figure 4C). Intraperitoneal injection of

ISO-1 (35mg/kg) was then used every other day to HDM-allergic

AD mice (Figure 4G). After ISO-1 treatment, the mice displayed

milder redness, swelling and eruption, improved hyperkeratosis in

epidermis and inflammatory cells infiltration in dermis, decreased

number of scratching bouts (Figures 4H–J), associated with the

decreases of the type 2 related cytokine mRNAs, including IL-4, IL-

13 and TSLP mRNAs by RT-PCR (Figure 4K), and the decrease of

CD163+ M2 macrophage infiltration by immunofluorescence

(Figures 4L, M) in the neck skin of HDM-WT mice. Therefore,

treatment of ISO-1 to HDM-WT mice achieved significant

improvement of AD symptoms.
4 Discussion

We used interdisciplinary approaches to disclose the PAR2-

MIF axis in the pathogenesis of AD in HDM-allergic AD model.

HDM activates PAR2, which promotes MIF secretion from the

keratinocytes, and the secreted MIF triggers a series of immunologic

and inflammatory responses of AD. To the best of our knowledge,

this study provides the first evidence that the MIF antagonist

exhibits a satisfactory therapeutic effect on AD-like presentations

in HDM-allergic AD model.

Epidermal PAR2 overexpressed transgenic mice treated with

HDM exhibits typical characterizations of AD (4, 18). We

demonstrated that Par2-/- mice displayed milder symptoms and
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skin pathology thanWTmice in HDM-allergic ADmodel. The dust

mite allergens have immunogenicity as well as cysteine and serine

protease activities. Der f1 protease, the main component in HDM

ointment, up-regulates the expressions of IL-6, IL-8 and IL-33

mRNAs and GM-CSF release from keratinocytes via PAR2

activation (6, 19). HDM proteases can also activate PAR2 in

airway epithelial cells to generate activation signals and

mobilization of intracellular Ca2+ (7). We found that Der p1

(another common allergen in environment) rather than Der f1

could activate PAR2 to induce Ca2+ mobilization, and PAR2

antagonist FSLLRY peptide inhibited the Ca2+ mobilization in

HaCaT cells (Supplementary Figure S5). Toll-like receptors

(TLRs) are important pattern-recognition receptors (PRRs) in
Frontiers in Immunology 06
innate immune system. For example in inflammation, neutrophil

elastase cleaves and activates PAR2, which then triggers distinct

signaling cascades to trans-activate TLR4 in macrophage (20). The

PAR-TLR interactions also exist in epithelial cells (21). Blocking

TLR4 with its antagonist TAK-242 inhibited Der f1-induced MIF

release in mouse primary keratinocytes (Supplementary Figure S6),

suggesting the importance of TLR4 in the cascade of PAR2-TLR4-

MIF secretion in HDM stimulated keratinocytes.

PAR2 activation induced MIF secretion is associated with the

increase of P115 expression in a non-inflammatory mechanism of

insulin resistance (12). We found that PAR2 activation induced the

increases of P115 expression in keratinocytes and MIF release from

keratinocytes. MIF is necessary for neuropathic and inflammatory
FIGURE 2

PAR2 activation increases MIF expression in keratinocytes and secretion from keratinocytes. (A, B) Immunofluorescence staining of neck skin
sections and quantitative analysis of the fluorescence signals showing higher MIF expression in HDM-WT skin than in HDM-Par2-/- skin. Bar=50mm.
One-way ANOVA, **p< 0.01, ****p < 0.0001. (C) RT-PCR of MIF mRNA relative to GAPDH mRNA in neck skins. One-way ANOVA, n=3-4/group,
****p < 0.0001. (D–F) Cellular immunofluorescence and quantitative analysis of the fluorescence signals showed that the expressions of MIF and
P115 were higher in WT keratinocytes than in Par2-/- keratinocytes after stimulation with Der f1 or SLIGRL, and that MIF and P115 were co-localized
in the cells. Unpaired t tests, **p< 0.01, ****p < 0.0001. (G) ELISA of MIF in the cultured media of WT keratinocytes and Par2-/- keratinocytes after
stimulation with Der f1 for 12h. More MIF released from WT keratinocytes than from Par2-/- keratinocytes. Unpaired t tests, *P < 0.05. (H) ELISA of
MIF in the cultured media of WT keratinocytes and Par2-/- keratinocytes after stimulation with SLIGRL for 12h. More MIF released from WT
keratinocytes than from Par2-/- keratinocytes. Unpaired t tests, ***P < 0.001.
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FIGURE 3

The regulation of MIF release by PAR2 is associated with the increases of KIF13B expression and a-tubulin acetylation. (A) UMAP plot of keratinocyte
subsets revealing 4 cell populations. (B) Dot plot displays marker genes in each cell population. (C) Volcano plot of differentially expressed genes in
basal_1 clusters from HDM-WT samples and from HDM-Par2-/- samples. (D) UMAP plot showed the expression of KIF13B increased more in TSLP+/
IGFBP3+ basal keratinocytes in HDM-WT samples than in HDM-Par2-/- samples. (E, F) Immunofluorescence images and quantitative analysis of the
fluorescence signals of neck skin sections showed that KIF13B expression was more in HDM-WT mice than in HDM-Par2-/- mice. Bar=50mm.
(G) Prediction of the reciprocal interaction regions of KIF13B (shown in magenta) and P115 (shown in green). (H, I) Co-immunoprecipitation and
quantitative analysis of the positive signals showed that the integration of KIF13B and P115 in keratinocytes stimulated with SLIGRL was stronger in
WT keratinocytes than in Par2-/- keratinocytes *P<0.05. (J, K) Cellular immunofluorescence showed that primary keratinocytes were stimulated with
SLIGRL for one hour, and acetylated a-tubulin increased more in WT keratinocytes than in Par2-/- keratinocytes. Bar=50mm. Unpaired t tests, ***P <
0.001, ****P < 0.0001. (L–N) Primary keratinocytes were stimulated with SLIGRL for 15, 30, 45 and 60 min, and western blot showed that acetylated
a-tubulin was higher in WT keratinocytes than in Par2-/- keratinocytes. Unpaired t tests, **P < 0.01, ns, no significance.
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FIGURE 4

MIF antagonist ISO-1 relieves AD presentations and macrophage activation in HDM-allergic AD model. (A, B) Polarized change and its quantitative
analysis of Raw264.7 cells stimulated with MIF or MIF+ISO-1. One-way ANOVA, ***p<0.001, **** p<0.0001. Bar=50mm. (C) RT-PCR showed that
Arg1 mRNA expression increased in Raw264.7 cells stimulated with MIF, and Arg1 mRNA expression was inhibited in Raw264.7 cells treated with MIF
+ISO-1 One-way ANOVA, *p<0.05, *** p<0.001. "ns, no significance. (D–F) RT-PCR showed that IL-1b, IL-6 and IL-10 mRNA levels relative to
GAPDH mRNA increased in Raw264.7 cells after MIF treatment for 24 hours, and decreased in the cells after MIF+ISO-1 treatment for 24 hours.
One-way ANOVA, *p<0.05, ** p<0.01. (G) Mouse neck skins were topically applied with MC903 once a day at first week, and HDM ointment was
then applied following MC903 every other day for 6 times. ISO-1 (35mg/kg) was injected intraperitoneally every other day for 6 times. (H) Skin
lesions showed that ISO-1 relieved erythema, edema, and excoriation in the AD model. (I) Histopathology changes of corresponding mice in panel
(H) Bar=50mm. (J) Scratching behaviors in 60 minutes decreased after ISO-1 treatment at week 1, week 2 and week 3. One-way ANOVA followed by
the Tukey’s post hoc test, n=4-6/group, *p < 0.05, *** p < 0.001 vs. control group; ##p < 0.01 vs. HDM group. (K) RT-PCR showed that IL-4, IL-13
and TSLP mRNA levels relative to GAPDH mRNA decreased in the skins of HDM-WT+ISO-1 mice as compared to those in the HDM-WT mice.
Unpaired t tests, n = 3-5, *P<0.05, ***P<0.001. (L, M) Representative images and quantitative analysis of multiplex immunohistochemistry in neck
skins showed that there were less CD163+ macrophages in HDM-WT+ISO-1 mice. Unpaired t tests, **P < 0.01. Bar=50mm. (N) Diagram of PAR2-MIF
axis in skin participating in macrophage polarization and activation in HDM-allergic AD model.
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pain following nerve injury (22). However, whether MIF is involved

in itching sensation is yet unknown. Our results showed that MIF

combined with the PAR2 agonist SLIGRL produced acute pruritus

flares (Supplementary Figure S7), indicating that MIF may also

directly mediate itch sensation.

Analysis of our scRNA-seq results identified a TSLP+/IGFBP3+

basal keratinocyte subset higher expressed in HDM-WTmice than in

HDM-Par2-/- mice. PAR2 activation has been reported to induce

TSLP expression in keratinocytes, and TSLP is a “switch” initiating

Th2-type allergic inflammatory responses (23). IGFBP3 is a key

protein in insulin like growth factor (IGF) pathway and is highly

expressed in AD children (24). AD in children is often considered to

be the first step of atopic march. Therefore, TSLP+/IGFBP3+ basal

keratinocytes may be the keratinocyte subset taking part in the

inflammatory signaling and disease exacerbation in AD. KIF13B

functions in axon transportation to mediate axon development in

neurons (25), and is highly expressed in TSLP+/IGFBP3+

keratinocytes in HDM-WT mice. The Thr-506 phosphorylation of

KIF13B activates the transport of TRPV1-containing vesicles to

membrane, contributing to heat sensitivity (26). Our data

demonstrate that the binding of KIF13B and P115 to MIF mediates

MIF secretion from keratinocytes to produce immunologic and

inflammatory reactions in HDM-allergic AD model.

Lys-40 acetylation of a-tubulin is the sole posttranslational

modification of microtubules to affect microtubule stability and

function (27), and is positively regulated by ATAT1 and negatively

regulated by HDAC6 (28). PAR2 activation regulated by TRPA1

promotes the transport of melanosome in keratinocytes via

modulating acetylation of a-tubulin (29), consistent with our

results that PAR2 activation promoted acetylation of a-tubulin
and thereby maintained microtubule stability and intracellular

trafficking of MIF in keratinocytes.

M2 macrophages are essential to allergen clearance and to

provide a Th2-dominated immune milieu in AD by secretion of

chemokines and cytokines (30, 31). MIF regulates the polarization

towards M2 phenotype and induces a dynamic shift fromM1 to M2

phenotype in THP-1 macrophages (32, 33). MIF also recruits

peritoneal inflammatory macrophages for pathogens phagocytosis

in an experimental poly-microbial sepsis model (34). In our HDM-

allergic AD model, substantial infiltration of M2 macrophages in

dermis was found, and the infiltration was inhibited by MIF

antagonist ISO-1. The infiltrated M2 macrophages may function

as APCs, presenting antigens to activate T cells and amplify allergic

responses. Therefore, the PAR2-MIF axis in skin is important in

polarization of M2 macrophages and initiation of immunologic and

inflammatory responses in AD.

The efficacy of PAR2 antagonists in AD animal models is well

verified (13), but the clinical application is yet limited. MEDI0618 is

a PAR2 antibody and has been taken into phase I clinical trial

(NCT04198558) in healthy volunteers. Our and other researches

have revealed the satisfactory therapeutic effects of antagonizing

MIF in AD mouse models and other allergy-related diseases (35).

Several phase I clinical trials of anti-MIF monoclonal antibody

imalumab and anti-CD74 monoclonal antibody milatuzumab
Frontiers in Immunology 09
showed well-tolerance and efficacy in cancer (NCT01765790,

NCT02540356 and NCT02448810), systemic lupus erythematosus

(NCT01845740) and hematologic disorders (NCT01101594,

NCT00603668 and NCT00989586). Therefore, targeting PAR2

and MIF is promising in the treatment of HDM-allergic AD.

In conclusion, the release of MIF mediated by PAR2 activation

is a crucial process relating to the immune imbalance and pruritus

found in HDM-allergic AD model. PAR2 regulates MIF secretion

by modulating the binding to KIF13B and acetylation of a-tubulin;
the secreted MIF induces polarization and activation of

macrophages (Figure 4N). Our findings underscore the

significance of the PAR2-MIF axis, offering novel therapeutic

targets for management of AD.
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