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Integrating immunotherapy
with conventional treatment
regime for breast cancer
patients- an amalgamation
of armamentarium
Deeptashree Nandi* and Dipali Sharma*

Department of Oncology, Johns Hopkins University School of Medicine and Sidney Kimmel
Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, United States
Immunotherapy stands as the frontrunner in treatment strategies imparting

efficient remission in various types of cancer. In fact, emerging breakthroughs

with immune checkpoint inhibitors (ICI) in a spectrum of cancers have evoked

interest in research related to the potential effects of immunotherapy in breast

cancer patients. A major challenge with breast cancer is the molecular

heterogeneity that limits the efficacy of many therapeutic regimes. Clinical

trials have shown favorable clinical outcomes with immunotherapeutic options

in some subtypes of breast cancer. However, ICI monotherapy may not be

sufficient for all breast cancer patients, emphasizing the need for combinatorial

approaches. Ongoing research is focused on untangling the interplay of ICI with

established as well as novel anticancer therapeutic regimens in preclinical

models of breast cancer. Our review will analyze the existing research

regarding the mechanisms and clinical impact of immunotherapy for the

treatment of breast cancer. We shall evaluate the role of immune cell

modulation for improved therapeutic response in breast cancer patients. This

review will provide collated evidences about the current clinical trials that are

testing out the implications of immunotherapy in conjunction with traditional

treatment modalities in breast cancer and summarize the potential future

research directions in the field. In addition, we shall underline the recent

findings related to microbiota modulation as a key regulator of immune

therapy response in cancer patients and its plausible applications in

breast cancer.
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1 Introduction

Breast cancer persists as a global health menace, accounting for

one-third of all new cancer cases and ranking as the second most

prevalent malignancy among women (1). With more than 2.3

million cases worldwide, breast cancer incidence is currently on

the rise. Depending on the type of hormone receptors being

expressed on the breast carcinoma cells, there exist four primary

molecular subtypes of breast cancer; estrogen receptor/progesterone

receptor (ER/PR)-positive but HER2-negative (luminal A) that

comprises of more than half of the breast cancer cases; ER/HER2-

positive but PR-negative (luminal B)- hormone therapy as well as

chemotherapy may be effective for treating both luminal A and

luminal B subtypes; ER/PR-negative but HER2-positive (HER2

positive)- this group of tumors are likely to respond to HER2-

targeted therapy; and triple-negative breast cancer (TNBC, basal-

like) with too little to no expression of any of the receptors, making

it the most challenging breast cancer subtype to target (2).

Importantly, TNBC makes up about 10-15% of all breast cancers

and is the most aggressive form of this malignancy. Given the

complex heterogeneity with diverse molecular subtypes and various

underlying genetic alterations, the choice of treatment and the

therapeutic response varies greatly among breast cancer patients.

At present, surgical resection, chemotherapy, and radiotherapy are

the frontline treatment approaches for managing locally advanced

breast cancer. Endocrine therapies such as SERM tamoxifen, SERD

fulvestrant, or the aromatase inhibitors anastrozole and exemestane,

are well-accepted forms of targeted therapy for ER-positive breast

cancer (3–5). Small molecule inhibitors against CDK4/6

(palbociclib, abemaciclib, ribociclib), PARP (olaparib, talazoparib,

rucaparib, niraparib), PI3K/AKT, mTOR, FGF receptors and VEGF

also hold strong potential as precision medicines to mitigate breast

cancer progression due to their intimate involvement in oncogenic

signaling pathways (6, 7).De novo and acquired resistance to several
Abbreviations: ER, Estrogen Receptor; PR, Progesterone Receptor; HR,

Hormone Receptor; HER2, Human Epidermal Growth Receptor 2; EGFR,

Epidermal Growth Factor Receptor; IGF1R, Insulin-like Growth Factor 1

Receptor; AR, Androgen Receptor; SERM, Selective Estrogen Receptor

Modulator; SERD, Selective Estrogen Receptor Degrader ; PI3K,

Phosphatidylinositol 3 Kinase; AKT, Protein Kinase B; CDK, Cyclin-

Dependent Kinase; mTOR, mammalian Target of Rapamycin; FGF, Fibroblast

Growth Factor; VEGF, Vascular Endothelial Growth Factor; PTEN, Phosphatase

and tensin homolog; CTLA-4, Cytotoxic T Lymphocyte-associated Antigen-4;

PD-1, Programmed cell Death receptor 1; PD-L1, Programmed cell Death 1

Ligand 1; MDSC, Myeloid Suppressor Cell; Treg, Regulatory T cell; FDA, Food

and Drug Administration; LAG3, Lymphocyte Activation Gene 3; CD40, Cluster

of Differentiation 40; TNF, Tumor Necrosis Factor; TIL, Tumor Infiltrating

Lymphocyte; CEA, Carcinoembryonic Antigen; MET, Mesenchymal-Epithelial

Transition; PFS, Progression-free Survival; OS, Overall Survival; DFS, Disease-

free Survival; pCR, Pathological Complete Response; ORR, Objective Response

Rate; CAR, Chimeric Antigen Receptor; TAPUR, Targeted Agent and Profiling

Utilization Registry; BRCA, BReast CAncer gene; PARP, Poly(Adenosine

diphosphate-Ribose) Polymerase; HDAC, Histone deacetylase; Trop-2,

Trophoblast cell-surface antigen 2; ALDH, Aldehyde dehydrogenase; EpCAM,

Epithelial cell adhesion molecule; EMT, Epithelial Mesenchymal Transition.
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therapies has also been noted in breast cancer leading to the

development of newer regimens that may prove effective against

resistant tumors. For e.g., everolimus (42-O-(2-hydroxyethyl)

rapamycin), an mTOR inhibitor, is approved for advanced or

metastatic ER-positive breast cancer that no longer responds to

aromatase antagonist. Despite their clinical prowess, therapeutic

resistance severely limits the efficacy of several drugs.

The emergence of immunotherapy as the fourth pillar of

anticancer strategies has helped prolong the survival of several

breast cancer patients. Immune checkpoint inhibitors (ICIs)

encompassing CTLA-4, PD-1, and PD-L1 inhibitors have been

authorized for treating solid tumors, including breast cancer.

Multiple clinical trials, conducted over the years, led to the FDA

approval of the first ICI-ipilimumab, a CTLA-4-blocking antibody

in 2011 for metastatic melanoma (8). The ensuing investigations

resulted in the development of several PD-1-targeting antibodies

that were markedly effective in clinical settings, leading to the

subsequent approval of nivolumab and pembrolizumab in 2014.

These successes fueled further research endeavors helping the

development of inhibitory antibodies against additional targets

such as PDL1, LAG3 protein, hepatitis A virus cellular receptor 2

(also known as TIM3), and T cell immunoreceptor with Ig and

ITIM domains (9). Moreover, efforts have been directed to engage T

cell immune response via agonist antibodies that function primarily

by activating receptors on the immune cells, like CD40, and TNF

receptor superfamily member 9 and 4 (10). Immunotherapy

repertoire has shown very promising responses in multiple cancer

types while progress in breast cancer has been rather slow. Contrary

to the older notion of a “poorly immunogenic” nature, current

research strongly indicates that breast tumors are composed of a

complex, heterogenous and dynamic network of untransformed

epithelial cells, genetically modified cancer cells, fibroblasts,

immune cells, and blood vessels. There exists an intricate

communication among these different constituents. Also, these

components interact with the surrounding microenvironment

which changes with cancer progression and in response to

therapy. Improved understanding of the dynamic breast cancer

microenvironment has led to tremendous progress in the

development of immunotherapy in breast cancer.
2 Current status of immunotherapy
for different subtypes of breast cancer

Multiple investigations have improved our current knowledge of

immune evasion by tumor cells and enabled the development of

specific immune checkpoint inhibitors as state-of-the-art therapeutic

choice. Immunotherapy primarily entails boosting the host immune

system so as to enable it to recognize cancer cells as a foreign invader

and subsequently destroying them. The previously believed notion

about the ‘non-immunogenic environment of breast cancer’ has been

challenged with the discovery of tumor-infiltrating lymphocytes

(TILs) in breast tumors (11). Of note, HER2-positive and TNBC

subtypes demonstrate an elevated number of TILs compared to the

other breast cancer subtypes (12, 13). Currently, there is an increasing

interest in the application of immune checkpoint blockers to treat
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1477980
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Nandi and Sharma 10.3389/fimmu.2024.1477980
breast cancer patients who are refractory to any other forms

of treatment.
2.1 Immunotherapeutic approaches for the
treatment of HER2-positive
breast carcinoma

Clinical trials in patients with HER2-positive breast cancer have

exhibited modest results with immunotherapy. The combination of

anti-PD-1 mAb (pembrolizumab) and trastuzumab was assessed for

the treatment of HER2-positive progressive metastatic breast

cancer, wherein a partial response was achieved in 15% of the

enrolled patients with PD-L1 positive tumors (14). Moreover,

dendritic cell (DC) vaccines that were primed against the HER2

protein proved beneficial in mammary tumor regression through

activation of anti-HER2 CD4+ Th1 response in an early phase

clinical trial (15). Preclinical investigations in immunocompetent

mice suggest that PD-1 and CTLA-4 inhibition leads to a

considerable increase in the immune-associated effects of HER2-

based targeted therapies which is accomplished via synergistic

activation of CD8+ T cells (16, 17). The PANACEA trial revealed

that 15% of trastuzumab-resistant HER2-positive breast cancer

patients harboring PD-L1-positive tumors elicited a partial

response when treated with pembrolizumab plus trastuzumab

(14). In the “Proceedings of the 2018 San Antonio Breast Cancer

Symposium”, Emens et al. discussed the randomized phase II

KATE2 trial, which revealed that patients with PD-L1-positive,

HER2-positive, pre-treated metastatic breast cancer exhibited

improved PFS following treatment with T-DM1 combined with

atezolizumab relative to T-DM1 alone. Of note, CAR T-cell therapy,

a popular example of adoptive T cell therapy, have proven

successful in patients with hematological cancers and is currently

being explored in solid tumors. Researchers have successfully

expanded T cells specific for HER2 ex vivo in mice models and

these were found to elicit antitumor activity (18). Administration of

HER2 CAR T cells with CD28 costimulatory domain in the mice

central nervous system resulted in the regression of HER2-positive

metastatic breast carcinoma in the CNS (19). Nonetheless, clinical

data regarding the application of adoptive T cell therapy for treating

HER2-positive breast malignancy are still lacking. Preclinical and

clinical observations, though limited, solidify the rationale for the

clinical development of ICI for the treatment of HER2-positive

breast carcinoma, and emphasize the need for more detailed

research into the development of immunotherapeutic modules,

especially in combination with HER2-targeted therapies.
2.2 Immunotherapeutic approaches for the
treatment of triple-negative breast cancer

Reportedly, factors such as a heavier tumor mutation load,

increased frequency of TILs and enhanced expression of PD-L1

may contribute to increased immunogenicity for TNBC, thus,

TNBC patients are expected to benefit from ICIs (20). The efficacy

of pembrolizumab monotherapy as a first-line of therapy for
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metastatic TNBC (mTNBC) patients was evaluated in the phase II

KEYNOTE-086 study (21). The results from the study showed

favorable anti-tumor activities with median PFS of 2.1 months

whereas the median OS was improved to 18 months. Many

investigations are additionally aimed at establishing pembrolizumab

monotherapy as a second-line or later therapeutic strategy in pre-

treated mTNBC patients, including the KEYNOTE-086 (21), the

KEYNOTE-012 (22) and the TAPUR basket study (23). In the phase

III KEYNOTE-119 trial, efficacy of pembrolizumab monotherapy

was assessed in comparison to standard chemotherapy in second or

third line of treatment for patients with mTNBC. However, there was

no evident improvement on the prognosis of 622 TNBC patients,

who had progressed on 1-2 cycles of either taxane or anthracycline

(24). Such results indicate the immediate need for additional large-

scale randomized controlled trials and the need for combination

approaches, especially in earlier lines of treatment. Atezolizumab and

durvalumab are two more anti-PD-L1 antibodies that are yielding

promising results (22). A phase II trial, consisting of 199 patients with

no disease progression after 6-8 cycles of chemotherapy, has

evaluated the role of durvalumab for TNBC treatment. In the

exploratory subgroup analysis of TNBC patients (n = 82),

durvalumab dramatically increased the OS (25), suggesting the

rationale for additional investigations into using durvalumab as a

therapy for TNBC patients with advanced disease. Avelumab,

another PD-L1 inhibitor, is currently being tested as second-line or

posterior-line therapy at JAVELIN basket trial, which has shown

some promising results (26). Findings from the phase II TONIC

study have indicated that addition of cisplatin and doxorubicin may

exert better tumor response to immunotherapy in TNBC patients

(27). The detailed insight into the underlying molecular mechanisms

is still not thoroughly understood and remains an imperative area of

future research focus. Nonetheless these reports strongly support the

improved and durable clinical efficacy of PD-1/PD-L1 inhibition as

an effective treatment modality for patients with TNBC.
2.3 Attempts evaluating
immunotherapeutic approaches for the
treatment of luminal A/B breast cancer

It is important to note that not all subtypes of breast carcinoma

equally respond to the effects of immunotherapy. For instance, in

subjects bearing the luminal subtype of breast cancer, initial

attempts used a combination of ICI with chemotherapy as a

novel form of anti-cancer therapy- but that yielded disappointing

results. One such study aimed at investigating the tumor

suppressive effects of pembrolizumab combined with eribulin

among patients harboring ER/PR-positive, HER2-negative

metastatic breast carcinoma (28). However, the combination

therapy did not lead to any noticeable improvement in the

clinical outcome or prognosis of the metastatic luminal A-subtype

breast cancer patients- the most possible reason underlying this

pertains to the heavily-pretreated nature of the subjects in the study.

A phase Ib non-randomized, open-label, multi-cohort study tried to

evaluate the clinical impact of pembrolizumab plus abemaciclib in

the presence or absence of anastrozole (endocrine therapy) in
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metastatic breast cancer patients with ER-positive, HER2-negative

subtype. Patients had no prior exposure to CDK4/6 inhibitor

treatment (29). Unfortunately, the anti-tumor efficacy of the

combination was mitigated by the appearance of toxicity in the

liver and lungs following therapy. In contrast, administration of

letrozole, palbociclib, and pembrolizumab as front-line therapy in

HR-positive, HER2-negative metastatic breast carcinoma was

associated with good tolerance and favorable clinical efficacy in a

phase I/II trial (30). For luminal B- subtype, the neoadjuvant phase

II GIADA trial subjected patients to sequential anthracycline-

associated chemotherapy prior to the treatment with nivolumab

and endocrine therapy (31). A 16.3% pCR rate was observed

followed by the identification and characterization of immune-

based gene signatures and immune sub-populations that were

correlated with the achieved pCR. While previous studies have

found no notable benefit from pembrolizumab in a metastatic

setting of the luminal subtype, addition of pembrolizumab to a

sequential cycle of chemotherapy in a neo-adjuvant setting was

found to elevate the pCR rate from 13 to up to 30% amongst

patients with luminal breast cancer (32).
3 Development of novel treatment
modalities combining immunotherapy
with existing and upcoming
therapeutic agents to target
breast cancer

Contemporary research is focused on exploring the synergistic

effects of ICIs and commonly used chemotherapies for treating breast

carcinoma patients as monotherapy approaches using ICIs exhibited

modest activity. Chemotherapy is well-known to repress the actions

of immunosuppressive cells, like MDSCs and Treg cells, while

simultaneously facilitating cancer cell apoptosis, promoting tumor

antigen cross-presentation, and exacerbating recruitment and

infiltration of CD8+ T cells, NK cells and DCs via the secretion of

pro-inflammatory cytokines in the macrophages. Preclinical

evidences from animal models and clinical studies are already

recognizing the intricate drug-dependent and dose-dependent

interplay between chemotherapy and the immune system- thus,

this interaction can be exploited for synergistic associations

between cytotoxic drugs and immunotherapy (Figure 1).
3.1 Combination modalities involving
immunotherapy and HER2-
targeted therapies

Utomilumab is a receptor IgG2 mAb agonist against 4-1BB, a

co-stimulatory receptor that is involved in immune cell

proliferation once activated. For the treatment of patients with

advanced HER2-positive breast cancer, a phase I dose-escalation

trial is investigating the combination of utomilumab with either

trastuzumab or T-DM1 (NCT03364348). The effects of utomilumab

plus avelumab is also being studied in a phase II trial (AVIATOR,
Frontiers in Immunology 04
NCT03414658). The preclinical findings revealed that utomilumab,

when combined with a mAb targeting the PD-1/PD-L1 axis, can

aid in a strong immune response (33). Another component

associated with the adaptive immune response is the toll-like

receptor, and activation of TLR4 can stimulate antigen processing

and cross-presentation in vivo (34). In pre-clinical models,

oligodeoxynucleotides with CpG motifs that activate TLR9 have

been shown to induce active immune cytotoxicity (35). Activation

of TLR2 in HER2-positive breast cancer preclinical models

augments trastuzumab-related cytotoxicity (36). Such results

inspired research undertakings for testing the therapeutic efficacy

of TLR agonists in combination with HER2-based vaccines

(NCT02276300). Synergistic interactions between trastuzumab

and docetaxel chemotherapy have yielded a 60% response rate

compared to 11% in the case of monotherapy (37). Taking these

observations forward, clinical trials inspecting the efficacy

of combining atezolizumab with HER2 mAbs plus chemotherapy

in patients who are receiving early first line therapy for HER2-

positive breast cancer are in progress. The findings from such trials

are likely to provide new avenues for the treatment modalities

(NCT03125928, NCT03726879) (38). While approaches combining

immunotherapy and HER2-targeted therapies are promising

candidates for the treatment of HER2-positive breast cancer, they

can also be useful for a wider patient population including tumors

exhibiting a modest/low HER2 expression level which are not

usually eligible for HER2 mAbs.
3.2 Integration of immunotherapy with
chemotherapy regimens for
improved outcomes

One-third of patients with TNBC experience distant

recurrences, and eventually succumb to death within 5 years post-

diagnosis. Therefore, TNBC has a dire need for superior treatment

options and precision medicine. A phase III clinical study,

IMpassion130, interrogated the impact of immunotherapy in 902

patients with advanced TNBC, and tested the efficacy and safety of

the PD-L1 antibody atezolizumab in conjunction with

chemotherapeutic drug nab-paclitaxel (39). The promising data

showed a significant improvement in the mean OS from 15.5 to 25

months among PD-L1-positive patients (40). The findings led to the

FDA approval of the combination of atezolizumab and nab-

paclitaxel for therapy-naïve patients having PD-L1-positive

advanced TNBC in 2019 (41). Follow up phase III trials

IMpassion131 and Impassion 132 are delineating the clinical

impacts of atezolizumab with paclitaxel or first-line chemotherapy

(carboplatin, gemcitabine or capecitabine) in multiple settings of

TNBC (42). The primary goal of the IMpassion131 trial was to test

the efficacy of weekly administration of paclitaxel as the

chemotherapy backbone plus atezolizumab in a group of patients

constituting of similar inclusion criteria as IMpassion130.

Unfortunately, the results from this trial were not in sync with

the observations from Impassion130. Of note, in an abstract

presented at the “2021 ASCO Annual Meeting”, it was shown

that severa l d i ff erences were present in the tumor
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microenvironment of tumor samples from patients enrolled in the

two trials. Additional reasons underlying the observed discrepancy

in results may be attributed to the differences in the body mass

index and gut microbiota composition among the enrolled patients

(43). Another phase III trial, KEYNOTE-355, tested the effects of

integrating pembrolizumab with chemotherapy (albumin-bound

paclitaxel, paclitaxel or gemcitabine/carboplatin) for the treatment

of locally recurrent, inoperable or mTNBC patients who have not

undergone prior therapy. There was a considerable prolonged PFS

among PD-L1 positive population in the pembrolizumab-based

group (44), paving the way for the accelerated FDA approval of

pembrolizumab in combination with chemotherapy for the

treatment of patients with locally recurrent unresectable or

metastatic PD-L1-positive TNBC. Final results of the KEYNOTE-

355 trial reported that the combination considerably benefitted the

patients with a mean OS of 23 and 16.1 months in the combination

versus chemotherapy alone group, respectively. Intriguingly, 22% of

the TNBC patients in the pembrolizumab arm boasted of a disease-

free interval between 6 and 12 months. Results from a phase II

randomized trial demonstrated that chemotherapy or radiotherapy

promoted a more favorable tumor microenvironment in TNBC

patients that boosted the response to PD-1 blockade through

nivolumab. Patients subjected to the combination regimen that

included immunotherapy experienced a clear improvement in their

median DFS and OS, relative to the individuals treated with

monotherapy alone (27). Of interest, Oleclumab, a mAb specific

for CD73, is being studied in the phase Ib/II BEGONIA study, as a

combination therapy with durvalumab, plus paclitaxel, as first-line

treatment for mTNBC individuals (NCT03742102). In the

ENHANCE 1 trial enrolling 104 patients with mTNBC, eribulin,
Frontiers in Immunology 05
a microtubule inhibitor, when administered with pembrolizumab,

displayed attractive tumor-suppressive activity (45). An objective

response was achieved in (i) 26% of the evaluable patients, (ii) 25%

of the 48 patients who were not exposed to any prior chemotherapy

and (iii) 27% of the 34 subjects who had previously received

chemotherapy. Again, in agreement with observations from other

trials, patients harboring PD-L1-positive breast cancer boasted a

better response than those having PD-L1-negative tumors. The

exciting findings from such trials have elicited investigations into

various combinat ion regimes among TNBC patients .

Chemotherapy regimens continue to be the frontline treatment

strategy for a majority of breast cancer patients; however, it is

associated with adverse side effects affecting the quality of life as well

as therapy resistance leading to suboptimal response. While

immunotherapy regimens are still being investigated for their

long-term impact on quality of life, the combination treatment

strategies combining chemotherapy and immunotherapy are

presenting improved responses than monotherapy alone.
3.3 Development of novel combinations
using immunotherapy with antiangiogenic
agents, HDAC inhibitors and
topoisomerase inhibitors

Multiple studies are underway focusing on determining the

efficacy of immunotherapy with anti-angiogenesis agents. The

GINECO A-TaXel phase II trial in TNBC reported a significant

activity and tolerable safety profile for the combination of paclitaxel,

capecitabine and bevacizumab, a recombinant humanized mAb
FIGURE 1

Immunotherapeutic strategies in conjunction with traditional modes of anticancer treatment approaches for the management of breast cancer. The
predominant small molecule inhibitors used for treating breast cancer include inhibitors against PI3K, mTOR, CDK 4/6 and PARP. These agents can
be potentially used in combination with various emerging immune-therapies, such as, anti-PD-1/anti-PD-L1 therapy, antibodies against CTLA-4 and
other immune checkpoints, different antibody-drug conjugates, adoptive cell transfer therapy as well as specific vaccines. Such combinatorial
regimes are currently being investigated for their safety and efficacy in breast cancer.
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against VEGF-A (46). In 2019, a single-arm trial investigated the

effects of Nivolumab, paclitaxel and bevacizumab as first-line

therapy in patients with HER2-negative metastatic breast

carcinoma, consisting of both hormone-positive and TNBC

populations. The treatment group exhibited a PFS of 8.1 months

among the TNBC individuals and 19.1 months in the hormone

receptor-positive subgroup (47). In addition, in heavily pretreated

patients with advanced TNBC, a novel humanized mAb targeting

PD-L1, TQB2450, was tested in combination with anlotinib, an

anti-angiogenic small molecule inhibitor- the combination arm

displayed an acceptable safety profile with potent activity (48).

The capacity of HDAC inhibitors in upregulating antigen

presentation genes and boosting tumor cell recognition by

activated ICs suggest that they may act in augmenting the efficacy

of ICIs. The cocktail of romidepsin, cisplatin and nivolumab

indicated encouraging signs of efficacy in 34 pre-treated mTNBC

patients, necessitating additional research in larger populations

(NCT02393794). In contrast, evidences from a phase II study in

people with advanced TNBC suggest that another HDAC inhibitor,

entinostat, failed to improve PFS in combination with atezolizumab

(NCT02708680), supporting the dire need for further investigation

of the combination. With advances in research related to ADC, a

randomized phase II trial is affirming the impact of pembrolizumab

plus sacituzumab govitecan, composed of a topoisomerase I

inhibitor (SN-38) and an anti-Trop2 monoclonal antibody, in

patients with PD-L1 negative mTNBC (NCT04468061).

Overexpression of Trop-2 is predictive of a more aggressive

TNBC (49). Sacituzumab govitecan was found to serve as a

potent immunomodulator, promoting antibody-driven

cytotoxicity, depletion of Treg cells and upregulation of MHC

class I and PD-L1 expression in mice models, and it may

overcome resistance to current immunotherapeutic strategies in

PD-L1-negative tumors, which forms the rationale of the clinical

trial. A recent presentation at the “2020 AACR annual meeting”

demonstrated the potential medical application of another ADC

with similar immunomodulatory features, ladiratuzumab-vedotin,

an anti-LIV-1 ADC, in conjunction with pembrolizumab as first-

line therapy in TNBC patients in a phase Ib/II study- the

combination proved tolerable and exhibited promising anticancer

activity. ICI therapy impedes the tumor-promoting signals that

enable immune evasion by cancer cells. Combining this method

with agents that function by potently targeting various other

hallmarks of cancer, such as angiogenesis, epigenetics modulation

and DNA damage response, can potentially results in synergistic

effects that will ultimately lead to more successful response in breast

carcinoma patients.
3.4 Examining combinations of
immunotherapy with multiple
kinase inhibitors

Various kinase inhibitors have been tested to target specific

oncogenic pathways in breast cancer. Currently, many clinical

studies are exploring combination regimens involving kinase

inhibitors and immunotherapy. The phase II COLET study
Frontiers in Immunology 06
evaluated the therapeutic efficacy of atezolizumab, MEK1/2

inhibitor cobimetinib, and nab-paclitaxel or paclitaxel in locally

advanced or mTNBC, wherein PD-L1-positive patients

accomplished a visibly higher tumor ORR and PFS than PD-L1-

negative individuals (50). The therapeutic outcome of combining

PD-1 monoclonal antibody camrelizumab with apatinib for treating

advanced TNBC was tested in a phase II study (51). The results were

intriguing as they revealed an ORR as high as 32.5% compared to

18.5%, which is the highest recorded ORR for anti-PD-L1

monotherapy in TNBC, paving the groundwork for an effective

alternative combinational approach for TNBC treatment.

Moreover, a prospective phase II trial (FUTURE-C-PLUS) is

ongoing that seeks to assess the efficacy and safety index of the

combination of camrelizumab plus chemotherapy (nab-paclitaxel)

and famitinib (multityrosine kinase inhibitor against VEGFR-2,

PDGFR and c-kit) in mTNBCs. A major part (81.3%) of the

population achieved objective responses with a 60.2% of 9-month

PFS rate (52). These promising results inspired the ongoing phase II

randomized trial FUTURE-SUPER (NCT04395989). A phase Ib/II

study is presently determining the effects of tislelizumab, an anti-

PD-1 IgG4-variant mAb, in combination with fruquintinib, a highly

selective, oral tyrosine kinase inhibitor of VEGFR, in mTNBC,

including patients who have been pretreated with immunotherapy

in addition to naïve patients (NCT04579757). Meanwhile, patients

suffering from AR-positive metastatic TNBC, when subjected to

pembrolizumab combined with the AR regulator GTx-024 in a

phase II clinical trial, demonstrated an ORR of 25% at 16 weeks

(53). In another study, an AKT inhibitor ipatasertib was

subsequently combined with the atezolizumab and paclitaxel or

nab-paclitaxel cocktail as another candidate for front-line

treatment. Irrespective of the expression of PD-L1 or alteration

status of PIK3CA/AKT1/PTEN, 19 out of 26 patients showed a

response accompanied with a significantly elevated ORR of 73%,

thus advocating a novel therapeutic regime for treating TNBC (54).

In addition to their traditional role in targeted inhibition of key

proteins involved in cell survival and growth, kinase inhibitors

eradicate tumors via certain immune-modulatory effects.

Immunotherapy, when used in conjunction with such precision

therapy, can suppress the toxicities associated with monotherapy

and impart improved targeted anti-tumor functions even in breast

cancer patients, who do not respond well to immunotherapy alone.
3.5 Combining PARP inhibitors and CDK
inhibitors with immunotherapy as a new
arsenal for targeting breast cancer

A more recent undertaking, which is currently recruiting

patients with locally advanced or metastatic HER2-negative

mammary carcinoma with homologous DNA repair deficiency,

aims to uncover the efficacy of atezolizumab when incorporated

with the PARP inhibitor, olaparib (NCT02849496). The

TOPACIO/KEYNOTE-162 trial is a single-arm phase II study in

advanced TNBC population that found a considerable anti-tumor

activity and manageable safety profile for the combination of

pembrolizumab and a PARP inhibitor, niraparib (55).
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Importantly, this combination was especially beneficial for patients

harboring tumors with BRCA mutation. Furthermore, niraparib

synergistically potentiates the anticancer functions of the anti-PD-1

antibody, BioXCell RMP1-14, in TNBC models through activation

of the interferon signaling (56). Furthermore, co-administration of

anti-PD-L1 monoclonal antibody, durvalumab and olaparib in

advanced breast carcinoma with genomic BRCA mutation

exhibited better survival rates in a phase I/II MEDIOLA study

(57), denoting the alluring prospect of integrating PARP inhibitors

with immunosuppressants as an efficient anticancer module for

TNBC patients. Moreover, the SGNLVA-002 study attempts to

assess the effects of the novel combination of pembrolizumab with

ladiratuzumab vedotin, an ADC with great potential, as a front-line

treatment choice for locally advanced or mTNBC (NCT03310957).

A phase II randomized controlled trial in 2019 unveiled that PD-L1-

positive or TNBC patients demonstrated a pronounced benefit

when subjected to treatment with durvalumab with the median

OS of durvalumab-treated PD-L1 positive or TNBC patients being

21 months and 26 months, respectively (NCT02299999). The

efficacy of durvalumab plus the PARP inhibitor, olaparib, as a

maintenance strategy for patients with platinum-sensitive advanced

TNBC is being determined in the DORA study (NCT03167619).

Another category of agents that holds imminent interest in

combination modules with ICIs are the CDK inhibitors. In

preclinical models of TNBC, dinaciclib, an intravenous CDK

inhibitor, potentiated the antitumor effects of ICI through

heightened immune cell activation and tumor infiltration.

Following this, a phase Ib, dose-escalation trial tested dinaciclib

plus pembrolizumab in patients with advanced TNBC, which

revealed manageable toxicities upon reduction and delayed

administration of the specified dose while the dose expansion part

is ongoing. Furthermore, the CDK4-6 inhibitor, palbociclib, is being

interrogated in combination with avelumab in AR-positive TNBC

(NCT04360941). DNA-damaging agents, such as PARP inhibitors,

can potentiate immune response through enhanced tumor

mutational burden and improved neoantigen release, thereby

rendering the tumor more amenable to immunotherapy. CDK4/6

inhibition is known to impart transcriptional reprogramming of

immune as well as tumor cells, resulting in higher immunogenicity

of cancer cells and an immune-rich TME, which is, again, more

susceptible to immune-based therapies. Therefore, combining these

approaches with immunotherapy can lead to positive response rates

in a number of breast cancer patients, including those who are

originally less responsive to ICI therapy.
3.6 Combining multiple immunotherapy
regimens to enhance the clinical efficacy

Recent studies are also investigating the utility of combining

different ICI regimes. Multiple CTLA-4 inhibitors have shown the

efficacy in combination therapy for solid tumors, including breast

carcinoma. While ipilimumab was FDA approved for better

survival among advanced metastatic melanoma patients, its anti-
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tumor effect was modest in TNBC (58). A single-arm clinical study

in patients with metastatic breast cancer, including TNBC

population, tested the efficacy of durvalumab in conjunction with

tremelimumab but the trial did not meet a successful completion

(59).Treatment with dual anti-PD-1 and anti-CTLA-4 plus cisplatin

resulted in activation of DCs and CD8+CD4+ T cells along with

suppression of FOXP3+ Treg cells and the effect was more

pronounced in BRCA-1 deficient tumors (60). LAG3 is an

immune checkpoint that blocks the activation of its host cell to

facilitate further suppression in the immune response. LAG525 is

an antibody raised against LAG3, which was tested in the setting of

mTNBC in a phase II trial, in conjunction with PDR001, an anti-

PD1 antibody in the presence or absence of carboplatin (61). The

triplet arm showed an ORR of 32.4%. ICOS is a member of the

CD28 superfamily that interacts with ligands expressed on B cells

and phagocytes, thus promoting downstream signaling to regulate

T cell proliferation and release of cytokines. In a phase I/II open-

label study involving patients with advanced solid tumors, KY1044,

a human anti-ICOS antibody, was tested as monotherapy and in

combination with atezolizumab. KY1044 was well-tolerated in both

the strategies and one complete response and four partial responses

were noted in the TNBC cohort (NCT03829501). Results from the

phase II part of the study are underway. Another immune-

regulatory protein that suppresses T cell activation and cytokine

production, VISTA, is capable of inducing an immunosuppressive

environment. HMBD-002 is an antibody against VISTA, which is

currently being studied in a phase I study among patients with

advanced TNBC (NCT05082610). A summary of the clinical studies

involving a combinatorial approach of immunotherapy plus some

form of traditional anticancer therapeutic module that have

demonstrated safe and favorable disease outcome so far is

presented in Table 1.
3.7 The role of neoadjuvant
immunotherapy in breast cancer

The application of immunotherapy in the neo-adjuvant setting,

prior to any operative or adjuvant therapy, is expected to induce

more beneficial results for cancer patients. This is based on

preclinical evidences in animals that show improved immune

responses and better survival rates when immunotherapy was

administered before tumor resection or while the primary tumor

plus the local lymph nodes were intact (62). This superior response

is partly attributed to fact that immunotherapy, in a neoadjuvant

environment, primes a stronger anti-tumor immune response prior

to the changes in the tumor microenvironment or increased tumor

antigen heterogeneity. Considering the attractive anticancer

impacts of immunotherapy in treating patients with early-stage

disease in the adjuvant setting, research now seeks to utilize ICI

blockade for treating such patients in the pre-operative or

neoadjuvant setup. A 2019 randomized phase II study, enrolling

174 patients with operable TNBC, administered durvalumab in

addition to anthracycline/taxane-based chemotherapy in a
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TABLE 1 Clinical trials in breast cancer subjects pertaining to the combination of immunotherapy with different forms of conventional anticancer treatment strategies.
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neoadjuvant setting- the durvalumab-treated arm demonstrated a

superior pCR, particularly in the PD-L1-positive subgroup (63). In

agreement, a phase Ib study involving 60 high-risk, early-stage

TNBC patients displayed a pCR rate of 60% following a

combination of pembrolizumab and chemotherapy as

neoadjuvant therapy (64). Interestingly, the results from the study

also reported a positive correlation between pCR and PD-L1

expression along with stromal TILs. In addition, the IMpassion

031 study recruiting 333 patients explored the outcome of

atezolizumab in conjunction with chemotherapy as neoadjuvant

therapy in early TNBC subjects (65). Their results suggested that the

combination treatment led to a dramatic increase in pCR rate,

implying the potential application of atezolizumab as an alternative

therapy for patients with TNBC. Besides, an ongoing MIRINAE

study is comparing the efficacy of atezolizumab plus capecitabine

versus capecitabine alone among TNBC patients having residual

tumors following neoadjuvant therapy (NCT03756298). On a

similar note, a phase III study examining pembrolizumab plus

chemotherapy as neoadjuvant treatment for early-stage TNBC

revealed that pembrolizumab successfully increased the pCR rate.

Also, data hinted that patients with a heavier tumor burden,

advanced stage of the disease and with positive lymph nodes may

especially benefit from pembrolizumab (66). Also, neoadjuvant

chemotherapy plus pembrolizumab in 250 patients prior to

surgery showed a significantly higher pCR rate among the TNBC

population, a result that is consistent with the findings from the

KEYNOTE-522 study (32). The I-SPY 2 trial (NCT01042379),

involving early-stage TNBC patients, initially showed that

pembrolizumab administered with neoadjuvant paclitaxel

followed by chemotherapy (doxorubicin and cyclophosphamide)

resulted in a notably enhanced pCR rate from 22% to 60% and, this

was most probably due to the known immunostimulatory effects of

anthracyclines. The efficacy of a treatment regimen constituted of

pembrolizumab in combination with paclitaxel plus carboplatin

followed by anthracycline plus cyclophosphamide as neoadjuvant

therapy prior to surgery, and cycles of pembrolizumab

administration as adjuvant therapy, was investigated in the

KEYNOTE-522 trial (NCT03036488). The pCR rates escalated

from 51.2% to 64.8% (NCT03036488). Extensive follow-up

research and long-term immune-related adverse effects need to be

thoroughly determined to strengthen the observations. Two

ongoing key trials are addressing the effect of a year-long

adjuvant anti-PD-1/PD-L1 therapy on the survival of TNBC

patients- firstly, the SWOG S1418/BR006 trial (NCT02954874)

involving pembrolizumab for patients with residual disease and,

secondly, the A-brave trial (NCT02926196) examining avelumab

for individuals with high-risk or residual disease. In accordance, two

additional trials are inspecting the efficacy of atezolizumab in

combination with both neoadjuvant and adjuvant therapy on

patient survival outcomes- the placebo-controlled NSABP B-59

trial (NCT03281954) testing the efficacy of atezolizumab plus

neoadjuvant chemotherapy prior to adjuvant atezolizumab for

one year, and the IMpassion030 trial (NCT03498716) studying

the standard adjuvant chemotherapy with or without atezolizumab

before an annual regime of adjuvant atezolizumab.
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4 Emerging concepts to further
improve immunotherapy-involving
cancer stem cells, tumor infiltrating
lymphocytes and microbiota

Extensive research and clinical trials have enabled the slow but

gradual integration of immunotherapy as a mainstream treatment

strategy in conjunction to existing modules for breast cancer. In

addition to the well-established regimes of immunotherapy, as

discussed in earlier sections, there is increasing interest in the

therapeutic efficacy of other components of the immune system,

such as the TILs, as well as various oncogenic modifiers, including

cancer stem cells and the microbiota.
4.1 Breast cancer stem cells as candidate
for immunotherapy

Cancer stem cells, in contrast to other cancer cells, are slow-

dividing with a repressed tendency to undergo apoptosis and more

agile in terms of DNA repair. These features render the cancer stem

cells exceptionally refractory to traditional methods of treatment,

like irradiation or chemotherapy. Cancer stem cells are known to

express ABC drug transporters, which may explain the underlying

mechanism towards their resistant nature (67). Disease relapse and

tumor metastasis commonly arise from cancer stem cells that are

not affected by traditional anticancer therapy. Elimination of breast

cancer stem cells (BCSCs) may be accomplished through

immunotherapy, which is likely to improve treatment outcomes

for breast cancer patients. Although numerous attempts have been

made to target specific CSC markers using preclinical models

employing various immunotherapeutic approaches, the biggest

hurdle has been posed by the non-uniqueness of these markers

since most of them are also expressed by normal stem cells. CSCs

found in TNBC patients are highly heterogeneous and dynamic,

demonstrating variable responses to chemotherapy. Again, HER2-

positive BCSCs are characterized by CD44high/CD24low phenotype

and ALDH1 expression and they support resistance to anti-HER2

therapy, including trastuzumab. Importantly, this population of

cells are frequently detected in recurrent breast cancer and not in

primary tumors (68). Immunotherapeutic interventions seek to

target BCSCs by utilizing immune cells such as NK cells, CD8+ T

cells and gd T cells (69). Till date, many surface markers have been

reported for BCSCs including CD90, CD49, CD44, CD24, ALDH

and EpCAM (70). Elimination of CSCs was achieved in vitro in

breast cancer cell lines with ALDH-specific CD8+ T cells, which

resulted in significant amelioration of mammary tumor

development and metastases with prolonged survival (71, 72).

Clinical trials are presently investigating CAR-T cells targeting

CD44v6 (NCT04430595) and EpCAM (NCT02915445) surface

antigens as an effective anticancer module for advanced breast

carcinoma. Other studies recorded that BCSC-DCs can effectively

inhibit BCSC proliferation when administered into the circulation

of BCSC tumor-harboring rodents, suggesting the therapeutic
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potential of BCSC antigen-primed DCs for elimination of BCSCs

(73). These results were further strengthened in additional murine

models, wherein BCSC-primed DCs had a positive effect on the

survival time by 70% (74).

Vaccination strategies based on DCs encompass either antigen-

defined vaccines or polyvalent vaccines (75). In a mouse model of

spontaneous mammary tumorigenesis, a DC-based vaccine

specifically targeting HER-2/neu led to the production of anti-neu

antibodies along with T-cell mediated expression of interferon-g,
resulting in tumor regression (76). Encouraging results were also

observed in patients with metastatic breast carcinoma, who were

administered with lysate-pulsed DCs (NCT02063893). Nonetheless,

immunotherapy approaches that target a single antigen often fail to

eradicate the population of cells that contribute to tumor initiation

or cancer metastasis; therefore, this significantly lowers the long-

term success of this strategy. To circumvent this concern, emerging

studies suggest targeting of multiple antigens for an effective

response and one way to accomplish this is through polyvalent

vaccines. In stage IV melanoma, a DC/irradiated tumor vaccine

displayed complete tumor remission in 3 patients and a partial

disease remission in an additional 3 out of 46 patients (77). In an

interesting study, human heterokaryons were prepared that

expressed both breast tumor-associated antigens and

costimulatory molecules derived from DCs. These functionally

active fusion cells could successfully induce autologous T cell

proliferation and stimulate cytotoxic-T lymphocyte activity to

fight against autologous breast cancer cells (78). Development of

a polyvalent vaccine for BCSCs requires identification of as many

antigens as possible that are unique to BCSCs. Determining the

presence of mutations that facilitate the stem cell-like phenotype in

BCSCs and the underlying mechanisms may unearth important

avenues for immunotherapy. Moreover, chemokine receptors that

promote migration of BCSCs can also be explored as future targets

for immunotherapy. Overall, harnessing DC-based vaccines may be

a viable option for targeted elimination of BCSCs (79). Immuno-

targeting of BCSCs holds great clinical significance in an adjuvant

setting as it can abrogate the BCSC population and can, therefore,

improve the outcome of existing therapies.
4.2 The involvement of TILs in
immunotherapy response in breast cancer

TILs are vital indicators of tumor immunogenicity (80), hence,

the presence of TILs serves as a prognostic marker in many

malignancies, including breast cancer (81). TILs collectively

constitute of the T lymphocytes (CD8+, CD4+ and Treg cells), B

lymphocytes and natural killer cells present within the tumor.

These lymphocytes impart crucial functions in breast

carcinogenesis and immune recognition. The basic mode of

action of CD8+ T cells is the induction of direct cytotoxicity to

the cancer cells whereas CD4+ T cells primarily promote release of

inflammatory cytokines to evoke anticancer immunity (82). On the

other hand, the CD4+ Treg population promotes an immune-

suppressive environment by restricting the activation and
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subsequent function of CD8+ T cells (83). TILs are considered

responsible for superior disease outcomes among breast cancer

patients and are associated with relapse-free survival (84). However,

we still do not entirely understand the T cell subtypes in breast

carcinoma. One subset of the CD8+ TILs is represented by the CD8+

tissue-resident memory (TRM) cells that express cytotoxic

molecules and immune checkpoint factors (85). These cells were

found to positively correlate with higher relapse-free survival in

TNBC patients (86). The presence of TRMs also favor improved

prognosis among early-stage TNBC patients, denoted by better

survival and reduced rates of tumor recurrence. Again, the presence

of CD39+PD-1+CD8+ T cells in the tumors is intimately connected

with prolonged DFS of breast cancer patients (87). Importantly, the

FOXP3+ Treg cells contribute to more aggressive outcomes in breast

cancer, characterized by an enhanced likelihood of relapse and poor

survival (88). A study found that the intra-tumoral infiltration of

CD8+ T cells led to a notable drop in the risk of death among 12,439

breast cancer patients. This was especially evident for TNBC and

HER2+ tumors, who demonstrated a 28% reduction in mortality

while ER+, HER2+ tumors had a 27% reduction in mortality (89).

TIL therapy involves isolation of TILs from patients and expanding

them in an ex vivo setup with considerable amounts of IL-2 and

other necessary cytokines, followed by their re-infusion into the

patient (90). Since TNBC patients express increased number of

neoantigens relative to other subtypes, as revealed by whole genome

sequencing of breast cancer tissues, TNBC patients may serve as

possible candidates for TIL therapy (91). In accordance,

preliminary data from an ongoing trial (NCT01174121) has

reported tumor regression in a subset of patients in response to

TIL therapy (92).

Despite the emerging studies, the effects of the intra-tumoral

population of immune cells in dictating response of breast

cancer patients to different modes of treatment, specifically

immunotherapy, are not fully defined. Importantly, the

proportion of the intra-tumoral immune infiltrates is an

important factor that determines breast cancer patient response

to therapy. In the SweBCG91RT trial, early-stage breast cancer

patients possessing immune infiltrates with anti-tumor effects

exhibited a lower risk of tumor recurrence (93). Limited benefits

were observed in the test subjects following addition of

radiotherapy. A high TIL count has been shown to promote

sensitization of tumors to chemotherapy, resulting in a high pCR

to pre-operative chemotherapy among primary breast cancer

patients (94). Another study involving around 3,000 breast cancer

patients found that increased TIL counts exerted a survival benefit

with an improved response to neoadjuvant chemotherapy in TNBC

and HER2-enriched mammary tumors (95). On the contrary, a high

TIL count was associated with adverse prognosis in luminal breast

cancer. Furthermore, DFS was sharply worse for TNBC patients

with TILlow tumors compared to patients with TILhigh tumors (96).

TILs are, therefore, intimately involved in tumor prognosis,

chemotherapeutic outcome and selection of immunotherapy or

adoptive cell therapy in TNBC patients (97). Till date, most

studies have focused on the prognostic relevance of TILs in breast

cancer. However, attractive properties such as diversity of the
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receptors, tumor specificity, and lack of toxicity have pushed TILs as

a promising candidate for therapy (98).
4.3 A peek into the role of microbiota as a
potent regulator of breast cancer
development and response
to immunotherapy

4.3.1 Microbiota in breast TME
Distinct differences in the composition of microbiota in the

mammary tumor microenvironment of breast cancer patients

compared to healthy subjects and, also, between tumor versus

adjacent normal tissues have been observed (99). For instance, the

abundance of Enterobacteriaceae, Staphylococcus, and Bacillus

within the mammary tumor tissues among 71 breast cancer

patients was noted (100). Another study found a significant

enrichment of Sphingomonas yanoikuyae in normal tissues while

Methylobacterium radiotolerans was abundant in the paired breast

tumor tissues (101). Sphingomonas is known to regulate estrogen

metabolism and activation of pathways associated with Toll-like

receptor (TLR) 5, which can affect initiation of breast cancer (102)

while colonization by Methylobacterium may be involved in ER

modulation (101). In general, members of the phyla Proteobacteria,

Firmicutes, and Actinobacteria were found to be particularly

enriched in breast cancer. Other studies demonstrated reduced

presence of the fami l ies , Alcal igenaceae , Clostr id ia ,

Pseudomonadaceae, Ruminococcaceae, and Sphingomonadaceae,

in tumor-adjacent normal tissues relative to mammary tumor

tissues whereas Caulobacteraceae, Methylobacteriaceae,

Micrococcaceae, Nocardioidaceae, Propionicimonas, and

Rhodobacteraceae were enriched in the breast carcinomas (103).

The same study reported a decrease in the family Bacteroidaceae

with an augmented presence of the genus Agrococcus with

advancement of the disease, indicating that the microbiota

dynamically changes with breast cancer progression. Furthermore,

enrichment of several genera, such as, Fusobacterium, Atopobium,

Gluconacetobacter, Hydrogenophaga, and Lactobacillus has been

correlated with breast malignancy (99). Decreased breast cancer cell

survival due to the presence of Pseudomonas aeruginosa, a pathogen

found inside the breast was also observed (104). In addition, a study

involving 668 breast tumor tissues from The Cancer Genome Atlas

(TCGA) data set suggested a strong correlation between EMT-

related genes with the presence of Listeria fleischmannii, while

Haemophilus influenzae was associated with tumor growth, cell

cycle progression, and mitotic spindle assembly (105). Again,

Staphylococcus epidermidis facilitate a highly inflammatory tumor

microenvironment, through induction of pro-inflammatory

cytokines and complement activation, which favored tumor

growth while treatment with antibiotic ameliorated these effects

(106). Fu et al. further showed the presence of tumor-resident

microbiota in a spontaneous murine breast cancer model that

stimulated metastatic progression (107). However, the precise

effects of these breast tumor-residing microbes on response to

immunotherapy remain to be investigated and validated.
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4.3.2 Pleiotropic effects of microbial metabolites
on breast carcinogenesis

The intestinal microbiota is responsible for the production of

short-chain fatty acids (SCFAs), such as acetate, butyrate, lactate,

and propionate, which are important constituents of the tumor

microenvironment. Microbial metabolites enter the circulation and

exert pleiotropic anticancer effects in target cells. Interestingly, the

presence of SCFA-producing bacteria was found to be considerably

decreased among premenopausal patients with breast cancer in

comparison to healthy premenopausal women (108). Microbial

dysbiosis alters the bacterial metabolites to favor multiple

hallmarks of cancer, including cell proliferation, apoptosis,

metabolism, invasion, inflammation and immune regulation (109,

110). Sodium butyrate, for example, enhances oxygen consumption

in breast cancer cells (111). Increased breast cancer cell death is

observed following treatment with butyrate or inhibition of lactate

metabolism (112, 113). SCFAs reportedly crosstalk with the

immune environment as well, and are known to stimulate

secretion of cytokines, such as IL-17, IFN-g, IL-10 among others,

and promote T cell differentiation. Butyrate has been shown to

metabolically rewire activated CD8+ T cells that influences the

transition of CD8+ T cells to memory cells (114). A recent study

in a cohort of TNBC patients demonstrated a correlation between

enrichment of Clostridiales in tumor tissues with an activated

immune microenvironment. This bacterium is responsible for the

production of metabolite, trimethylamine N-oxide, which imparts

activation of M1macrophages and CD8+ T cell-mediated antitumor

response, thus opening avenues for understanding its effect on

immunotherapy (115). In melanoma patients, responders to

immunotherapy usually exhibit an abundance of butyrate-

producing microbiota relative to non-responders (116).

Additionally, butyrate improved the efficacy of anti-PD-1 therapy

via enhanced T cell infiltration in the tumor microenvironment in

colorectal carcinoma murine model (117). Although such evidence

clearly point towards the close interactions between microbial

metabolites and the immune system, there is a lack of

understanding regarding the mechanisms of metabolite-induced

changes in immunotherapeutic response across breast cancer

patients. Future studies should also focus on the implications of

supplementation with such metabolites as an adjunct regime for

immunotherapy in breast cancer.

4.3.3 Modulation of the microbiota as a strategy
for overcoming resistance to immunotherapy

Multiple studies have confirmed the involvement of host

microbiota in oncogenesis and therapeutic response (118). A

seminal study showed the attenuated effects of anticancer

treatment in mice with depleted gut microbiota (either due to

treatment with an antibiotic or housing in germ-free conditions),

suggesting that the host microbiota is a critical determinant of

therapeutic response (119–121). Study examining the effects of gut

microbiota on tumor suppressive efficacy of trastuzumab in HER2-

positive breast cancer revealed that antibiotic exposure or FMT

from antibiotic-treated mice greatly impair the antitumor activity of

trastuzumab (122). In fact, HER2-positive breast carcinoma
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1477980
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Nandi and Sharma 10.3389/fimmu.2024.1477980
patients refractory to trastuzumab treatment, demonstrated a lower

a-diversity and reduced abundance of Bifidobacteriaceae,

Prevotellaceae, Lachnospiraceae, and Turicibacteraceae compared

to individuals who achieved pCR (122). A direct interaction

between the gut microbiota and patient responsiveness to therapy

implies that modulation of the gut microbiota may be explored to

achieve optimal ICI efficacy. As microbial dysbiosis strongly

influences local and systemic antitumor immune response (119),

an intricate connection between ICIs’ efficacy and host microbiota

has also been observed. Gut microbial community strongly

influences the antitumor immune responses through modulation

of CD8+ T cells, T helper 1 (Th1) and tumor-associated myeloid

cells (120, 121, 123). Multiple landmark efforts, subsequently, in

murine models recognized the association between the gut

microbiota and ICI effectiveness. Responses to anti-PD-L1

therapy alter based on the gut microbiota composition which can

be modulated with fecal microbial transfer (FMT) or co-housing

approach. Of note, oral administration of Bifidobacterium

augmented the maturation of DCs and CD8+ T cells priming and

tumor infiltration, which restored the antitumor efficacy of PD-L1

therapy (124). In agreement, supplementation with Bacteroides

fragilis along with Bacteroides thetaiotaomicron or Burkholderia

cepacian enhanced the anti-tumor effects of anti-CTLA-4 blockade

in microbiota-depleted mice (125). Other studies also showed

enhanced efficacy of ICIs in vivo following treatment with several
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bacterial strains such as Lactobacillus johnsonii, Bifidobacterium

pseudolongum, and Olsenella species (126). Interventions such as

FMT, probiotic and prebiotic supplementation are presently being

interrogated to determine the impact of restoration of the gut

microbiota on therapeutic efficacy of various modes of

immunotherapy (Figure 2). For instance, a clinical trial in

patients with breast cancer is delineating the outcome of

probiotics administration (13 strains of beneficial bacteria) on

CD8+ T cell infiltration in the tumor microenvironment

(NCT03358511). The collated evidence, thus, points to the need

for future clinical research to test if manipulation of the host

microbiota may aid in improving immunotherapy outcomes in

patients with breast carcinoma.
5 Perspectives of combined therapy
modules in breast cancer and avenues
for future research

Currently, despite its immense potential, the efficacy of

immunotherapy as monotherapy is quite limited in solid tumors.

Emerging results clearly point towards the benefits of the

combinatorial approaches involving immunotherapy and

conventional treatment modules but there are certain aspects that
FIGURE 2

A favorable microbiota strengthens the anti-tumor immune response mediated by immunotherapy. Normally, a healthy microbiota maintains a state
of equilibrium of Th17 cells and FoxP3+ Treg cells. Overall, this inhibits pro-inflammatory immune responses. However, microbial dysbiosis, an
important risk factor of breast cancer, can abrogate this regulation and induce a state of inflammation by favoring Th17 pro-inflammatory T cells
over regulatory FoxP3+ T cells. This can severely impede the effects of immune-therapy. Remodeling of the microbiota in breast cancer patients
through the use of FMT or supplementation with pre-/probiotics can facilitate a more favorable state of immune response, especially in the
presence of immunotherapy.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1477980
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Nandi and Sharma 10.3389/fimmu.2024.1477980
demand additional in-depth research, such as the precise timing of

intervention, optimal drug combinations, and the order of

administration of drug combinations. Identifying potentially

responsive tumors is also extremely important as the efficacy of ICIs

varies among all tumor types and, in certain cases, there is the

occurrence of immune-related adverse events (irAEs). In addition to

PD-1/PD-L1 inhibitors, other immunotherapy modalities, such as

CTLA-4 inhibitors, CAR T cell therapy and tumor vaccines are also

being investigated in combination strategies. Development of vaccines

to enhance anticancer immunity is another upcoming strategy to target

breast cancer. Presentation of breast cancer peptides to T cells through

these vaccines can stimulate T cell priming and activation in addition to

boosting immune recognition of cancer cells. At present, several clinical

trials with a goal to identify the efficacy of breast cancer vaccines in

combination with PD-1/PD-L1 inhibitors in TNBC setting are

ongoing. Interestingly, neoantigen vaccines are designed to target the

peptides procured from tumor-specific mutations, absent in normal

cells, and unique to the tumor of the patient for minimizing self-

tolerance (127). A randomized phase I study will determine the impact

of a neoantigen vaccine plus durvalumab among patients with

residual TNBC following neoadjuvant therapy (NCT03199040).

Another phase II trial is enrolling mTNBC patients, who have

not been exposed to any form of treatment, in addition to those

mTNBC subjects, who have been treated with chemotherapy

(gemcitabine and carboplatin) for 18 weeks, to examine the effects of

nab-paclitaxel plus durvalumab in conjunction with a neoantigen

vaccine (NCT03606967). Another advance in immunotherapy

repertoire is the CAR T cell therapy engineered for specific targeting

of tumor antigens. Albeit preliminary, studies have determined that

intra-tumoral administration of engineered CAR T cells does not elicit

any serious adverse effects in patients with metastatic breast cancer

(NCT01837602) (128). These upcoming promising immunotherapies

warrant additional preclinical, translational and clinical studies to

improve the existing treatment regime for breast cancer patients.

Results from the current trials suggest that TNBC patients at

earlier stages of the disease responded better to combination therapy

but the prognosis of advanced TNBC has scopes for considerable

improvement. More elaborate studies need to be designed for

assessing the long-term synergistic interactions between

immunotherapies with chemotherapies. Efforts are required to

consider the plausible toxicity profile that may be associated with

such new treatment modalities. Since the immune system is highly

variable from person to person, studies need to focus on the

differential tolerance to such combination therapies amongst

different cohorts of patients. Customization of precision

immunotherapies assisted through predictive biomarkers is

expected to enhance the clinical efficacy and responsiveness to

therapy among patients, thus making this an important and

interesting area of further research. Emerging studies have pointed

that race may be a contributing factor to dictating the responsiveness

of breast cancer patients to therapy- a recent study showed the role of

racial disparity in response to immunotherapy among Asian breast

cancer patients (129). This underscores the importance of conducting
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approaches for immunotherapy among breast cancer patients. For

TNBC patients, we need to explore predictive markers to identify the

responders versus non-responders across TNBC subtypes, such as

basal-like, mesenchymal stem cell-like, etc. which promotes the

observed heterogeneity in clinical efficacy of the combinatorial

immunotherapy-based strategies. Despite the promising potential

of the combination strategies for breast cancer patients, the

extremely high cost of this type of treatment makes it relatively

hard to pursue, especially for a long duration. Consequently, future

studies should try to implement better ways to make this form of

therapy reasonably feasible and accessible for all compliant patients.

Clinical and preclinical data indicate the presence of complex and

dynamic interactions between various components of the immune

system that need to be further comprehended to achieve improved

treatment outcomes. Although immune-based treatment modalities

have gained momentum in the last few years as key therapy in

multiple cancers, more rigorous clinical trials are required to prove

the clinical efficacy of these agents in breast carcinoma.Modulation of

the tumor microenvironment represents an unexplored area of

increasing interest as this can be altered to facilitate drug delivery

and improve cytotoxicity. For instance, antiangiogenic therapy has

not yielded significant results for the treatment of HER2-positive

breast cancer patients (130), but immune evasion through CD8+ T

cell suppression or other mechanisms brought upon by

proangiogenic stimuli, such as increased VEGF production,

supports the idea of developing antiangiogenic agents in

conjunction with ICI as a novel therapeutic approach (131). The

innovation of immunotherapies to target HER2-positive breast

carcinoma requires close attention to the concerns of favorable

efficacy to toxicity ratio. Notably, contemporary evidences suggest

that HER2-directed vaccines exhibit favorable toxicity profiles with

minor side-effects while adoptive T cell-based therapies have,

unfortunately, been associated with greater side-effects (132).

Multiple small studies established that a decrease in TIL counts

and PD-L1 expression is mostly more common in metastatic lesions

relative to primary breast tumors (133, 134). In agreement, one study

with paired primary and metastatic breast cancer samples unveiled

that metastatic breast cancer tissues were characterized by the

downregulation of immunotherapy drug targets, pro-inflammatory

cytokines and antigen presentation, along with upregulation of

molecules that support immunosuppression (135). Such results hint

at the immune-depleted nature of metastatic breast cancers

compared to primary tumors. Therefore, a combinatorial approach

to enhance the immune response of metastatic breast cancer may

prove more beneficial for such immunologically inert tumors. In

addition, a more thorough and intensive understanding of the tumor

microenvironment may successfully enable a durable and potent

anti-tumor response from the combination therapies. Despite these

hurdles, activation of the immune system is closely related to self-

sustaining and prolonged tumor suppressive actions and numerous

patients are likely to benefit from well-designed immunotherapies

with limited side-effects.
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