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Fasciolosis is a zoonotic infection and is considered a developing deserted tropical

illness threatening ruminant productivity and causing financial losses. Herein, we

applied immunoinformatics and biophysics studies to develop an epitopes vaccine

against Fasciola hepatica using glutathione transferase and Cathepsin L-like

proteinase as possible vaccine candidates. Using the selected proteins, B- and T-

cell epitopes were predicted. After epitopes prediction, the epitopes were clarified

over immunoinformatics screening, and only five epitopes, EFGRWQQEKCTIDLD,

RRNIWEKNVKHIQEH, FKAKYLTEMSRASDI, TDMTFEEFKAKYLTE, and YTAVEGQCR

were selected for vaccine construction; selected epitopes were linked with the help

of a GPGPG linker and attached with an adjuvant through another linker, EAAAK

linker. Cholera toxin B subunit was used as an adjuvant. The ExPASy ProtParam tool

server predicted 234 amino acids, 25.86257 kDa molecular weight, 8.54 theoretical

pI, 36.86 instability index, and −0.424 grand average of hydropathicity. Molecular

docking analysis predicted that the vaccine could activate the immune system

against F. hepatica. We calculated negative binding energy values. A biophysics

study, likely molecular docking molecular dynamic simulation, further validated the

docking results. In molecular dynamic simulation analysis, the top hit docked

compounds with the lowest binding energy values were subjected to MD

simulation; the simulation analysis showed that the vaccine and immune cell

receptors are stable and can activate the immune system. MMGBSA of −146.27

net energy (kcal/mol) was calculated for the vaccine–TLR2 complex, while vaccine–

TLR4 of −148.11 net energy (kcal/mol) was estimated. Furthermore, the C-ImmSim

bioinformatics tool predicted that the vaccine construct can activate the immune
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2024.1478107/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1478107/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1478107/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1478107/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1478107/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1478107/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2024.1478107&domain=pdf&date_stamp=2024-09-26
mailto:h.alhasan@ju.edu.sa
https://doi.org/10.3389/fimmu.2024.1478107
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2024.1478107
https://www.frontiersin.org/journals/immunology


Alhassan et al. 10.3389/fimmu.2024.1478107

Frontiers in Immunology
system against F. hepatica, eradicate the infection caused by F. hepatica, and reduce

financial losses that need to be spent while protecting against infections of F.

hepatica. The computational immune simulation unveils that the vaccine model

can activate the immune system against F. hepatica; hence, the experimental

scientist can validate the finding accomplished through computational approaches.
KEYWORDS

Fasciola hepatica, immunoinformatics, epitopes, molecular docking, molecular
dynamic simulation analysis
Introduction

Fasciola hepatica is one of the leading causes of fasciolosis in

animals and humans (1). Along with Fasciola gigantica, it is a widely

disseminated species of liver fluke. A major zoonotic trematode

parasite instigates food-borne fasciolosis in livestock and humans.

Adult F. hepatica fluke are flatworms, measuring 20–40 mm long

and 8–13mm wide (2). Domestic ruminants of tropical and

temperate regions are susceptible to the disease caused by F.

hepatica. The worm/parasite can infect new hosts, such as wild

animals, contributing to its worldwide transmission. Traditionally,

fasciolosis is known as livestock disease, but it has become a

significant emerging disease in humans (3).

The epidemiological surveys reported that human fasciolosis

occurs in the region where the animal fascioliasis is endemic. The

number of human cases reported was <3,000 before 1992, whereas F.

hepatica infected approximately 17 million people worldwide in 2005.

Furthermore, more than 91.1 million people were considered to have

the risk of developing liver fluke infection. On the contrary, some

countries, such as China, have rare cases of human infection, although

veterinary F. hepatica infection is of considerable importance (4).

Fascioliasis due to F. hepatica poses a notable threat to the

growth of the farming industry and public health in developing and

developed countries. The continuous rise in morbidity and

mortality cases led researchers to come up with solutions to

combat life-threatening parasitic infections (5).

Climate change and environmental conditions play a critical role

in the life cycle and transmittance of F. hepatica. Humidity, oxygen

tension, and vegetative conditions also affect the liver fluke lifecycle.

These factors provide favorable conditions for the development and

reproduction of its larvae. The helminth is endemic in areas with a

mean temperature above 10°C for 6 months, with reports of snail

infections (6). The incidence of infection in humans is also severely

aggregated by the dietary habits of the individuals who intake aquatic

plants during animal husbandry (7).

The large leaf-shaped endoparasite has an intermediate host,

Lymnaea, a freshwater snail, while the definitive hosts of F. hepatica

are goats, cattle, sheep, and humans (8). Parasites reside in the bile duct

of the mammalian liver, where their eggs leave the host through feces
02
after entering the duodenum. The optimum conditions promote the

growth of ciliated larvae (miracidium) inside the egg within 2–3 weeks.

The larvae then escape from the egg and swim to reach the

intermediate host, freshwater snail (Lymnaea truncatula) (9). Once it

gets penetrated, it forms a sporocyst by losing ciliated covering. The

germinal cells inside the sporocyst grow and divide to form the redia.

The sporocyst then burst out with the growth of rediae to mature into

the final larval form known as cercariae (10). The cercariae have a large

tail, which helps it to leave the snail and swim in water to settle on

aquatic plants within 2 h. The larva loses its tail afterwards to form

metacercariae, which cause infection when animals and humans ingest

them. The host’s intestinal fluid digests the metacercariae’s cyst wall to

release the juvenile flukes. The flukes of F. hepatica become highly

infective when they reach the liver within 4–6 days (11).

Consequently, they cause fascioliasis when they arrive in liver

parenchymal cells in 5–6 weeks. The flukes lay eggs into the bile

duct after getting sexually matured on week 7 after infection. The

eggs leave the definitive host on week 8 after infection through the

bile duct and in feces. Humans allow juvenile flukes to mature

within 3–4 months (12).

The signs and symptoms of human fascioliasis are divided into

two stages: the hepatic phase, which lasts 1–3 months, and the biliary

phase. During the hepatic phase, patients experience fever, abdominal

pain, cramps, eosinophilia, and abnormal liver function tests. The

biliary phase of F. hepatica results in cholestasis with right upper

quadrant pain in infected patients. The hepatic phase is diagnosed by

computer tomography imaging (CT scan), while ultrasonographic

methods detect the biliary phase of F. hepatica. Infected patients’ stool

and blood samples are taken to confirm fascioliasis (13). Fascioliasis is

also a zoonotic infection that can infect humans and is considered a

significant source of morbidity and mortality rate (14).

Anemia, malnutrition, liver abscess, liver cirrhosis, and liver

fibrosis are the complications seen in patients with acute and

chronic infections. Triclabendazole is a drug that treats acute and

chronic human fascioliasis (15). However, liver flukes of F. hepatica

have developed resistance against Triclabendazole. Various antigens

and biomarkers have been discovered to detect the resistance that

has emerged from this drug (16). Re-purposing anti-helminthic

drugs, such as nitroxinil, albendazole, and closantel, is in progress to
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effectively treat flukicide-resistant infections. Moreover, plant

extracts and multiomic studies propagated the discovery of new

targets and drugs to combat the rapidly spreading infection. All the

treatments go a long way to surpass clinical trials, as they are seen to

be successful only in laboratory practice. Lastly, preventive

measures should be adopted to control the F. hepatica fluke (16).

Fluke control is impossible with the preventive measures and the

above treatment options; therefore, effective vaccine development

is crucial. Although various vaccination assays have been developed

previously, only a few were tested in animals to evaluate their

efficacy against fascioliasis. The candidate antigens, including the

native and recombinant antigens secreted from F. hepatica, were

checked to assess their effectiveness. The vaccines were based on

cathepsins secreted from juvenile F. hepatica worms. The results

obtained from clinical trials of the vaccines were not satisfactory (17).

Hence, multi-epitopes vaccine is needed as a promising treatment for

human and livestock fascioliasis. This study aims to utilize multi-

informatics methods to design an in silico-based vaccine against

F. hepatica.
Research methodology

Sequence retrieval of target
protein selection

The protein sequence of the glutathione transferase and

Cathepsin L-like proteinase was retrieved from UniProtKB by

using ID A0A890CT21 and Q24940 (18). The target protein

sequence was subjected to antigenicity analysis; antigenicity was

by Vaxijen 2.0 server by selecting a target organism as a parasite

with a threshold value of 0.4 (19). Furthermore, the physiochemical

properties analysis and allergenicity were done through AllerTOP v.

2.0 and the expasy tools (20). Figure 1 depicts the steps followed to

design epitope based vaccine against Fasciola hepatica.
Frontiers in Immunology 03
Assessment and prediction of epitopes

The immune epitope database and tool (IEDB) sequence base

searching tool for exposing and searching immune epitopes was

utilized for the forecasting of epitopes in targeted protein sequences;

in B-cell epitopes targeting, a piped linear epitope prediction 2.0 tool

was used, and a set of full HLA alleles were selected (21). After B-cell

epitope selection, T-cell epitopes were predicted from B-cell epitopes

(22). The predicted epitopes were ranked based on the lowest

percentile scoring and best overlapping. The predicted epitopes

were subjected to allergenicity, toxicity, and water solubility

analysis using Vaxijen (23), ToxinPred (24), and peptide calculator

bioinformatics tools, respectively (25), and only non-toxic, non-

allergen, and suitable water-soluble epitopes were selected.
Designing and processing of
vaccine construct

The chosen epitopes were utilized in developing the epitope

vaccine construct; the epitopes were linked by “GPGPG” connectors

(26). Furthermore, the model vaccine was combined with the cholera

toxin B subunit adjuvant to enhance its potency (27). After making the

linear sequence of the model vaccine, its physiochemical properties

were analyzed using the protparam tool. Afterwards, physiochemical

properties analysis and immunoinformatics screening were done using

Vaxijen 2.0, peptide calculator, and Allertop 2.0 bioinformatics tools

(28). After immunoinformatics screening, the sequence was used in 3D

structure modeling using an online 3D scratch predictor bioinformatics

tool (29). The model vaccine was subjected to loop refinement using

the galaxy web refinement tool https://bio.tools/galaxyrefine. After the

refinement of the vaccine structure, the structure was subjected to

disulfide engineering by design 2.0, and the engineered structure

was generated (30). The world population coverage analysis of the

selected epitopes was predicted using the population analysis
FIGURE 1

A diagrammatic depiction of the design process for a multi-epitope vaccine.
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coverage analysis tool (27, 31, 32) in the immune epitopes database

resources tool (33).
Molecular base interaction of vaccine and
immune cell receptor, molecular dynamic
simulation analysis, and binding free
energies estimation

The molecular docking analysis was used to evaluate the

binding affinity and interaction pattern of the vaccine construct

with receptor TLR2 and TLR4 using their specific PDB ID (TLR2-

PDB: ID2Z7X and TLR4-PDB: 4FXI); the crystal structure of the

target receptor was retrieved from Protein Data Bank PDB (34).
Frontiers in Immunology 04
After receptor retrieval, the vaccine construct and receptor were

uploaded into the protein–protein molecular docking ClusPro

2.0 web tool (35). Furthermore, the interactive residues of the

docking complexes were validated through the PDBsum tool (36).

After molecular docking analysis, the docking complexes were

subjected to molecular dynamic simulation analysis of 500-ns

simulation time (37). In simulation investigation, root mean

square fluctuation (RMSF) and root mean square deviation

(RMSD) were calculated, using AMBER21 packages (38).

Furthermore, using the iMODS server, the motion and stability of

the docked conformation were evaluated (39). To further confirm

the docking results and the docked complexes’ stability, the

complexes’ binding free energy was assessed using MMGBSA and

MMPBSA analyses (40).
TABLE 1 Predicted B-cell epitopes.

Glutathione transferase B-cell peptide

EEYAERRYGQEEFGRWQQEKCTIDLD

SPQLEEEKKKLLE

KRIEDLPPIKKYMNSDRFIKWPLQAWFAGFGGGSA

Cathepsin L1 LWHQWKRMYNKEYNGADDQHRRNIWEKNVKHIQEHNLRHDLGL

TDMTFEEFKAKYLTEMSRASDILSHGVPYEANNRAVPDKIDWRESGYVTEVKDQG

LKQFGLETESSYPYTAVEGQCRYNKQLGVAK

FMMYRSGIYQSQTCSPL
TABLE 2 T cells, MHC I, and MHC II predicted epitopes with target alleles.

MHC-I Allele Percentile score MHC-II Allele Percentile
score

AERRYGQEEF HLA-A01:01 0.14 ERRYGQEEFGRWQQE HLA-DRB3*01:01 23

GRWQQEKCTI HLA-A*24:02 5.6 EFGRWQQEKCTIDLD HLA-DRB3*01:01 32

LEEEKKKLL HLA-B*40:01 0.2 PQLEEEKKKLL HLA-DRB1*03:01 3.5

IEDLPPIKKY HLA-B*44:03 0.02 IKKYMNSDR HLA-DRB1*15:01 1.6

QEHNLRHDL HLA-B*40:01 0.09 YNGADDQHR HLA-DRB5*01:01 0.67

RNIWEKNVKH HLA-A*03:01 0.9 LWHQWKRMYNKEYNG HLA-DRB5*01:01 5.5

EYNGADDQHR HLA-A*33:01 0.4 RRNIWEKNVKHIQEH HLA-DRB3*02:02 6

WHQWKRMYNK HLA-A*03:01 4.5 VKHIQEHNLRHDLGL HLA-DRB4*01:01 23

RAVPDKIDW HLA-B*58:01 0.01 LSHGVPYEA HLA-DQA1*05:01/DQB1*03:01 0.48

RESGYVTEVK HLA-A*11:01 1.9 VPYEANNRAVPDKID HLA-DRB1*11:01 3.2

LSHGVPYEAN HLA-B*58:01 13 WRESGYVTE HLA-DPA1*01:03/DPB1*04:01 2.9

YLTEMSRASD HLA-A*01:01 23 FKAKYLTEMSRASDI HLA-DRB1*04:01 0.9

TDMTFEEFKA HLA-A*02:01 13 TDMTFEEFKAKYLTE HLA-DQA1*05:01/DQB1*03:01 0.68

ESSYPYTAV HLA-A*68:02 0.02 YTAVEGQCR HLA-DRB5*01:01 0.34

LKQFGLETES HLA-A*02:06 21 YNKQLGVAK HLA-DRB5*01:01 17

CRYNKQLGVA HLA-A*30:01 23 SSYPYTAVEGQCRYN HLA-DRB5*01:01 0.34

FMMYRSGIY HLA-B*15:01 0.2 YRSGIYQSQ HLA-DPA1*01:03/DPB1*02:01 15
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Results

Protein sequences retrieval and processing
for epitope selection

Fasciola hepatica glutathione transferase and Cathepsin L1

protein sequences were retrieved from UniProtKB using

A0A890CT21 and Q24940 uniprotkb_accession numbers,

respectively. The Vaxijen 2.0 webserver predicted both the

proteins as probable antigenic with 0.4576 and 0.5697 antigenic

values, respectively; next, the Allerton 2.0 bioinformatics tool

predicted both the proteins as non-allergic. The ExPASy

ProtParam tool predicted 218, 25.40237, 7.63, and −0.388 number

of amino acids, molecular weight, theoretical pI, and GRAVY,

respectively, for glutathione transferase, while for Cathepsin L1,

the number of amino acids, molecular weight, theoretical pI, and

GRAVY of 326, 36.89645, 6.71, and −0.503 were calculated,

respectively. In the physiochemical properties analysis, we

observed that both the selected proteins are physicochemically

stable in the nature and subject for epitopes prediction and

prioritization. In the epitopes selection and prioritization phase,

the first B-cell epitopes were predicted, as mentioned in Table 1.

The predicted B-cell epitopes were utilized for MHC-I and

MHC-II epitopes to make the vaccine construct to activate both

humoral and cellular immunity against the target pathogens; the

MHC-I and MHC-II predicted epitopes are shown in Table 2.
Immunoinformatics screening

In immunoinformatics screening, the antigenicity, allergenicity,

water solubility, and toxicity of the predicted epitopes were analyzed,
Frontiers in Immunology 05
and only antigenic, non-allergic, non-toxic, and suitable water-soluble

epitopes were shortlisted for vaccine designing; the shortlisted epitopes

and antigenic values and other immunoinformatics parameters are

mentioned in Table 3.
Analysis of worldwide population coverage

The population coverage analysis predicted that the selected

epitopes have shown coverage of 99.74% of the worldwide

population, and 99.46%, 58.09%, 99.18%, 99.98%, 99.71%,

99.79%, and 99.88% of United States Asian, United States

Austronesian, United States Black, United States Caucasoid,

United States Hispanic, United States Mestizo, and United States

Polynesian, respectively. The other countries and its worldwide

population harbor are mentioned in Supplementary Table S1.
Vaccine construct formation
and processing

In the vaccine construction phase, the selected epitopes were linked

with the help of a GPGPG linker and attached with an adjuvant

through another linker, the EAAAK linker; the cholera toxin B subunit

was used as an adjuvant. After vaccine construction, the

physiochemical properties of the vaccine construct were analyzed

through the ExPASy ProtParam tool. The server predicted 234

amino acids, 25,862.57 kDa molecular weight, 8.54 theoretical pI,

36.86 instability index, and −0.424 grand average of hydropathicity

(GRAVY); the ExPASy ProtParam tool showed that the model vaccine

is stable. Furthermore, the Vaxijen 2.0 bioinformatics tool evaluates the

model vaccine as a probable antigen with 0.5000 (probable ANTIGEN)
TABLE 3 Shortlisted immunoinformatics-filtered epitopes for vaccine designing.

B-cell-derived
T-cell epitopes Target allele

Percentile
score Antigenicity Allergenicity

Water
solubility

Toxicity IFN-
g inducer

EFGRWQQEKCTIDLD HLA-DRB3*01:01 32 0.6564

PROBABLE NON-
ALLERGEN
PROBABLE

Good
water
solubility.

Non-toxic Positive

RRNIWEKNVKHIQEH HLA-DRB3*02:02 6 0.5442

FKAKYLTEMSRASDI HLA-DRB1*04:01 0.9 1.1014

TDMTFEEFKAKYLTE

HLA-
DQA1*05:01/
DQB1*03:01 0.68 1.1035

YTAVEGQCR HLA-DRB5*01:01 0.34 0.8005
TABLE 4 Physiochemical properties and immunoinformatics analysis of model vaccine.

Multi-epitopes
vaccine construct

Number of
amino acids

Molecular
weight

Theoretical
pI

Instability
index

GRAVY

234 25,862.57 8.54 36.86 −0.424

Immunogenicity Allergenicity Hydrophilicity Toxicity

Probable immunogenic Non-allergic Water soluble Non-toxic
fro
ntiersin.org

https://doi.org/10.3389/fimmu.2024.1478107
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Alhassan et al. 10.3389/fimmu.2024.1478107
predicted value. Moreover, the Allertop 2.0 tool predicted that the

sequence of the model vaccine is non-antigenic by nature. The peptide

solubility calculator and ToxinPred 2.0 bioinformatics tools predicted

that the sequence of the vaccine construct is good, water soluble, and

non-toxic in nature. The physiochemical properties and

immunoinformatics findings are mentioned in Table 4.

Figure 2A shows the 3D structure of the engineered vaccine

construct; the salmon color represents the adjuvant. Furthermore,

the Ramachandran plot and secondary structure are mentioned in

Figures 2B, C, respectively.
Structure refinement

The structure of the vaccine construct was refined to remove the

unwanted loops in the protein structure, and overall, the steric clashes

were removed. The refined structure is presented in Figure 3A. The

galaxy refinement tool generated the top 10 refine structure based on

several parameters, and the calculated values are mentioned in

Supplementary Table S2. The model refine structure was considered

deemed fit for further processing. For further improvement, disulfide

engineering was performed on the structure of the vaccine construct, in

which disulfide bonds were incorporated in the refine structure of the

vaccine construct. The vaccine construct was further subjected to

disulfide engineering, and a total of 25 pairs of amino acid residues

Leu4-Thr11, Gly7-Val229, Val8-Thr11, Phe9-His34, Val12-Thr27,

Ser15-Pro23, Ile384-Leu41, Lys44-Lys55, Met58-Asn65, Ala59-Thr62,
Frontiers in Immunology 06
Pro74-Gln77, Ile95-Ser121, Leu98-Lys102, Val103-Ile120, Ala123-

Glu141, Lys154-Ile157, Asp160-Arg166, Ile177-Phe186, Tyr190-

Pro204, Leu191-Gly203, Asp199-Pro202, Pro202-Glu212, Gly205-

Met108, Tyr217-Gly223, and Tyr226-Val229 were chosen to be

replaced with cysteine amino acid and the refined structure generated;

the original and mutated structures are presented in Figures 3B, C.
Molecular docking analysis and docked
confirmation visualization

In molecular docking analysis, we observed the vaccine’s

interaction with TLR2 and TLR4. The docking served different

binding energy scores between the vaccine and receptor, and the

energy was predicted based on the blinding docking approach. The

docking scores of the vaccine and TLR2 and TLR4 are presented in

Supplementary Tables S3, S4, respectively. The intermolecular

docking visualizations are shown in Figures 4, 5.
Intermolecular visualization of
docked molecules

The intermolecular interaction of top 1 docked complexes,

based on different amino acid residue levels, is visualized by

pdbsum generated in the amino acid residues. Other types of

bonding interactions have been observed in vaccine and TLR2

and TLR4 docked complexes, as presented in Figures 6, 7.
FIGURE 2

(A) 3D representation of multi epitopes vaccine construct. (B) Secondary structure. (C) Ramachandran plot.
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iMODS analysis

In iMODS simulation, the vibration motion of the docked

complexes is increasingly used to study the dynamics of the

docked complexes; we predicted eigenvalues of 9.663726 and

1.924031 in the case of vaccine and TLR2 and TLR4, respectively,

which correlate that docked complexes have been showing stability

in the dynamic environment. Furthermore, the residues and atomic

indices also showed that the vaccine and receptors presented stable

docked molecules, as the normal modes analysis plots are

mentioned in Figures 8, 9.
MD simulation analysis

In the molecular dynamic simulation, the plot represents that

the vaccine and the immune cell receptor stability remains in the
Frontiers in Immunology 07
dynamic environment; root mean square deviation analysis was

done to observe time-dependent deviation in docked complexes,

while root mean square deviation was done to achieve residue level

fluctuation in the docked molecules. In the RMSD, we noticed that

the vaccine–TLR4 is more stable followed by vaccine–TLR2 in 200

simulation times. Moreover, the RMSF plot also represents that the

immunization and TLR4 are more stable, followed by vaccine and

TLR4, as shown in Figures 10A, B.
Estimation of binding energy

The calculation of binding free energy predicted that the vaccine

and receptor binding affinity is stable, and the MMGB/PBSA analysis

predicted the negative binding energy, unveiling that the net binding

energy is a negative value, hence representing that the complexes are

stable. Negative biding energies of −148.11 and −146.27 were
FIGURE 4

Intermolecular docked confirmation of vaccine and TLR2.
FIGURE 3

(A) Refine structure. (B) Original structure. (C) Mutated structure.
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FIGURE 5

Intermolecular docking conformation of the vaccine and TLR4.
FIGURE 7

Bonding interaction of vaccine and TLR4.
FIGURE 6

Bonding interaction of vaccine and TLR2.
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FIGURE 8

iMODS simulation of vaccine_TLR4. (A) Docked structure. (B) Eigenvalue. (C) Variance. (D) Covaiance. (E) Elastic network model.
FIGURE 10

Simulation plots of vaccine–TLR2 and vaccine–TLR4. (A) RMSD plot for both docked complexes; vaccine-TLR2 and vaccine-TLR4. (B) RMSF plot for
both docked complexes; vaccine-TLR2 and vaccine-TLR4.
FIGURE 9

iMODS simulation of vaccine_TLR4. (A) Docked structure. (B) Eigenvalue. (C) Variance. (D) Covaiance. (E) Elastic network model.
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predicted via MMGBSA for vaccine–TLR4 and vaccine–TLR2

receptors, the MM-PBSA predicted −145.98 and −164.78, which

was calculated by MMPBSA vaccine–TLR4 and vaccine–TLR2,

respectively, as mentioned in Table 5.
Computational immune simulation

In computational immune simulation, we observed that the

model vaccine against F. hepatica can activate the immune response

in the host and efficiently tackle the pathogenesis. We analyzed

different types of B and T cells’ immune response toward the F.

hepatica vaccine, as presented in Figures 11A-D.
Discussion

Vaccination is the primary method for preventing infections

caused by pathogens (41). However, traditional vaccine development

is expensive and labor intensive and carries a significant risk of failure

(42). By contrast, immunoinformatics-driven vaccine design can

streamline this process by pinpointing potential epitopes from

proteins for use in creating vaccine candidates (43). Multi-epitope

vaccines are crafted to enhance the collective impact of cellular,

humoral, and innate immune responses, giving them an advantage

over monovalent candidates or formulations (44). Recently, many

efforts have been made to utilize immunoinformatics approaches for

developing epitope vaccines against parasites (45).

In this research, a multi-epitope-based vaccine has been projected

from two selected proteins, glutathione transferase and Cathepsin L-like

proteinase, that play a significant role in the virulence and pathogenesis

of parasites; the proteins were selected based on homology search, as
Frontiers in Immunology 10
they do not show homology with human proteins, which proposed a

tremendously lesser possibility of causing autoimmune reactions in the

host body (46). Unusually, the selected protein sequences were

physicochemically stable, non-allergic, had good water solubility, non-

toxic, and had 0 transmembrane helices (TM helices), indicating that

the selected proteins are a promising vaccine candidate. Both types of

host immunity, namely, the T-lymphocyte effector response and long-
TABLE 5 The binding energy of the vaccine and immune receptors.

Energy Parameter Vaccine–
TLR4

Vaccine–
TLR2

MM-GBSA

Van der Waals Energy
(kcal/mol)

−140.21 −149.01

Columbic Energy (kcal/mol) −33.14 −35.67

Total Gas Phase Energy
(kcal/mol)

−161.35 −180.68

Total Solvation Energy
(kcal/mol)

25.24 23.41

Net Energy (kcal/mol) −148.11 −146.27

MM-PBSA

Van der Waals Energy
(kcal/mol)

−130.21 −145.01

Columbic Energy (kcal/mol) −32.14 −33.67

Total Gas Phase Energy
(kcal/mol)

−173.35 −170.68

Total Solvation Energy
(kcal/mol)

20.37 20.90

Net Energy (kcal/mol) −145.98 −164.78
FIGURE 11

Antibodies and cytokines plots toward a model vaccine. (A) Antibody production level with number of days after vaccine. (B) Concentration of
Cytokines and Interleukins against vaccine. (C) B cell population. (D) PLB cell population.
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lasting B-cell memory, are crucial for protection against the parasite

(47). Seven B-cell epitopes were predicted from both selected proteins to

generate a humoral immune response against F. hepatica; from B cells,

further T-cell epitopes were predicted to accomplish T-cell response as

well (48).

Macrophage activation is essential for the elimination of

microorganisms, and interferon-gamma is the main macrophage-

activating factor. In the immunoinformatics analysis, we observed

that the selected epitopes were found to be an IFN-g activator (49). In
addition, the B- and T-cell epitopes were also added in the vaccine

construct for the activation of cellular- and humoral-mediated

immune system F. hepatica. At the same time, none of the selected

epitopes in the designed vaccine showed any similarity to the human

proteome (50). This indicates its ability to trigger immune solid

responses while avoiding potential harmful allergic reactions.

Keeping the synthetic protein small is essential. Minimizing the

size of the artificial protein is vital to lower production costs,

simplify the purification process from inclusion bodies, and avoid

host organism toxicity. Therefore, only 10 epitopes were selected for

the vaccine design, excluding overlapping ones, to optimize the total

number of epitopes, without increasing the overall length (51).

Moreover, the docking analysis predicted that the immune

system could recognize the model vaccine; hence, it can provoke

the immune system and easily create a cellular and antibody-

dependent immune system (52). In the dynamic environment, the

stability of the docked complex is essential to activate and create long-

lasting immunity against F. hepatica. The molecular dynamic

simulation finding unveils the binding stability of the immune

system and vaccine stability. Moreover, the in silico results

estimated that the vaccine model could boost the immune system

in the form of the cellular and humoral immune response (28, 29, 53,

54). The MMGBSA and MMPBSA analysis further validated that the

vaccine and immune system have stable interaction. Overall, the

findings suggest that the vaccine model can activate the immune

system and can reduce the pathogenicity of the F. hepatica.
Conclusion

Fasciolosis is not just a zoonotic infection and health issue but

also affects social and economic values. Therefore, constructing a

powerful and effective vaccine could be crucial in effectively

combating this disease. This study mainly focused on epitope-

based vaccine constructs against F. hepatica by precisely

predicting possible vaccine targets from glutathione transferase

and Cathepsin L-like proteinase. The developed vaccine construct

exhibits acceptable properties regarding antigenicity, allergenicity,

physicochemical characteristics, and structural integrity. Moreover,

the interaction of the designed vaccine construct with the immune

system indicates that the vaccine construct can activate the immune

system and induce proper B- and T-cell response toward the F.

hepatica; however, the findings further need to validate its potency

against F. hepatica. It can be concluded that despite some structural

changes observed after MD simulation, the vaccine construct

remains stable in vivo within the biological system.
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Terashima A, Franco-Paredes C, et al. The global prevalence of human fascioliasis: a
sys temat ic rev iew and meta-ana lys i s . Ther Adv Infec t Dis . (2023)
10:20499361231185412. doi: 10.1177/20499361231185413

15. Sewoyo PS, Purwanti NLL, Evan S. Case report: anatomic pathology of Bali cattle
liver infested with fasciola gigantica. Veterinary Medicine. (2024) 35:0215–8930.
doi: 10.20473/mkh.v35i1.2024.28-35

16. Nguyen M-N, Yeo S-J, Park H. Identification of novel biomarkers for anti-
Toxoplasma gondii IgM detection and the potential application in rapid diagnostic
fluorescent tests. Front Microbiol. (2024) 15:1385582. doi: 10.3389/fmicb.2024.1385582

17. ShahM, Sitara F, Sarfraz A, Shehroz M,Wara TU, Perveen A, et al. Development
of a subunit vaccine against the cholangiocarcinoma causing Opisthorchis viverrini: a
computational approach. Front Immunol. (2024) 15:1281544. doi: 10.3389/
fimmu.2024.1281544

18. Li C, Sutherland D, Salehi A, Richter A, Lin D, Aninta SI, et al. Mining the
UniProtKB/Swiss-Prot database for antimicrobial peptides. bioRxiv. (2024), 2005–24.
doi: 10.1101/2024.05.24.595811

19. Praveen M. Multi-epitope-based vaccine designing against Junı ́n virus
glycoprotein: immunoinformatics approach. Futur J Pharm Sci. (2024) 10:29.
doi: 10.1186/s43094-024-00602-8

20. Dimitrov I, Flower DR, Doytchinova I. AllerTOP-a server for in silico prediction
of allergens. BMC Bioinf. (2013) 14, 1–9. doi: 10.1186/1471-2105-14-S6-S4

21. Zhang Q, Wang P, Kim Y, Haste-Andersen P, Beaver J, Bourne PE, et al.
Immune epitope database analysis resource (IEDB-AR). Nucleic Acids Res. (2008) 36:
W513–8. doi: 10.1093/nar/gkn254

22. Vita R, Mahajan S, Overton JA, Dhanda SK, Martini S, Cantrell JR, et al. The
immune epitope database (IEDB): 2018 update. Nucleic Acids Res. (2019) 47:D339–43.
doi: 10.1093/nar/gky1006

23. Zaharieva N, Dimitrov I, Flower DR, Doytchinova I. Immunogenicity prediction
by VaxiJen: a ten year overview. J Proteomics Bioinforma. (2017) 10:298–310.
doi: 10.4172/jpb.1000454

24. Sharma N, Naorem LD, Jain S, Raghava GPS. ToxinPred2: an improved method
for predicting toxicity of proteins. Brief Bioinform. (2022) 23:1–12. doi: 10.1093/bib/
bbac174
Frontiers in Immunology 12
25. Bibi S, Ullah I, Zhu B, Adnan M, Liaqat R, Kong WB, et al. In silico analysis of
epitope-based vaccine candidate against tuberculosis using reverse vaccinology. Sci Rep.
(2021) 11:1–16. doi: 10.1038/s41598-020-80899-6

26. Mushtaq M, Khan S, Hassan M, Al-Harbi AI, Hameed AR, Khan K, et al.
Computational Design of a Chimeric Vaccine against Plesiomonas shigelloides Using
Pan-Genome and Reverse Vaccinology. Vaccines. (2022) 10:1886. doi: 10.3390/
vaccines10111886

27. Ud-Din M, Albutti A, Ullah A, Ismail S, Ahmad S, Naz A, et al. Vaccinomics to
design a multi-epitopes vaccine for acinetobacter baumannii. Int J Environ Res Public
Health. (2022) 19:5568. doi: 10.3390/ijerph19095568

28. Gul S, Ahmad S, Ullah A, Ismail S, Khurram M, Tahir ul Qamar M, et al.
Designing a Recombinant Vaccine against Providencia rettgeri Using
Immunoinformatics Approach. Vaccines . (2022) 10:189. doi: 10.3390/
vaccines10020189

29. Ullah A, Shahid FA, Haq MU, Tahir ul Qamar M, Irfan M, Shaker B, et al. An
integrative reverse vaccinology, immunoinformatic, docking and simulation
approaches towards designing of multi-epitopes based vaccine against monkeypox
virus. J Biomol Struct Dyn. (2023) 41:7821–34. doi: 10.1080/07391102.2022.2125441

30. Irfan M, Khan S, Hameed AR, Al-Harbi AI, Abideen SA, Ismail S, et al.
Computational Based Designing of a Multi-Epitopes Vaccine against Burkholderia
mallei. Vaccines. (2022) 10:1580. doi: 10.3390/vaccines10101580

31. Rida T, Ahmad S, Ullah A, Ismail S, Tahir ul Qamar M, Afsheen Z, et al. Pan-
genome analysis of oral bacterial pathogens to predict a potential novel multi-epitopes
vaccine candidate. Int J Environ Res Public Health. (2022) 19:8408. doi: 10.3390/
ijerph19148408

32. Ullah A, Shahid FA, Haq MU, Tahir ul Qamar M, Irfan M, Shaker B, et al. An
integrative reverse vaccinology, immunoinformatic, docking and simulation
approaches towards designing of multi-epitopes based vaccine against monkeypox
virus. J Biomol Struct Dyn. (2022) 41:1–14. doi: 10.1080/07391102.2022.2125441

33. Malik M, Khan S, Ullah A, Hassan M, Ahmad S, Al-Harbi AI, et al. Proteome-
wide Screening of Potential Vaccine Targets against Brucella melitensis. Vaccines.
(2023) 11:263. doi: 10.3390/vaccines11020263

34. Abbas G, Zafar I, Ahmad S, Azam SS. Immunoinformatics design of a novel
multi-epitope peptide vaccine to combat multi-drug resistant infections caused by
Vibrio vulnificus. Eur J Pharm Sci. (2020) 142:105160. doi: 10.1016/j.ejps.2019.105160

35. Kozakov D, Hall DR, Xia B, Porter KA, Padhorny D, Yueh C, et al. The ClusPro
web server for protein–protein docking. Nat Protoc. (2017) 12:255–78. doi: 10.1038/
nprot.2016.169

36. Laskowski RA. PDBsum: summaries and analyses of PDB structures. Nucleic
Acids Res. (2001) 29:221–2. doi: 10.1093/nar/29.1.221

37. Alshammari A, Alasmari AF, Alharbi M, Ali N, Muhseen ZT, Ashfaq UA, et al.
Novel Chimeric Vaccine Candidate Development against Leptotrichia buccalis. Int J
Environ Res Public Health. (2022) 19:10742. doi: 10.3390/ijerph191710742

38. Case DA, Aktulga HM, Belfon K, Ben-Shalom I, Brozell SR, Cerutti DS, et al.
Amber 2021. San Francisco: University of California (2021).
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