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A novel platelets-related gene
signature for predicting
prognosis, immune features and
drug sensitivity in gastric cancer
Qun Li, Cheng Zhang, Yulin Ren, Lei Qiao, Shuning Xu,
Ke Li and Ying Liu*

Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University and Henan
Cancer Hospital, Zhengzhou, China
Background: Platelets can dynamically regulate tumor development and

progression. Nevertheless, research on the predictive value and specific roles of

platelets in gastric cancer (GC) is limited. This research aims to establish a predictive

platelets-related gene signature in GC with prognostic and therapeutic implications.

Methods: We downloaded the transcriptome data and clinical materials of GC

patients (n=378) from The Cancer Genome Atlas (TCGA) database. Prognostic

platelets-related genes screened by univariate Cox regression were included in

Least Absolute Shrinkage and Selection Operator (LASSO) analysis to construct a

risk model. Kaplan-Meier curves and receiver operating characteristic curves

(ROCs) were performed in the TCGA cohort and three independent validation

cohorts. A nomogram integrating the risk score and clinicopathological features

was constructed. Functional enrichment and tumor microenvironment (TME)

analyses were performed. Drug sensitivity prediction was conducted through The

Cancer Therapeutics Response Portal (CTRP) database. Finally, the expression of

ten signature genes was validated by quantitative real-time PCR (qRT-PCR).

Results: A ten-gene (SERPINE1, ANXA5, DGKQ, PTPN6, F5, DGKB, PCDH7,

GNG11, APOA1, and TF) predictive risk model was finally constructed. Patients

were categorized as high- or low-risk using median risk score as the threshold.

The area under the ROC curve (AUC) values for the 1-, 2-, and 3-year overall

survival (OS) in the training cohort were 0.670, 0.695, and 0.707, respectively.

Survival analysis showed a better OS in low-risk patients in the training and

validation cohorts. The AUCs of the nomogram for predicting 1-, 2-, and 3-year

OSwere 0.708, 0.763, and 0.742, respectively. TME analyses revealed a higher M2

macrophage infiltration and an immunosuppressive TME in the high-risk group.

Furthermore, High-risk patients tended to be more sensitive to thalidomide, MK-

0752, and BRD-K17060750.

Conclusion: The novel platelets-related genes signature we identified could be

used for prognosis and treatment prediction in GC.
KEYWORDS

gastric cancer, platelets, prediction model, prognosis, gene signature, tumor
microenvironment
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1 Introduction

Gastric cancer (GC) is one of the most prevalent cancers of the

digestive tract. In 2020, there were 1.09 million new cases globally,

and 0.77 million deaths due to GC, making it the 5th most common

type of cancer and the 4th leading cause of cancer-related death in

the world (1). GC is mostly diagnosed at advanced stages owing to

its occult onset and atypical early symptoms, which is associated

with a dismal overall prognosis with a 5-year survival rate of 19–

31% in European and American countries and 28% in China (2).

The prognosis of GC patients is not reliably predicted by

conventional prognostic approaches including tumor staging

systems and histopathological diagnosis, partly due to molecular

heterogeneity within similar tumor stages and classifications.

Alternative methods for predicting the prognosis of GC patients

and directing clinical management of GC treatment are still needed

to be investigated.

Beyond their well-established role in pathological thrombosis

and hemostasis, platelets (PLT) are increasingly being recognized

for their important roles in inflammation, tissue repair, tumor

growth, and tumor metastasis (3, 4). Preclinical research has

shown that PLT and tumor cells interact in both direct and

indirect ways, facilitating tumor cell growth and metastasis (5, 6),

immune evasion (7), and chemoresistance (8). Growing clinical

data has demonstrated a strong correlation between increased PLT

count and poor prognosis in cancer patients (9). Cancers with

hematogenous metastases, such as breast cancer, lung cancer,

hepatocellular cancer, and GC, are reported to have greater

prevalence of thrombocytosis (10–13), which implies that elevated

PLT count could be employed to monitor the progress of

certain cancers.

Tumor-educated PLT have been shown to have a role in

maintaining the primary tumor microenvironment (TME). When

PLT get into contact directly with cancer cells, they could be

activated and form microaggregates around tumor cells,

preventing the cells from being recognized by the immune system

(14). Besides, PLT may additionally produce a variety of immune-

modulating molecules in a contact-independent way (15, 16),

helping to maintain the microenvironments of both primary

and metastatic tumors. PLT, along with other non-tumor

cells and extracellular matrix, collectively contribute to the

immunosuppressive TME that promotes tumor cell proliferation,

aids in tumor evasion of immune surveillance, and inhibits anti-

tumor immune responses (3).

With the extensive use of RNA-sequencing technology, protein

profiling and functional tests, comprehensive analysis of tumor-

educated PLT has progressed substantially, making PLT a potential

target for cancer treatment and a promising liquid biopsy marker

for treatment response monitoring and tumor progression.

Nevertheless, research on the specific roles played by PLT in GC

is limited. In recent years, the identification of survival-associated

genes using array-based databases has been utilized for guiding

individualized treatment plans for GC patients (17–19). Therefore,

we collected platelet-related genes (PRGs) and developed a reliable

PLT-related prognostic risk signature in GC via bioinformatics
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analysis. The immunological status and biological function of GC

patients at high and low risk were then examined. Overall, our study

indicate that the PLT-related prognostic risk signature is a reliable

gene signature for the prediction of GC patients’ prognosis and may

strengthen the recognition of GC pathogenesis and the exploration

of novel therapeutic targets for GC patients.
2 Materials and methods

2.1 Data acquisition and processing

The transcriptome data and clinical materials of GC (n=378)

were downloaded from TCGA (https://portal.gdc.cancer.gov/). The

clinical features are detailed in Supplementary Table S1. Moreover,

we selected three independent validation datasets (GSE15459,

GSE62254, GSE84437) from the GEO database (http://

www.ncbi.nlm.nih.gov/geo/) and obtained their normalized

microarray gene expression data and clinical data. We obtained a

list of 300 PRGs from previous literature (Supplementary Data

Sheet 1) (20).
2.2 Identification of prognostic PRGs

After collection and preprocessing the data of GC, the

Univariate Cox regression analysis was performed on the PRGs

collected to identify PRGs with prognostic value (P<0.05).

Genetic mutations of the prognostic PRGs were analyzed on

the cBioportal online tool (https://www.cbioportal.org/) using

the Stomach Adenocarcinoma (TCGA, Firehouse Legacy) dataset.

Moreover, a PPI network diagram of the prognostic PRGs was

constructed with the STRING database (http://string-db.org/) and

graphed with the Cytoscape software (21) (version 3.7.2).

Differential expression analysis for the prognostic PRGs between

tumor and normal tissues was performed using the “limma”

package in R (version 4.2.3) (22).
2.3 Construction and verification of
PLT signature

The least absolute shrinkage and selection operator (LASSO)

regression analysis of the candidate prognostic PRGs was

performed to construct a prognostic gene signature. Then, we

calculated each patient’s risk score. The calculation formula is as

follows:

Risk   score =o
n

i=1
Coef  mRNA(i)� Expression  mRNA(i)

Based on the median value of the risk score, patients in the

TCGA training group were divided into high- and low-risk groups.

To further verify the predictive ability of the model, three

independent validation datasets (GSE15459, GSE62254, and

GSE84437) were included in our study. Risk scores were
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calculated separately for each sample in the training cohort and the

GEO validation cohorts based on the same risk formula. Based on

the median risk score, we could divide the patients into two

subgroups of high risk and low risk to explore the prognostic

differences between the two groups. The Kaplan-Meier curves and

receiver operating characteristic curves (ROCs) were constructed

for the training cohort and validation cohorts.
2.4 Independent prognostic analysis and
nomogram construction

To determine if the PLT signature may serve as a standalone

predictive factor in patients with GC, we preformed multivariate

Cox regression analysis. A nomogram for predicting overall survival

(OS) at 1, 2, and 3 years in clinical patients was constructed using

the “rms” R package based on the patient’s age, histologic grade,

gender, stage and risk scores.
2.5 Functional enrichment analysis

We utilized the “limma” R package (22) to identify differentially

expressed genes (DEGs) between the high-risk group and the low-

risk group with the criteria of fold change (FC) > 2 and false

discovery rate (FDR) < 0.05. To further investigate the function of

the DEGs, the Gene Ontology (GO) and Kyoto Encyclopedia of

Genes and Genomes (KEGG) pathways were analyzed using

hypergeometric distribution testing by the “ClusterProfiler” R

package (23). “circlize” R package (24) visualizes the GO and

KEGG results. Finally, Gene Set Enrichment Analysis (GSEA)

with the Kolmogorov–Smirnov (KS) test was performed to find

enriched KEGG pathways, the ridge plot was used to present the

details of GSEA via the “ggstatsplot” R package.
2.6 Risk model’s association with TME

The Immuno-Oncology Biological Research (IOBR) R package

(25) (version 0.99.9) was used to analyze the immune features and

immune cell infiltration in high- and low-risk groups. Based on the

186 TME-associated signatures in the R packet IOBR, we calculated

the sample enrichment score. We assessed the expression of

common immune checkpoint genes between high-risk and low-

risk groups. The relationship between risk score and immune

checkpoint genes was analyzed with Pearson correlation test. The

CIBERSORT algorithm in the IOBR package was used for

calculating the relative abundance of 22 kinds of immune cells in

TCGA-GC cohort, and the ESTIMATE algorithm for calculating

each sample’s matrix and immune scores.
2.7 Drug sensitivity analysis

The Cancer Therapeutics Response Portal (CTRP) database

contains data on the sensitivity of different tumor cells to different
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chemotherapeutic drugs. We employed the R package

“oncoPredict” (26) to calculate the sensitivity of individual GC

patient to different chemotherapeutic drugs based on the gene

expression data (log2(TPM + 1)). Then, the difference in the area

under the dose–response curve (AUC) values between high-risk

and low-risk groups was evaluated.
2.8 Validation of expression patterns of
signature genes via the human
protein atlas

The protein expression of ten signature genes in GC and normal

tissues was determined using immunohistochemistry (IHC) from

the Human Protein Atlas (HPA) (https://www.proteinatlas.org/),

which is a valuable database providing extensive transcriptome and

proteomic data for specific human tissues and cells.
2.9 Quantitative real-time PCR validation
of signature genes

The normal human gastric epithelial cell line GES-1, and four

human gastric cancer cell lines, MKN45, N87, HGC27, and KATO-

3, were authenticated by STR profiling. All cell lines were cultured

in RPMI-1640 containing 1% penicillin/streptomycin and 10% fetal

bovine serum. Cells were grown in 5% CO2 at 37°C. Total RNA was

extracted using TRIzol (TransGen Biotech, China). Complementary

DNA (cDNA) was synthesized using the GoScript™ Reverse

Transcription Mix and Oligo(dT) kit (Promega, United States).

Real-time PCR was performed using SYBR Green PCR Master Mix

(FastStart Universal SYBR Green Master, Roche). Relative gene

expression levels were normalized to the levels of GAPDH using the

DCt method. Each experiment was operated in technical triplicate.

The amplification primer sequences of each gene are detailed in

Supplementary Data Sheet 6.
2.10 Statistical analysis

R software version 4.2.3 was used to conduct the statistical

analysis, and p-values and FDR q-values below 0.05 were regarded

as statistically significant.
3 Results

3.1 Identification of prognosis−related
PRGs in GC patients

The primary design of this study was depicted in the flow chart

(Figure 1). A total of 30 PRGs were significantly associated with

prognosis of GC patients based on the Univariate Cox regression

analysis (Supplementary Data Sheet 2). Genetic mutations of the 30

prognostic PRGs were analyzed through cBioPortal online tool for

GC patients. Genes with a mutation rate no less than 5% are shown
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in Figure 2A. COL1A2 had the highest mutation rate (13%) among

478 patients, followed by F5 (7%), GNG11 (7%), FN1 (7%), and

DGKG (7%). We constructed a protein interaction network for the

30 genes based on the STRING database. As shown in Figure 2B, the

FN1, ALB, SERPINE1, COL1A1, COL1A2, and ITGB1 genes were at

the core of the protein network interaction. The differential

expression analysis of the candidate prognostic PRGs revealed 23

differentially expressed genes, including 18 upregulated and 5

down-regulated genes (Figure 2C).
3.2 PLT signature establishment

The forest plot of the 30 prognostic PRGs obtained by univariate

Cox regression analysis was shown in Figure 3A. Thenwe constructed

a predictive prognostic model consisting of 10 PRGs by LASSO

regression analysis (Figures 3B–D). They were SERPINE1, ANXA5,

DGKQ, PTPN6, F5, DGKB, PCDH7, GNG11, APOA1, and TF. The

coefficient and HR value of multivariate Cox regression analysis is

shown in the form of a forest map (Figure 3B). A linear prediction

model was developed based on the weighted regression coefficients

of 10 prognostic PRGs, calculated as risk score = (−01357� SERPIN
Frontiers in Immunology 04
E1 exp ) + (0:12273 � ANXA5 exp ) + (−0:0927) � DGKQ exp +

ð−0:0722� PTPN6 exp ) + (0:05354� F5 exp) + (0:04579� DGKB

exp ) + (0:04079 � PCDH7 exp ) + (0:03418 � GNG11 exp ) +

(0:03202�APOA1 exp ) + (0:02374� TF exp ). Of these, SERPINE1,

ANXA5, F5, DGKB, PCDH7, GNG11, APOA1, and TF showed

significant positive correlations with risk scores, while DGKQ and

PTPN6 showed significant negative correlation with risk scores.
3.3 Validation of the PLT signature

After establishing the predictive prognostic model based on 10

prognostic PRGs for GC, we computed the risk score for each GC

patient based on the LASSO coefficients and expression value for

each PRG (Supplementary Data Sheet 3). We contrasted the

distribution of risk score, the survival status and the heatmap of

GC patients in the TCGA cohort (Figure 4A). The risk curves and

scatter plots implied that mortality was positively related to the risk

score in the TCGA cohort. The heatmap unveiled that higher

DGKQ and PTPN6 expression were detected in the low-risk

group, while the other eight genes (F5, APOA1, TF, ANXA5,

SERPINE1, PCDH7, DGKB, and GNG11) were highly expressed
FIGURE 1

Flow chart of the study.
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in the high-risk group. Kaplan-Meier analysis was used to analyze

the survival and prognosis of GC patients in TCGA. As shown in

the Figure 4B, patients in the low-risk group had a better prognosis,

while patients in the high-risk group had a worse prognosis

(P<0.001). The AUCs of 1-year, 2-year, and 3-year survival ROC

curves predicted by the PLT signature were 0.670, 0.695, and 0.707,

respectively, suggesting the efficiency of PLT signature in predicting

prognosis for GC to a certain extent (Figure 4C).

To further demonstrate the stability and reliable generalization

of our model, the GSE15459, GSE62254, and GSE84437 cohorts

were used as the external validation cohorts. The Kaplan-Meier

curves showed a significant difference in prognosis between the

high-risk and low-risk patients in these three cohorts, respectively,

with a more significant survival advantage for patients in the low-

risk group (P = 0.001, P = 0.003, P < 0.001, respectively)

(Figures 4D–F). The ROC curve was used as a tool to predict the

survival time of patients at 1-, 2-, and 3- years. The AUCs at 1-, 2-,

and 3- years for the GSE15459 cohort were 0.670, 0.633, and 0.662,

respectively (Figure 4G). The AUCs for the GSE62254 cohort were

0.667, 0.606, and 0.608, respectively (Figure 4H). The AUCs for the

GSE84437 cohort were 0.599, 0.608, and 0.611, respectively

(Figure 4I). This indicates that the model has an excellent

predictive effect.
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3.4 Creation of nomograms based on PLT
signatures combined with
clinical characteristics

To validate the reliability and clinical value of the biological

signature constructed based on PRGs as a predictor of prognosis, we

conducted multivariate Cox regression analysis including common

clinical characteristics (Supplementary Data Sheet 4). It is shown

that in the multifactorial cox analysis, tumor stage (P<0.001) and

risk score (P<0.001) were all independent prognostic factors

significantly associated with patient prognosis (Figure 5A). Based

on the above analysis, in order to be able to predict patients’

prognosis quantitatively and to inform clinical decision-making,

we integrated the risk score and clinical indicators to construct

Nomogram plots as a means of predicting the probability of

prognostic survival at 1, 2, and 3 years (Figure 5B). We then used

time-dependent ROC curve analysis to compare the predictive

accuracy between the nomogram, risk score, and common

clinicopathological features (Figure 5C). The results showed that

risk score had a much greater AUC value than the rest of the

individual clinicopathological features, and the nomogram model

suggested higher prognostic accuracy at 1-, 2-, and 3-year OS with a

larger AUC than risk score. The time-dependent AUCs of the
FIGURE 2

Identification and analysis of prognostic PRGs. (A) Gene mutation analysis of 30 prognostic PRGs in patients with GC by cBioPortal analysis (only
genes altered in ≥ 5% of 478 samples are displayed). (B) Protein–protein interaction (PPI) network analysis of 30 prognosis-related PRGs using
STRING database. (C) Differential expression of 30 prognostic PRGs between tumor and normal tissues (Only genes with P < 0.05 are displayed).
*P < 0.05, **P < 0.01, ****P < 0.0001.
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nomogram for predicting 1-, 2-, and 3-year OS were 0.708, 0.763,

and 0.742, respectively. Combined with these results, this suggests

that our PLT signature is more practical and influential for clinical

decision making and is more suitable as a clinical decision tool for

predicting the prognosis of patients with GC in the clinical setting.
3.5 Identification of DEGs between high-
risk and low-risk groups and function
enrichment analysis

We performed DEGs analysis between high-risk and low-risk

groups on the TCGA cohort, and the results showed that 2,442

DEGs were differentially expressed between the high-risk group and

the low-risk group based on the criteria of P < 0.05. Among that,

2,249 genes were up-regulated, and 193 genes were down-regulated.

The volcano plot of DEGs were displayed in Figure 6A. All of the

upregulated and downregulated genes were demonstrated in

Supplementary Data Sheet 5. The results of GO analysis can be

divided into three categories: biological process, cellular

component, and molecular function. Where in biological
Frontiers in Immunology 06
processes, such as axonogenesis, extracellular matrix organization,

extracellular structure organization; Cellular components, such as

collagen−containing extracellular matrix and synaptic membrane;

And molecular functions, such as extracellular matrix structural

constituent, G protein−coupled peptide receptor activity, peptide

receptor activity, and glycosaminoglycan binding were significantly

enriched (Figure 6B). KEGG pathways were enriched in

Neuroactive ligand−receptor interaction, cyclic adenosine

monophosphate (cAMP) signaling pathway, Calcium signaling

pathway, Cell adhesion molecules, and extracellular matrix

(ECM)−receptor interaction (Figure 6C). Then, the GSEA method

was applied to identify the significantly enriched KEGG pathways in

the high-risk samples. The ridgeplot showed that several pathways,

such as calcium signaling pathway, cAMP signaling pathway, ECM-

receptor interaction, focal adhesion, and neuroactive ligand-

receptor interaction, were significantly enriched in the high-risk

group (Figure 6D). DNA replication, base excision repair,

homologous recombination, nucleotide excision repair were the

pathways that were substantially enriched in the low-risk group.

GSEA plot of important pathways enriched in the high-risk group

was shown in Figure 6E.
FIGURE 3

Establishment of the risk model. (A) The forest plot of the 30 prognosis-related PRGs obtained by univariate Cox regression analysis; (B) Construction of
prognostic signatures based on lasso Cox analysis; (C) LASSO coefficient profiles of 30 prognosis-related PRGs, genes are represented by different colors; (D)
LASSO regression with tenfold cross-validation, and selection of the optimal parameter (lambda) in the LASSO model.
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3.6 Immune signatures between high-risk
and low-risk groups

To further elucidate differences in the immunemicroenvironment

of patients between high-risk and low-risk groups, we compared the
Frontiers in Immunology 07
enrichment scores of TME cells-related signatures between two

groups. The results showed that T cell-related signatures [T cell

accumulation, T cell exhaustion, T cell regulatory (27)] and tumor-

associated macrophage-related signatures [Macrophages Bindea et al.

(28), TAM_Peng_et_al (27)] had significantly higher enrichment
FIGURE 4

Validation of the PLT signature. (A) The distribution of risk score, the survival status and the heatmap of GC patients in the TCGA cohort; (B) Kaplan-
Meier survival curves of OS between low-risk and high-risk groups in the TCGA cohort; (C) Time-dependent ROC curves of 1-, 2-, and 3-years of
GC patients in TCGA cohort; (D-F) Kaplan-Meier survival curves of OS between low-risk and high-risk groups in the GSE15459, GSE62254, and
GSE84437 cohorts, respectively; (G-I) Time-dependent ROC curves of 1-, 2-, and 3-years of GC patients in the GSE15459, GSE62254, and
GSE84437 cohorts, respectively.
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scores in the high-risk group compared to the low-risk group

(Supplementary Figure S1). Additional examination of TME

signatures employing the IOBR package unveiled an

immunosuppressive, exclusive, and exhausted TME in the high-risk

group (Supplementary Figures S2A–C). Furthermore, patients in the

low-risk group exhibited higher scores in DNA damage response

(DDR), mismatch repair, and homologous recombination

(Supplementary Figure S2D), suggesting that they may be more
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sensitive to immunotherapy. High-risk patients demonstrated more

pronounced epithelial-mesenchymal transition (EMT) signatures

(Supplementary Figure S2E). Taken together, these findings suggest

an immunosuppressive TME in the high-risk group. The extent of

immune cell infiltration in patients in the TCGA cohort was then

assessed. The results of ESTIMATE suggested that stromal score, and

ESTIMATE score were higher in the high-risk group (Figure 7A). We

then estimated the proportion of 22 types of immune cells in each
FIGURE 5

Construction and validation of the nomogram model. (A) Multivariate Cox analyses indicated that risk score was an independent prognostic factor
significantly associated with OS in TCGA cohort; (B) Nomogram for predicting 1-, 2-, and 3-year OS; (C) Time-dependent ROC curve analyses of the
nomogram, risk score, age, gender, histologic grade and tumor stage in TCGA cohort. *** P < 0.001.
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sample by CIBERSORT algorithm. The difference in the proportion of

each type of immune cell between two risk groups was shown

Figure 7B. The results revealed that compared with the low-risk

group, memory B cells (P < 0.001), follicular helper T cells (P <

0.001) exhibited lower infiltrating levels in the high-risk group.

However, samples in the high-risk group had a significant increase

in the fraction of naïve B cells (P < 0.01), monocytes (P < 0.001) and

macrophages M2 (P < 0.01). We also explored the relationship
Frontiers in Immunology 09
between risk score and common immune checkpoint genes,

including programmed cell death 1 (PDCD1), PDCD1 ligand 1

(PDCD1L1/CD274), cytotoxic T-lymphocyte-associated antigen 4

(CTLA4), PDCD1 ligand 2 (PDCD1LG2), hepatitis A virus cellular

receptor 2/T-cell immunoglobulin mucin receptor 3 (HAVCR2/

TIM3), lymphocyte act ivat ing 3 (LAG3), and T cel l

immunoreceptor with immunoglobulin and ITIM domain (TIGIT).

As displayed in Supplementary Figure S3A, the levels of HAVCR2 and
FIGURE 6

Results of differentially expressed genes (DEGs) and function enrichment. (A) Volcano plot of DEGs between high-risk and low-risk groups; (B) GO
enrichment analysis of DEGs between two groups; (C) KEGG enrichment analysis of DEGs between two groups; (D) Ridgeplot of KEGG by GSEA.
(E) GSEA plot of important pathways in comparison between two groups.
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PDCD1LG2 were increased in the high-risk group in GC. However,

no significant correlation was observed between the immune

checkpoint molecules and the risk score (Supplementary Figure S3B).
3.7 Relationship between risk scores and
response to chemotherapy

In order to find more effective drugs for patients in the high-risk

group, we further studied the sensitivity of tumor cells to

chemotherapeutic drugs between different risk groups based on

CTRP database. The AUC value represents the degree of drug

sensitivity. An increasing AUC value represents a lower drug

sensitivity. We found that patients in the high-risk group tended to

be less sensitive to oxaliplatin, doxorubicin, and mitomycin, but more

sensitive to thalidomide, MK-0752, and BRD-K17060750 (Figure 8).
3.8 Validation of the expression levels of
signature genes in clinical samples

IHC results of the protein expression of the signature genes

from HPA database were displayed in Figure 9. SERPINE1 was

expressed at a low level in stomach normal tissues and was not

detected or expressed at a low level in tumor tissues. ANXA5 was

expressed at a low to medium level in both tumor and stomach

normal tissues. DGKQ was not detected or expressed at a low level

in GC tumor tissues but had medium to high expression levels in
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stomach normal tissues. PCDH7 was expressed at a high level in

stomach normal tissues and had diverse expression levels in GC

tumor tissues, ranging from low expression and medium to high

expression. GNG11 was not detected in stomach normal tissues but

had various expression levels in GC tumor tissues, which was from

not detected and low to medium expression. APOA1 was not

detected in both tumor and stomach normal tissues. TF was not

detected or expressed at a low level in normal tissues and had

diverse expression levels in GC tumor tissues, which was from not

detected and low expression to medium expression. Data for F5 and

DGKB were lacking and therefore not presented.
3.9 Validation of ten signature PRGs by
qRT-PCR

The qRT-PCR analysis was performed to further verify ten

signature genes in normal and tumor cells (Figure 10). The results

showed that the expression of PTPN6, F5, DGKB, PCDH7, and TF was

elevated in GC cell lines, whereas the expression of SERPINE, ANXA5,

DGKQ, and GNG11 was decreased. APOA1 expression was not

detected in the GES-1 and four human gastric cancer cell lines.
4 Discussion

GC is one of the most common primary malignant tumors in

the digestive tract with high rates of incidence and mortality.
FIGURE 7

Immune signatures between high-risk and low-risk groups. (A) Difference of ESTIMATE immune infiltration between different risk groups in the
TCGA cohort; (B) The proportion of immune cell components assessed by CIBERSORT in the TCGA cohort. *P < 0.05, **P < 0.01, ***P < 0.001,
****P < 0.0001, ns, not significant.
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Despite recent advances in immunotherapy and molecular targeted

therapies, the prognosis of advanced GC patients is still miserably

poor. The TNM staging system used by the American Joint

Committee on Cancer (AJCC) is a major factor influencing

prognosis and treatment decisions of GC (29). The Asian Cancer

Research Group (ACRG) newly proposed a molecular classification

system where GC is divided into four subtypes: microsatellite stable

(MSS)/TP53 activation, MSS/TP53 loss, microsatellite instability

(MSI), and MSS/EMT. The result of survival analysis demonstrated

that the MSS/EMT group had the worst prognosis due to its easy

metastasis and the MSI group had a better prognosis (30).

Nonetheless, the existing prognostic stratification systems are not

sufficient to accurately predict the prognosis in GC patients. Hence,

it is still urgently necessary to explore novel and effectual molecular

prognostic biomarkers for GC.

In recent years, PLT in cancers have gotten wide attention due

to its roles in regulating tumor proliferation, metastasis and TME

through several mechanisms (5, 7). PLT can secrete growth factors

like epidermal growth factor (EGF) and vascular endothelial growth

factor (VEGF), promoting tumor cell proliferation and angiogenesis

(4). PLT also release transforming growth factor-b (TGFb) and

serotonin, creating an immunosuppressive microenvironment by

suppressing T cell activity and promoting the transition of M1

macrophages to the M2 phenotype (31). Additionally, PLT facilitate
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EMT, increasing the invasiveness of tumor cells (5). Moreover, PLT

can form microaggregates around circulating tumor cells,

protecting them from immune detection and enhancing their

ability to metastasize (32). It has been reported that PLT

reduction was associated with improved OS and progression-free

survival (PFS) rates in patients with stage IV GC (33). However, the

effect of PLT-related mRNAs in GC and the mechanism of how PLT

alterations affect the tumor biological processes of GC remains

unclear to date.

In this study, we integrated PLT-related gene expression profiles

from the TCGA-GC dataset and screened 10 genes to construct a

new prognostic model for GC patients using LASSO regression

analysis. The PLT signature we constructed was shown to be an

independent prognostic factor for GC, and a substantial prognostic

difference was discovered between the high and low risk groups.

Furthermore, the HR of the risk score in multivariate Cox analyses

was 3.7 (2.24-6.2), while the HR of tumor stage was only 1.5 (1.20–

1.9). Risk score seems more pronounced than tumor stage in

prognosis prediction of GC. A nomogram integrated with age,

gender, histologic grade, tumor grade and risk score also showed a

good prediction of GC patients’ survival in 1-, 2-, and 3- years. It

helps improve clinicians’ decision-making and optimize the

personalized treatment plans of GC patients. ROC curves

demonstrated the PLT signature’s superiority to the other
FIGURE 8

PLT signature predicts the sensitivity of chemotherapy. (A) Oxaliplatin; (B) Doxorubicin; (C) Mitomycin; (D) Thalidomide; (E) MK-0752;
(F) BRD-K17060750.
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traditional clinical indicators such as age, gender, histologic grade,

and tumor grade.

After a comprehensive review of the literature, we reviewed the roles

of the signature genes in platelet function and their relationship with

cancer, highlighting that most genes included in the PLT risk model are

closely associated with cancer to varying extents. Serine protease

inhibitor clade E member 1 (SERPINE1) plays key roles in regulating

the fibrinolytic system (34). It has been detected in various cancers and

implicated in tumor progression and angiogenesis in multiple cancer

types (35–37). It was reported that SERPINE1 contributes to tumor

proliferation, invasion and migration by regulating EMT in GC (38).

Annexin A5 (ANXA5) was identified as an anticoagulant protein and
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soon reported as a potential apoptosis biomarker due to its binding to

phosphatidylserine (39). ANXA5 contributes to an immunostimulatory

profile in the TME and serves as a link between the innate and adaptive

immune systems (39). ANXA5 may potentially affect the prognosis of

GC patients as well as the immune therapy response due to its influence

on the angiogenesis phenotype (40). Diacylglycerol Kinase Beta (DGKB)

and Diacylglycerol Kinase Theta (DGKQ) encode different isotypes of

Diacylglycerol kinases, which regulates the intracellular concentration of

the second messenger diacylglycerol. Inhibition of diacylglycerol kinase

augmented platelet secretion and aggregation (41). Diacylglycerol

pathways influence the tumor ecosystem by mediating the intricate

and dynamic interactions between cancer cells and the tumor immune
FIGURE 9

Immunohistochemistry of signature genes in GC and normal samples from the HPA database.
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environment (42). The protein encoded by Protein Tyrosine

Phosphatase Non-Receptor Type 6 (PTPN6) is a member of the

protein tyrosine phosphatase family (43). PTPN6 has been shown to

inhibit platelet apoptosis and necroptosis during sepsis (44), and its

elevated expression is linked to poor prognosis and increased immune

infiltration in cancer (45). Coagulation factor V (F5) plays an essential

role in coagulation as both a procoagulant cofactor and an anticoagulant

cofactor (46). High F5 expression was associated with aggressive tumors,

but also with improved survival in breast cancer (47). Protocadherin 7
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(PCDH7) belongs to the cadherin superfamily and plays a role in the

pathways of platelet activation, signaling, and aggregation (48). Zhou

et al. found that PCDH7 could suppress cell migration and invasion

through E-cadherin inhibition in GC cell lines (49). G Protein Subunit

Gamma 11 (GNG11) is a member of guanine nucleotide-binding

protein gamma family, which regulated G-protein coupled receptors-

dependent platelet function (50). Jiang et al. discovered that high

expression of GNG11 was associated with poor prognosis of ovarian

cancer patients (51). Apolipoprotein A1 (APOA1) encodes
FIGURE 10

Evaluation of the expression of ten PLT-related signature genes in normal and GC cells. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001, ns,
not significant.
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apolipoprotein A-I, which was shown to inhibit platelet activation and

reduce both clot strength and stability in vivo (52). A preclinical study

showed that reduced plasma APOA1 level is associated with gastric

tumor growth in mouse cancer xenograft model (53). Transferrin (TF)

encodes iron binding transport proteins (54). Although ironmetabolism

has been reported closely related to cancer progression (55), the role of

TF in cancer has yet to be investigated.

We found that patients in the high-risk group had significantly

higher activities of calcium signaling pathway, cAMP signaling

pathway and ECM-receptor interaction. Ca2+ signaling is closely

implicated in platelet function. Release of Ca2+ from the dense

tubular system into the cytosol initiated by activated PLCg2 can

amplify platelet activation (56). It is becoming evident that

dysregulated Ca2+ homeostasis may serve an important role in

carcinogenesis or tumorigenesis (57). cAMP is recognized for its

significant role in regulating platelets, and platelet activators are

known to disrupt the cAMP signaling pathway at various levels (58).

Cancer cells, including glioblastoma, ovarian cancer, colorectal cancer

and breast cancer, utilize the cAMP/PKA signaling pathway to facilitate

invasion, migration, adhesion, clonal development, and other

malignant traits (59). Deregulation of ECM remodeling,

characterized by excess matrix deposition and increased stiffness, is

associated with bone marrow pathologies that can lead to defects in

platelet production and function (60). ECM-receptor interaction

pathway plays an essential role in tumor shedding, adhesion, and

mobility (61). It has been demonstrated that in GC, ECM -receptor

interaction pathway takes involvement in the process of tumor

invasion and metastasis (62). Taken together, the enrichment of

these pathways demonstrates to some extent the mechanism of

poorer prognosis in patients with higher risk scores.

As tumor-educated PLT play significant roles in modulating the

immune environment, we further explored the immune features of

high-risk patients. Immune-related gene signature suggest an

immunosuppressive TME in the high-risk group. Given that

immune checkpoint inhibitors are less effective in an

immunosuppressive microenvironment (63), we speculated that

patients in the high-risk group would benefit less from

immunotherapy. We further investigated the relationship between

the risk scores and immune checkpoint molecules, which have been

considered potential biomarkers of response to ICIs. Although the

expression of HAVCR2 and PDCD1LG2 was elevated in the high-

risk group, the correlations between the immune genes and the risk

score were not significant. Additional biomarkers, such as tumor

mutation burden (TMB) and human leukocyte antigen (HLA),

merit additional investigation to gain a more comprehensive

understanding of the potential relationship between the risk score

and efficacy of immunotherapy.

The investigation of immune cell infiltration in different risk

groups of GC patients can help clinicians to gain a better knowledge

of the overall immune landscape of patients. Our findings

demonstrated that the high-risk group had higher M2

macrophage infiltration and that tumor-associated macrophage-

related signatures were enriched in this group. Li et al. found that

GC-derived mesenchymal stromal cells can induce the polarization

of macrophages into the M2 subtype, which promotes the migration
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and invasion of gastric cancer cells via advancing the process of

EMT (64). It has been shown that M2 phenotype polarization of

macrophage may contribute to acquired trastuzumab resistance in

HER2‐positive GC (65). Thus, we hypothesized that M2

macrophage polarization may contribute to the poor prognosis in

high-risk patients.

Drug resistance is a major cause of death in cancer patients (66).

We investigated the potential correlation between drug sensitivity

and PLT risk scores using CTRP database. The results suggest that

patients in the high-risk group tended to be less sensitive to classical

antitumor drugs including oxaliplatin, doxorubicin, and

mitomycin. The PLT signature may be used as a predictor of

tumor response to chemotherapy. On the other hand, we

identified three unconventional antitumor compounds including

thalidomide, MK-0752, and BRD-K17060750, with potential

advantages for patients with high PLT risk scores. Thalidomide

combined with capecitabine has been shown in a prior study to be a

safe and mildly effective treatment for elderly patients with

advanced GC (67). MK-0752 is a potent inhibitor of gamma

secretase, an enzyme required for Notch pathway activation. This

agent has been investigated in phase 1 clinical trials in solid tumors

(68, 69). The efficacy of these drugs for GC patients in the high-risk

group is expected for further investigation.

There are some strengths of the present study. Firstly, our

signature is based on TCGA data and GEO databases with relatively

large sample sizes. Secondly, our risk model is more cost-effective

and has good clinical practicability because it’s based on a specific

gene set. Thirdly, our risk model and nomogram have great clinical

implications for the prognostic evaluation and selection of

treatment options for GC patients.

Certain limitations of our study should be addressed. Firstly,

more data from prospective clinical GC cohorts need to be collected

to externally validate the utility of the model in the next step.

Secondly, the public databases provide only a limited amount of

information on clinical features and may not include other clinical

factors, such as treatment history, and molecular types that can

influence prognosis. Lastly, we validated the expression of the risk

model genes using qPCR, but further mechanistic studies in vivo

and vitro need to be conducted to better comprehend the

mechanisms by which PLT-related genes affect TME and

immunotherapy sensitivity.

In conclusion, our study firstly constructed a reliable PLT-

related risk model for predicting survival in GC patients. The

independence and predictive performance of this model was

further validated using external validation data. This study

deepens our understanding of platelet-related genes in GC and

provides new potential prognostic and therapeutic biomarkers for

individualized treatment.
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