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The role of neutrophils in tPA
thrombolysis after stroke: a
malicious troublemaker
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Bo Hu* and Huijuan Jin*

Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science
and Technology, Wuhan, China
Acute ischemic stroke represents a critical, life-threatening condition affecting

the central nervous system. Intravenous thrombolysis with tissue plasminogen

activator (tPA) remains a cornerstone for achieving vascular recanalization in

such patients; however, its therapeutic utility is limited, with only approximately

10% of patients benefiting due to the narrow therapeutic window and significant

risk of hemorrhagic transformation. Enhancing the efficacy of tPA thrombolysis is

therefore imperative. Neutrophils have been identified as key modulators of

thrombolytic outcomes, interacting with tPA post-stroke to influence treatment

effectiveness. The binding of tPA to low-density lipoprotein receptor-related

protein 1 (LRP-1) on neutrophil surfaces induces degranulation and formation of

neutrophil extracellular traps (NETs). Conversely, neutrophils impede the

thrombolytic action of tPA by obstructing its interaction with fibrin and

activating platelets. These findings suggest that targeting neutrophils may hold

promise for improving thrombolysis outcomes. This review explores the role of

neutrophils in tPA-mediated thrombolysis following acute ischemic stroke,

examines neutrophil-associated biomarkers, and outlines potential strategies

for enhancing tPA efficacy.
KEYWORDS

neutrophils, thrombus, immunity, therapy, thrombolysis
1 Introduction

Acute ischemic stroke is a central nervous system (CNS) disorder characterized by high

rates of morbidity, disability, mortality, and recurrence (1). According to the World Stroke

Organization, stroke remains the second leading cause of death worldwide (2). Currently,

the only intravenous thrombolytic therapies for acute ischemic stroke approved by the

United States Food and Drug Administration are tissue plasminogen activator (tPA)

agents, including recombinant tPA (Alteplase) and TNK-tPA (Tenecteplase). Nevertheless,

effective treatment is achieved in only approximately 10% of patients due to the narrow

therapeutic window and substantial risk of hemorrhagic transformation (HT) (1).
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Moreover, over half of treated patients derive no significant benefit,

with recanalization rates remaining low at 20%-23.6% (3, 4).

Therefore, improving the efficacy of tPA-mediated thrombolysis

is a pressing clinical need.

Although the brain was once considered to possess immune

privilege, accumulating evidence indicates that peripheral immune

cells actively participate in intracranial inflammation following

stroke (5). Among these immune cells, neutrophils are the first-

line responders recruited to the affected brain tissue (6). Their

numbers markedly increase in the brain after stroke onset, and

significant neutrophil infiltration is also observed within thrombi

(7, 8). Neutrophils contribute to neurovascular unit damage by

releasing various deleterious molecules (8, 9). Additionally, tPA can

directly modulate neutrophil activity, exacerbating brain injury

(10). Neutrophils also impair the thrombolytic efficacy of tPA by

obstructing its interaction with fibrin and promoting platelet

activation, while neutrophil extracellular traps (NETs) within

the thrombus further contribute to tPA resistance (11–13).

Consequently, a deeper understanding of the interactions between

neutrophils and tPA is essential for enhancing the safety and

effectiveness of thrombolytic therapy.

This review focuses on the interplay between neutrophils and

tPA during thrombolysis. It first examines the impact of neutrophils

on the outcomes of tPA therapy for acute ischemic stroke, then

summarizes neutrophil-associated biomarkers that may predict

thrombolytic prognosis, and finally proposes potential therapeutic

targets for improving the efficacy of tPA thrombolysis.
2 The mobilization of neutrophils after
ischemic stroke

Following the onset of stroke, neutrophil levels rapidly rise

across various compartments, including peripheral circulation,

bone marrow, spleen, and even the brain. Neutrophil counts in

the peripheral blood increase for the first three days post-stroke,

subsequently returning to baseline within 3-7 days (14). This surge

is primarily attributed to the mobilization of bone marrow and

splenic stores, driven by the activation of the sympathetic nervous

system and the hypothalamic-pituitary-adrenal axis (15, 16). In the

bone marrow, neutrophil levels elevate as early as 10 minutes to 4

hours post-stroke, decline by 12 hours, and then continue to rise,

persisting for at least seven days (14). Similarly, splenic neutrophils

increase between 6-12 hours, peak at 12-24 hours, and revert to

baseline within 2-7 days (17). Notably, the skull also serves as a

hematopoietic source of neutrophils, with cerebrospinal fluid

conveying injury signals to the skull bone marrow to stimulate

neutrophilogenesis and mobilization (5). The pro-inflammatory

cytokines and chemokines secreted by resident brain cells

facilitate the infiltration of peripheral neutrophils into the brain

parenchyma (14). Within two hours of stroke onset, neutrophils

begin rolling and adhering to cerebral pial vessels, proceeding to

infiltrate the brain tissue between 6-8 hours (18). Consequently,

brain neutrophil numbers surge within the first day, peaking at 1-3

days, followed by a gradual decline from days 4 to 7 (14).
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Administration of tPA has been shown to further elevate

neutrophil counts (19), with a 31% increase in circulating

neutrophils observed as early as one hour post-infusion (20).

Upon reaching cerebral vessels, neutrophil adhesion is initiated

by interactions between P-selectin glycoprotein ligand-1 (PSGL-1)

on neutrophils and endothelial P- and E-selectin, anchoring

neutrophils to the endothelium. Subsequent engagement of

lymphocyte function-associated antigen 1 (LFA-1) and PSGL-1

with endothelial E-selectin and intercellular adhesion molecule-1

(ICAM-1) facilitates the slow rolling of neutrophils along the

endothelium. Arrest and firm adhesion are mediated by integrins

macrophage-1 antigen (MAC-1)/LFA-1 and endothelial ICAM-1/2

interactions. Neutrophils then crawl along the endothelium via

MAC-1 and ICAM-1/2 before transmigrating into the brain

parenchyma (18). Evidence suggests that tPA enhances neutrophil

migration to brain vasculature via the annexin 2-MAPK pathway

(20). Additionally, tPA may function as a cytokine by binding to the

LRP-1 receptor, activating the cAMP/PKA signaling cascade,

and inducing ICAM-1 expression in cerebral microvascular

endothelial cells, potentially increasing neutrophil adhesion and

transmigration (21).
3 Effect of neutrophils on tPA
thrombolysis treatment

Neutrophils contribute not only to thrombus formation

during stroke but also influence vascular recanalization following

thrombolytic therapy, while potentially exacerbating complications

after thrombolysis (22, 23). The following sections explore the

distinct roles of neutrophils and NETs in thrombolysis as shown

in Figure 1.
3.1 Neutrophils impaired the vascular
recanalization after thrombolysis

Leukocytes, particularly neutrophils, are ubiquitous in ischemic

stroke thrombi (24). They constitute approximately 4% of the

cellular content within thrombi and occupy 0.5-20% of the

thrombus area, with neutrophils being the predominant leukocyte

type (22, 24). Di Meglio et al. performed ex vivo thrombolysis on the

thrombi retrieved via thrombectomy, revealing that platelets, fibrin,

and leukocytes were the main components of unresolved thrombi,

suggesting their adverse impact on thrombolytic efficacy (25).

Furthermore, a retrospective study of 92 patients with anterior

circulation stroke who underwent combined intravenous

thrombolysis and endovascular thrombectomy demonstrated that

a higher neutrophil content in thrombi was significantly correlated

with increased resistance to tPA (11).

Immunohistochemical analyses have shown that stroke thrombi

are composed predominantly of platelet-rich regions interspersed

with red blood cell-rich areas (7). Neutrophils tend to localize

within platelet-rich regions or at the interfaces of these zones, likely

due to their close interactions with platelets (7). Notably, thrombi
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feature a platelet-rich outer shell, which is particularly resistant to

tPA-mediated thrombolysis (25, 26). Neutrophils may enhance

thrombolytic resistance by promoting platelet activation and

aggregation through ligand-receptor interactions or secretion of

soluble mediators. PSGL-1, a mucin-like protein on neutrophils,

binds to the platelet P-selectin receptor, leading to platelet integrin

activation and promoting platelet aggregation (27, 28).

Additionally, neutrophil MAC-1 can interact with platelet

glycoprotein Ib (GPIb), forming neutrophil-platelet aggregates

and inducing P-selectin expression and integrin activation via

GPIb-mediated Akt phosphorylation (29). The stabilization of

platelet-neutrophil interactions is further supported by other

ligand-receptor signals, including GPVI, extracellular matrix

metalloproteinase (MMP) inducers, ICAM-2, and LFA-1 (30).

Neutrophils also release soluble factors that activate

platelets, thereby enhancing platelet aggregation and activating

the coagulation cascade (31). Myeloperoxidase (MPO),

predominantly secreted by neutrophils, has been shown to induce

partial platelet activation and may increase platelet mechanical

strength by remodeling the actin cytoskeleton, which further
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promotes aggregation (32, 33). The neutrophil granule enzyme

cathepsin G has been implicated in platelet activation in

experimental models of mesenteric arteriolar thrombosis and

transient middle cerebral artery occlusion (tMCAO) (34).

Upon interacting with platelets, neutrophils release extracellular

vesicles containing arachidonic acid, which can be taken up by

platelets and utilized as a substrate for cyclooxygenase 1 (COX-1)

(35). COX-1 metabolizes arachidonic acid to produce thromboxane

A2, a potent paracrine factor that amplifies platelet aggregation and

activates endothelial cells (36). Conversely, platelets can secrete

interleukin-1b (IL-1b), an inflammatory cytokine that induces a

proinflammatory state in neutrophils (37). Platelets also release

neutrophil-activating peptide-2, facilitating neutrophil recruitment

to the thrombus (38). This bidirectional activation establishes a self-

perpetuating cycle of neutrophil and platelet activation.

Following ischemic stroke, neutrophils secrete various granule

proteins, such as neutrophil elastase (NE) and defensin, which have

been shown to impair tPA-mediated fibrinolysis. NE, a neutral

serine protease found in neutrophil azurophil granules, interferes

with tPA activity by degrading proteins necessary for its function,
FIGURE 1

Mechanism via which neutrophils influence tPA thrombolysis. (A) Diagram illustrating the thrombolysis process. (B) Diagram showing the interaction
between neutrophils and tPA: (1) tPA binds to the LRP-1 receptor on neutrophil surfaces, inducing neutrophil degranulation and NETs formation; (2)
Neutrophils impair tPA’s thrombolytic efficacy by preventing tPA-fibrin binding through the release of NE and defensin, and by activating platelets via
ligand-receptor interactions. tPA, tissue plasminogen activator; PSGL-1, P-selectin glycoprotein ligand-1; MAC-1, macrophage-1; NE, neutrophil
elastase; NETs, neutrophil extracellular traps; GPIb, glycoprotein Ib; MPO, myeloperoxidase; LRP-1, low density lipoprotein receptor-related protein
1. Created with BioRender (BioRender.com/r33o076).
frontiersin.org

https://www.biorender.com
https://doi.org/10.3389/fimmu.2024.1477669
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Li et al. 10.3389/fimmu.2024.1477669
including fibrin and extracellular matrix components (39).

Specifically, NE degrades the fibrin a-chain, a crucial component

in tPA-mediated fibrinolysis. Incubation with NE diminishes

fibrin’s ability to facilitate plasminogen activation by tPA, thereby

significantly impairing the fibrinolytic process (40). Moreover, in

vitro studies indicate that NE can degrade plasminogen directly,

inhibiting its conversion to plasmin and leading to fibrinolytic

resistance (41). This phenomenon also occurs in vivo, limiting

plasmin production and hampering thrombus dissolution post-

tPA administration (41). Defensin, another protein present in

neutrophil homogenates with a molecular weight below 13 kDa,

has antifibrinolytic properties due to its competitive binding with

plasminogen for fibrin and tPA binding sites (42, 43). However, the

specific impact of NE and defensin on tPA thrombolysis after

ischemic stroke remains unclear.

Even after successful large-vessel recanalization with

thrombolysis, full restoration of blood flow may be compromised

by the no-reflow phenomenon, a condition attributed to

neutrophils (44, 45). Neutrophils, when activated, exhibit reduced

deformability, impeding their passage through narrow capillaries

and causing microvascular obstruction (46). Additionally, extensive

adhesion of neutrophils to endothelial cells in postcapillary venules

increases microvascular resistance, further contributing to impaired

reperfusion (44, 47).
3.2 NETs impaired the vascular
recanalization after thrombolysis

NETs are highly negatively charged structures composed

primarily of DNA, histones, and various proteins such as NE,

MPO, and cathepsin G (48). The formation of NETs, termed

NETosis, can occur through different pathways: suicidal NETosis,

which relies on NADPH oxidase; vital NETosis, which is

independent of NADPH oxidase; and mitochondrial NETosis

(49). Under normal physiological conditions, the web-like

architecture of NETs helps contain the spread of pathogens, with

their adherent proteins exhibiting bactericidal properties (49).

However, excessive NETs formation can aggravate inflammation

and contribute to tissue injury (50).

The involvement of NETs in stroke pathology was first

highlighted by Perez-de-Puig et al., who demonstrated that

neutrophil activation following stroke initiates NETosis (51).

Further studies by Vallés et al. showed significantly elevated

plasma NETs levels in patients with acute ischemic stroke (52).

Laridan et al. confirmed the presence of NETs within stroke

thrombi, underscoring their significant role in the pathogenesis of

ischemic stroke (53). NETs are predominantly found in the outer

layers or platelet-rich cores of thrombi (7), and their presence has

been linked to impaired tPA-mediated thrombolysis (54, 55).

Experimental models have provided insights into the role of

NETs in thrombolytic resistance. In a mouse photothrombotic

stroke model, researchers induced thrombi consisting primarily of

platelets and NETs. Administration of DNase I alone, which

degrades the DNA backbone of NETs, led to successful
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recanalization of the occluded vessels (55). Additionally, DNase I

enhanced tPA-induced thrombolysis of thrombi from patients with

acute ischemic stroke ex vivo, although DNase I alone did not

induce thrombolysis (54, 55). The disparity in results between these

experiments likely reflects differences in thrombus composition. In

the photothrombotic model, thrombi are densely packed with

platelets and NETs, making them more susceptible to DNase I-

mediated dissolution. In contrast, patient thrombi exhibit a more

complex composition, with only certain regions rich in platelets and

NETs, limiting the efficacy of DNase I as a standalone treatment for

complete thrombus dissolution.

Mechanistically, the histones and DNA components of NETs

contribute to thrombolytic resistance by altering clot structure and

lysis dynamics: histones influence the architecture of the clot, while

DNA modifies the degradation process (56). In thrombin-induced

plasma clots, histones have been shown to disrupt the spatial

organization of monomer blocks and protofibrils, resulting in an

increased fibrin fiber diameter (57). Additionally, extracellular

histones enhance thrombin generation, raising plasma thrombin

levels and leading to the formation of finer fibrin fibers (58, 59). The

overall effect of histones on fibrin structure is a combination of

these opposing influences, which tends to increase fibrin fiber

thickness (56, 60). Thicker fibrin fibers are generally associated

with greater clot stability, potentially inhibiting fibrinolysis (61).

DNA within NETs further impairs tPA-induced clot lysis by

altering the breakdown pattern, delaying complete clot dissolution

(57). Normally, fibrin is cleaved into large fibrin degradation

products (FDPs) with molecular weights greater than 150 kDa,

facilitating clot resolution. However, DNA binds to FDPs,

stabilizing the fibrin network and necessitating further cleavage of

large FDPs into smaller fragments for complete lysis, thus delaying

clot dissolution (56). Moreover, DNA reduces clot permeability due

to its pore-filling properties, thereby inhibiting fibrinolysis (57). The

antifibrinolytic effect of DNA may also arise from its interactions

with fibrin and tPA (57, 62). DNA can compete with fibrin for

plasmin binding, affecting the efficiency of fibrinolysis, and increase

the susceptibility of tPA to inhibition by plasminogen activator

inhibitor 1 (PAI-1), the primary endogenous inhibitor of tPA (62).

Additionally, NE-DNA complexes present in NETs exhibit

proteolytic activity, leading to the fragmentation of plasminogen,

which decreases the local concentration of intact plasminogen while

generating antifibrinolytic plasminogen fragments (63).

In vitro studies have demonstrated that NETs within thrombi

contribute to thrombolytic resistance. However, the impact of

circulating NETs on thrombolysis in vivo remains uncertain, as

NETs may influence stroke outcomes through various

mechanisms (49).
3.3 Neutrophils aggravated HT and edema
after tPA thrombolysis

Thrombolysis-related complications include cerebral edema

(CE), HT, and systemic hemorrhage in the acute phase (23). CE

arises from plasma leakage across the compromised blood-brain
frontiersin.or
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barrier (BBB), leading to tissue swelling (64). The risk of severe, life-

threatening edema is highest when the middle cerebral artery is

occluded, often resulting in tissue displacement, elevated intracranial

pressure, and potentially fatal outcomes within 2-5 days post-stroke

(65). Recent observations by Frisullo et al. indicate that patients

undergoing tPA treatment experience a more pronounced increase in

CE during the first 72 hours after stroke onset, identifying tPA as a

trigger for the onset and progression of CE (66). HT, another serious

thrombolysis-related complication, can range from minor petechial

bleeding to large parenchymal hemorrhages (PH) (67). Both types of

HT arise from a combination of BBB disruption and the

pharmacological effects of tPA (68). Given the role of neutrophils

in BBB damage during cerebral ischemia and their interaction with

tPA, neutrophils have been implicated in exacerbating these

complications (68). Experimental evidence supports this

association: in hypertensive rats, pretreatment with monoclonal

anti-neutrophil antibodies reduced neutrophil infiltration and HT

after thrombolysis, while induction of neutrophilia with granulocyte

colony-stimulating factor increased the risk of bleeding in a mouse

model of tMCAO (69, 70). Clinical data supporting these findings will

be discussed subsequently.

Post-stroke, neutrophils exacerbate BBB disruption through the

production of proteases such as MMPs and elastase, reactive oxygen

species (ROS), lipocalin-2 (LCN-2), and various cytokines and

chemokines (18, 71–73). tPA can prompt early neutrophil

degranulation, releasing significant amounts of MMP-9 via the

LRP-1/Akt or ERK1/2 signaling pathways in cultured neutrophils

(10, 74). Moreover, tPA treatment enhances the enzymatic activity of

MMP-9 released by neutrophils (75). The sudden influx of oxygen

during reperfusion after tPA thrombolysis leads to excessive ROS

production by neutrophils, causing oxidative damage to junction

proteins (68, 71). This oxidative stress further compromises the

neurovascular unit by damaging endothelial cells, smooth muscle

cells, pericytes, and astrocytes, thereby increasing BBB permeability

and the risk of HT (72). Additionally, tPA has been shown to

stimulate neutrophils to overproduce NETs via the LRP-1/PAD4

pathway following ischemic stroke (8). NETs contribute to

neuroinflammation by activating monocytes and macrophages,

promoting the release of pro-inflammatory cytokines, and

mediating inflammasome activation (49). Furthermore, NETs can

directly compromise endothelial integrity by disrupting intercellular

adhesion junctions and reorganizing the actin cytoskeleton, leading to

microvascular leakage and impaired barrier function (76, 77).
4 Neutrophil-related biomarkers for
thrombolysis prognosis

Given the critical role of neutrophils in thrombolysis, neutrophil-

related biomarkers have significant potential as predictors of

thrombolysis outcomes. Here, these biomarkers are categorized into

three groups: dynamic changes in neutrophil numbers, neutrophil-

associated parameters, and NETs-related components.
Frontiers in Immunology 05
4.1 Dynamic changes in
neutrophil numbers

Numerous studies have established the predictive value of

circulating neutrophils for thrombolysis outcomes. Maestrini et al.

reported that higher neutrophil counts at admission were

independently associated with an increased risk of symptomatic

intracerebral hemorrhage (sICH) and worse functional outcomes

three months post-thrombolysis (78). However, other researchers

argue that changes in neutrophil counts following thrombolysis

provide a better prognostic indicator than baseline counts (19). For

instance, a study showed that a 10% increase in neutrophil numbers

after tPA administration was linked to an 83% higher risk of death

or severe disability at three months (19). Ying et al. also found that

dynamic increases in neutrophil counts post-thrombolysis were

predictive of PH and poor outcomes at three months, whereas

admission neutrophil levels were not reliable indicators (79). These

discrepancies may stem from the confounding effect of infection in

some patients upon admission, which influences neutrophil counts

and affects the predictive accuracy for poor outcomes.

The neutrophil-to-lymphocyte ratio (NLR) has also emerged as a

relevant biomarker for assessing thrombolysis prognosis. Elevated

NLR at admission has been independently associated with sICH and

early neurological deterioration post-thrombolysis (78, 80). Similar to

neutrophil counts, some studies suggest that post-thrombolysis NLR

is a stronger predictor of outcomes than admission NLR (81). For

example, Guo et al. found no significant difference in admission NLR

between patients with and without PH (82). Chen et al. showed that

lower NLR levels, both at admission and after thrombolysis, were

associated with favorable neurological outcomes, but NLR measured

post-thrombolysis had superior discriminative ability for neurological

prognosis (83). Additionally, a dynamic rise in NLR post-

thrombolysis was predictive of PH, whereas baseline NLR was

not (79).

Other neutrophil-related ratios, such as the neutrophil-to-high-

density lipoprotein cholesterol ratio (NHR) and platelet-to-

neutrophil ratio (PNR), have also been studied as prognostic

markers. NHR levels were found to be higher in patients with

acute ischemic stroke compared to healthy controls, with a positive

correlation between NHR and the severity of neurological damage

(84). Elevated NHR at 24 hours post-intravenous thrombolysis was

significantly associated with poor outcomes (84). An inverse

relationship was observed between PNR and stroke severity; lower

PNR levels, whether at admission or 24 hours post-thrombolysis,

were independently associated with unfavorable functional

outcomes (85). Notably, PNR measured at 24 hours post-

thrombolysis showed greater reliability in predicting poor

prognosis compared to PNR at admission (85).
4.2 Neutrophil- associated parameters

Following a stroke, neutrophils are the primary source of MMP-

9 in both peripheral blood and brain tissue (86, 87). MMP-9 has
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shown potential as a predictor of stroke prognosis, supported by

clinical studies demonstrating that higher plasma MMP-9 levels are

associated with more severe strokes and an increased risk of poor

functional outcomes (88, 89). Additionally, elevated MMP-9

concentrations during the acute phase are independent predictors

of HT across all stroke subtypes (90). Another study has also

established a close relationship between plasma MMP-9 levels

and the occurrence of PH following tPA treatment (91). A meta-

analysis further supported MMP-9 as a sensitive and specific

biomarker for predicting the risk of HT after thrombolysis or

stroke (92). However, some studies present differing perspectives.

Zheng et al. found that elevated plasma MMP-9 levels were

associated with poor prognosis one year after stroke only in

patients with dyslipidemia, not in those with normal lipid levels

(93). Similarly, Costru-Tasnic et al. reported that while higher

plasma MMP-9 levels at admission were linked to an increased

risk of HT and worse neurological outcomes at discharge and three

months, these associations did not reach statistical significance (94).

This lack of correlation may be attributed to the timing of blood

sample collection, which occurred around 21.9 hours post-

thrombolysis—potentially too early to detect peak MMP-9 levels,

which typically rise from 1-5 days after thrombolysis (95).

NE, a neutral serine protease contained in neutrophil azurophil

granules, also plays a role in the breakdown of the BBB (18). Plasma

NE levels have been found to be significantly elevated in patients

with acute ischemic stroke compared to controls (96). High

admission plasma NE levels have predictive value for identifying

patients likely to experience poor functional outcomes three months

after tPA thrombolysis (97).
4.3 NETs components

As previously discussed, NETs contribute to thrombolytic

resistance and BBB disruption in stroke. Circulating NETs levels

increased after ischemic stroke and were positively correlated with

stroke severity (52, 98). Although most clinical research on NETs as

a prognostic tool for thrombolysis remains limited, evidence from

studies in related conditions, such as ST-segment elevation

myocardial infarction, suggests that NETs could serve as

independent predictors of outcomes, indicating their potential

utility in stroke prognosis (99).

NETs components, including citrullinated histone 3 (citH3),

nucleosomes, cell-free DNA (cfDNA), elastase, and MPO, are

measurable in plasma and commonly used as NETs indicators.

Histone citrullination mediated by peptidylarginine deiminase 4

(PAD4) is a crucial step in NETs formation (100). In patients with

stroke, citH3 is present in almost all thrombi, co-localizing with

extracellular DNA, thereby confirming the specific presence of

NETs (53). CitH3 is regarded as a NETs-specific marker and has

been independently associated with various conditions, including

myocardial infarction, stroke, stent thrombosis, and cardiovascular

death (49, 99). Vallés et al. found significant elevation of NETs

markers, such as cfDNA, nucleosomes, and citH3, in the plasma of
Frontiers in Immunology 06
patients with stroke compared to healthy controls, with citH3

showing the highest increase (72%) (52). During a year-long

follow-up, elevated citH3 levels were independently associated

with all-cause mortality, suggesting its potential as a prognostic

marker in acute ischemic stroke (52). Thålin et al. developed a

reliable assay for quantifying nucleosomal citH3 in plasma, using a

semi-synthetic calibrator and specific monoclonal antibodies to

ensure high accuracy and low variability (101). However, citH3

only detects PAD4-dependent NETosis, limiting its utility for vital

and mitochondrial NETosis, which are PAD4-independent (102).

MPO is another specific marker for neutrophils, with MPO-

DNA complexes being characteristic of NETs. Elevated plasma

levels of MPO-DNA and citH3 after stroke onset have shown

positive correlations with stroke outcomes (103, 104). In a

tMCAO mouse model, prophylactic treatment with a NETs-

inhibitory peptide significantly reduced circulating MPO-DNA

levels and cerebral infarct size (103). Measuring MPO-DNA via

enzyme-linked immunosorbent assay (ELISA) is currently

considered the most specific, objective, and quantitative method

for assessing NETosis (102).

Circulating cfDNA, a degraded DNA fragment present in plasma,

is another marker linked to neutrophil counts and injury severity in

patients with acute ischemic stroke (105). However, since neutrophils

or NETs are not the sole contributors to cfDNA, it serves only as a

reference indicator of neutrophil or NETs activity rather than a

specific marker (49). Vajpeyee et al. found that lower circulating

cfDNA levels were significantly associated with improved outcomes

after stroke (106), and admission levels have been reported as

predictors of short-term neurological outcomes after intravenous

thrombolysis (107). Combining MPO-DNA with cfDNA or citH3

assays enhances the assessment of NETs levels compared to

individual markers alone (49). Despite these promising findings,

the clinical application of NETs as biomarkers remains challenging,

requiring further development, validation, and standardization to

overcome current limitations (108).
5 Treatment targeting neutrophils

Neutrophils significantly influence tPA thrombolysis outcomes

after stroke, and targeting these cells could potentially improve

thrombolytic prognosis. However, directly targeting neutrophils

poses challenges for clinical translation due to the risk of

neutropenia-induced infections. Therefore, strategies focusing on

the modulation of neutrophil recruitment and activation may offer a

safer and more practical approach (68). Additionally, inhibiting

NETs formation or promoting their degradation represents a

promising therapeutic direction for stroke treatment (49).
5.1 Drugs targeting neutrophils

One such strategy involves UK-279,276, a recombinant

glycoprotein with a selective affinity for the CD11b/CD18 integrin
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on neutrophils, which can inhibit neutrophil adhesion to

endothelial cells and prevent their migration (109). In a rat model

of tMCAO, combining tPA with UK-279,276 administered 4 hours

post-ischemia significantly reduced ischemic damage without

increasing the risk of HT (110). Although there is a theoretical

concern that UK-279,276 could elevate infection risk, a single dose

of up to 1.5 mg/kg was well tolerated in patients with acute stroke

(109). Despite these promising preclinical results, the subsequent

clinical trial was discontinued after UK-279,276 failed to

demonstrate a significant improvement in outcomes for patients

with acute ischemic stroke (111). Several factors may have

contributed to this outcome. One potential reason is the

difference between rats and humans regarding brain size,

anatomy, and composition, which could limit the translation of

results from animal models to clinical practice. Future experiments

using primate models may provide insights that better support

clinical applications. Additionally, the failure may reflect inherent

limitations in the drug itself, as other agents targeting neutrophil

adhesion and migration, such as R6.5 and Hu23F2G, were also

discontinued following unsuccessful phase III clinical trials

(112, 113).

Minocycline, a tetracycline antibiotic, is characterized by high

lipid solubility, a broad antibacterial spectrum, an extended half-

life, and efficient gastrointestinal absorption (114). Recent studies

have highlighted its modulatory effects on neutrophils.

Mechanistically, minocycline inhibits the respiratory burst and

transendothelial migration of neutrophils, enhancing its anti-

inflammatory properties in a dose-dependent manner (115).

Additionally, it suppresses the production and activity of

neutrophil-derived MMP-9 (116, 117). In rat models of tMCAO

and focal embolic stroke, minocycline significantly reduced

neutrophil infiltration and the tPA-induced increase in MMP-9

levels, without impairing fibrinolysis, leading to smaller infarct sizes

and improved outcomes (118, 119). Furthermore, combining

minocycline with tPA lowered the incidence of HT and extended

the thrombolytic window to six hours post-stroke onset in tMCAO

models (120). Clinical trials have also investigated its potential in

acute ischemic stroke. In the Minocycline to Improve Neurological

Outcome in Stroke (MINOS) trial, plasma MMP-9 levels decreased

over hours to days in the minocycline-treated group, though the

study did not specifically evaluate its impact on stroke outcomes

(121). A meta-analysis suggested that minocycline may enhance

stroke recovery, although no significant association was found with

reduced HT risk (122). The combination of tPA and minocycline

was well tolerated, with no notable adverse effects such as dizziness,

gastrointestinal discomfort, or infusion reactions, confirming the

safety of this therapeutic approach (123). These findings suggest

that minocycline could be a promising adjunct to tPA in acute

ischemic stroke treatment; however, larger, randomized clinical

trials are needed to further validate its efficacy and safety.

Thiazolidinediones (TZDs), commonly used hypoglycemic

agents, also exhibit anti-inflammatory and neuroprotective

properties. Studies have shown that prophylactic or delayed

administration of rosiglitazone following ischemia/reperfusion

reduces neutrophil counts in both blood and brain parenchyma,

alleviating neurological deficits and decreasing infarct volume in
Frontiers in Immunology 07
tMCAO models in mice and rats (124, 125). However, Cuartero

et al. observed that rosiglitazone did not reduce overall neutrophil

infiltration in the brain but instead accelerated their migration into

the ischemic core (126). Rather than worsening ischemic injury, this

accelerated infiltration provided neuroprotection and contributed

to reduced infarct size (126). The underlying mechanism was

attributed to an increase in N2 neutrophils, a subtype known for

its protective effects in ischemic stroke (14, 126). Additionally,

combining rosiglitazone with tPA has been shown to enhance

neuroprotective outcomes and extend the therapeutic time

window for tPA administration in focal embolic stroke models

(127). Rosiglitazone also decreases the incidence of secondary HT

associated with acute hyperglycemia in tMCAO rats, an effect

independent of its glycemic control properties (128). A novel

approach has been proposed for delivering TZDs to the brain

using neutrophil-mediated uptake via bacteria-derived outer-

membrane vesicles, demonstrating therapeutic efficacy in tMCAO

mouse models (129). These experimental findings underscore the

need for clinical trials to evaluate the potential translation of these

therapies into clinical practice.

The protective effects of the discussed drugs primarily stem

from inhibiting neutrophil recruitment and activation or promoting

the transformation of neutrophils into the N2 subtype. However,

these mechanisms may impair the anti-infective functions of

neutrophils, raising concerns about increased infection risk. It is

crucial for researchers to consider these side effects to prevent severe

infections in patients undergoing treatment.
5.2 Treatment targeting NETs

Inhibiting NETs formation and promoting their degradation

are promising strategies for stroke treatment (49). Although

existing research suggests that targeting NETs can improve stroke

prognosis, evidence directly linking NETs inhibition to better

thrombolysis outcomes is lacking. Given the impact of NETs on

thrombolysis, further investigation is warranted to determine

whether targeting NETs could enhance thrombolytic efficacy.

5.2.1 PAD4 inhibition
PAD4-mediated histone citrullination is a key step in NETosis.

Inhibiting this process with chloramide, a PAD4 inhibitor, has been

shown to restore blood flow to ischemic areas and reduce renal injury

in ischemia/reperfusion models (49). GSK484, a highly specific and

reversible PAD4 inhibitor, can block NETs formation and prevent

neutrophil infiltration into tissues, thereby reducing neural damage

following subarachnoid hemorrhage (130, 131). Similarly, GSK199

pretreatment decreased infarct size and improved neurological

outcomes in tMCAO mouse models (103). Administration of

neonatal NETs inhibitory factor, which targets PAD4, one hour

post-stroke resulted in significant reductions in circulating and

cerebral NETs, leading to decreased neuronal apoptosis and infarct

volume (103, 132). Notably, PAD4-deficient mice maintain intact

immune function, suggesting that PAD4 inhibitors are unlikely to

increase susceptibility to bacterial infections, thus supporting their

potential use in stroke therapy (133).
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5.2.2 ROS inhibition
Edaravone, a free radical scavenger with neuroprotective effects,

has been shown to reduce ROS production in neutrophils during

the acute phase of stroke (134). It also decreases NETs levels in the

cortex of permanent MCAOmice, leading to improved neurological

function (104). Clinical trials have demonstrated that edaravone

reduces serum NETs levels in patients with stroke, enhances early

recanalization, and improves 90-day functional outcomes (104,

135, 136).

Vitamin C, an ROS inhibitor, has been found to reduce NETs

formation in activated neutrophils in vitro (137). In a tMCAO

model, it crosses the BBB as dehydroascorbic acid and exerts

neuroprotective effects (138). However, clinical studies on vitamin

C’s role in stroke prevention yield inconsistent results; some suggest

that long-term dietary vitamin C intake lowers the risk of ischemic

stroke, while others find no significant effect (139). These

discrepancies may be due to its benefits being limited to specific

populations, underscoring the need for future well-designed

clinical trials.

5.2.3 NETs degradation
Promoting NETs degradation offers a promising approach for

stroke therapy. Experimental evidence indicates that DNase I reduces

BBB disruption and enhances post-stroke neovascularization in

permanent MCAO mouse models (104, 140). As previously

discussed, combining DNase I with tPA facilitates thrombus

dissolution, potentially improving recanalization outcomes (53–55).

However, DNase I specifically degrades extracellular DNA and does

not target histones, which remain bound to the blood vessel walls

post-treatment and may exert cytotoxic effects (141, 142). To address

this limitation, activated protein C (APC) has emerged as a

complementary therapeutic strategy. APC can enzymatically cleave

histones, thereby neutralizing their toxicity. In dose-dependent

studies, APC has been shown to reduce infarct volume and confer

neuroprotection in tMCAO models (143, 144). Moreover, a clinical

study demonstrated that 3K3A-APC, a modified form of APC, exerts

vascular protective effects, significantly reducing the risk of HT (145).
6 Conclusion

In conclusion, the interaction between neutrophils and tPA

significantly influences the effectiveness of intravenous

thrombolysis following a stroke. Upon administration, tPA

mobilizes neutrophils to the brain parenchyma, amplifying their

pathological impact. Neutrophils alter thrombus composition and

affect the thrombolytic process, while also exacerbating BBB
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disruption, thereby increasing the risks of HT and cerebral

edema. Additionally, elevated levels of neutrophil-related

biomarkers are strongly associated with poorer outcomes after

tPA thrombolysis. Several neutrophil-targeting drugs have shown

potential in improving thrombolysis outcomes in animal models,

though further clinical trials are needed to validate these findings.

Thus, targeting neutrophils represents a promising strategy to

enhance the therapeutic efficacy of tPA thrombolysis. Continued

translational research is crucial to bridge the gap between

experimental results and practical clinical applications.
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