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Coagulopathy is a critical pathophysiological mechanism of acute pancreatitis

(AP), arising from the complex interplay between innate immune, endothelial

cells and platelets. Although initially beneficial for the host, uncontrolled and

systemic activation of coagulation cascade in AP can lead to thrombotic and

hemorrhagic complications, ranging from subclinical abnormalities in

coagulation tests to severe clinical manifestations, such as disseminated

intravascular coagulation. Initiation of coagulation activation and consequent

thrombin generation is caused by expression of tissue factor on activated

monocytes and is ineffectually offset by tissue factor pathway inhibitor. At the

same time, endothelial-associated anticoagulant pathways, in particular the

protein C system, is impaired by pro-inflammatory cytokines. Also, fibrin

removal is severely obstructed by inactivation of the endogenous fibrinolytic

system, mainly as a result of upregulation of its principal inhibitor, plasminogen

activator inhibitor type 1. Finally, increased fibrin generation and impaired break

down lead to deposition of (micro) vascular clots, which may contribute to tissue

ischemia and ensuing organ dysfunction. Despite the high burden of

coagulopathy that have a negative impact on AP patients’ prognosis, there is

no effective treatment yet. Although a variety of anticoagulants drugs have been

evaluated in clinical trials, their beneficial effects are inconsistent, and they are

also characterized by hemorrhagic complications. Future studies are called to

unravel the pathophysiologic mechanisms involved in coagulopathy in AP, and to

test novel therapeutics block coagulopathy in AP.
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Introduction

The activation of coagulation by inflammation cascade are

essential reactions for host defense during inflammatory diseases

(1). Pathogen-associated molecular patterns (PAMPs) and damage

associated molecular patterns (DAMPs) are recognized by pattern-

recognition receptors on the cells of the innate immune system,

which triggers the release of pro-inflammatory mediators (2). Pro-

inflammatory mediators then activate the coagulation cascade,

downregulate crucial endogenous anticoagulant mechanisms, and

dysregulate fibrinolytic mechanisms. In turn coagulation disorders

also markedly influences inflammatory response (2). The primitive

response represents an effective strategy to slow inflammatory

storm spread and maintain hemostasis, while this may come at

the cost of immune-driven pathological thrombus formation, which

is now commonly termed ‘immunothrombosis’ (3).

In acute pancreatitis (AP), one of the early events is the

pancreas autodigestion due to premature trypsinogen activation

(4). Injured acinar cells release cytokines, chemokines, and adhesion

molecules into the circulatory system, which recruit the infiltration

of immune cells to the site of injuries and initiate coagulation (5).

Histologic evaluation of AP indeed shows inflammatory cell

infiltration, elevated circulating tissue factor (TF), platelet

aggregation, intravascular microthrombi, fibrin deposits (6–8) and

microcirculation hypoperfusion of extrapancreatic organs (9, 10).

From a clinical perspective, coagulation disorders are common in

patients with severe AP, with severity ranging from clinically less

apparent microvascular clot formation to devastating thrombotic

and hemorrhagic complications (11–14).

Despite recognizing the potential deleterious of coagulopathy

on the outcome in severe AP patients, effective treatments

specifically aiming to block the devastating complications while

maintaining its beneficial effects for the host, do not yet exist.

Although a variety of anticoagulants drugs have been evaluated in

clinical trials, their beneficial effects are inconsistent, and they are

also characterized by a high rate of hemorrhage complication.

Severe AP patients with coagulopathy, particular with

disseminated intravascular coagulation (DIC) are at a higher risk

for persistent organ failure and pancreatitis-associated death (15),

hemorrhage complication may bring these patients into life

threatening situation. International guidelines therefore

discourage anticoagulant therapies in severe AP cases (16).

Nowadays, there is still ongoing research assessing the effect of

new molecules on thrombosis in severe AP, with agents targeting

intracellular inflammatory pathways, P-selectin and neutrophil

extracellular traps (NETs) formation demonstrating promising

results. A better understanding of the underlying mechanisms

and cellular interactions in AP-related immunothrombosis and

coagulopathy is crucial to identifying new therapeutic targets. Our

study summarizes the current literature regarding the role of innate

immune cells, endothelial cells and platelet in coagulopathy in AP
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and summary clinical evidence on drugs targeting the critical

pathological process.
Pathology of clinically relevant
coagulopathy in acute pancreatitis

Role of monocytes and tissue factor in the
coagulopathy of AP

Monocytes and macrophages have been found to play a vital role

in inflammatory diseases-induced immunothrombosis (Figure 1).

Upon stimulation by PAMPs, DAMPs or proinflammatory

mediators (17, 18), monocytes are the main source of circulating

TF (19, 20). TF is deemed critical for survival, as deletion in mice

leads to universal embryonic death (21), and defects in TF gene

expression are associated with differing clinical outcomes in patients

with sepsis (22). The binding of lipopolysaccharide to

transmembrane receptors in monocytes induces TF mRNA

expression via NF-kB activation (23). The interaction of pathogen

components either with TLRs or directly with intracellular pathways

in monocytes result in inflammasome activation and subsequent TF

release via pyroptosis (18, 23, 24). Moreover, pore formation on the

cell membrane also induce calcium influx, which triggers

phosphatidylserine exposure on the membrane, followed by TF

activation (25). Sphingomyelin, another membrane lipid, is also

involved in the activation of TF to its procoagulant form (26).

Additionally, monocyte activation by PAMPs and DAMPs is

followed by increased P-selectin glycoprotein ligand 1 (PSGL-1)

expression and the release of TF- and PSGL-1-bearing

microparticle (MPs). These MPs can fuse in vitro with platelets,

leading to increased TF activity (19, 27). Pancreatic disruption leads

to direct exposure of TF to the blood (28).

TF expression and release triggers the extrinsic coagulation

pathway by binding factor VII/factor VIIa (FVII/FVIIa) to form

TF-FVIIa complex, converting factor X (FX) to factor Xa (FXa).

Then, FXa is incorporated into FXa-factor Va-Ca2+-phospholipids

(FXa-FVa-Ca2+-PLs) complex known as the prothrombinase (29).

Thrombin is formed, leading to fibrin clots (Figure 1). The process

seems to be the most potent pathway leading to coagulation cascade

activation and DIC (30–34). Studies of experimental or human AP

have demonstrated a central role of the TF/FVIIa system in the

initiation of thrombin generation (8, 35, 36). In the early stage of

severe AP, TF is highly upregulated (8, 37–39), and it is a favorable

predictive marker of severe AP (40, 41). Abrogation of the TF/FVIIa

pathway by specific interventions aimed at TF or factor VIIa activity

resulted in a complete abrogation of thrombin generation in

experimental settings (42). As the initiator of the coagulation

cascades, TF might play a large part in the development of severe

AP, there needs to be a more basic experimental to explore

their relationship.
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Role of endothelial cells in the
coagulopathy of AP

The endothelium lines the lumen of the entire circulatory

system, separating blood and subendothelial, and maintaining

vascular health by exerting anticoagulant action via tissue factor

pathway inhibitor (TFPI), Protein C (PC) system, Antithrombin

(ATIII) and fibrinolysis (43, 44).
TFPI

TFPI is the inhibitor of TF-mediated coagulation, primarily

synthesized by endothelial cells (ECs, Figure 1), which binds to ECs

via proteoglycans/glycosaminoglycans, inactivates TF-FVIIa-FXa

complex and prothrombinase in the early phase of the

coagulation process (45, 46). The deficiency of TFPI increases

susceptibility to the development of DIC and thrombosis (37).

However, in AP patients, the plasma TFPI levels were

significantly increased, which might be compensatory to the rise

of TF, and can be released from fibrin deposits after thrombosis.

Elevation of TFPI delayed TF-initiated thrombin generation, the
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imbalance of TF/TFPI were markedly related to pancreatic necrosis

and organ failure (OF) (38, 47).
PC system

The PC system, as main natural anticoagulants, harbors PC and

Thrombomodulin (TM), which along with endothelial cell protein

C receptor (EPCR) catalyzes the thrombin-mediated PC activation

(Figure 1). Activated PC (APC) exerts potent anticoagulation by

inactivating FVa and FVIIIa (48). TM is expressed on the

endothelial surface, which switches the thrombotic activity of

thrombin to antithrombotic through activating PC (49, 50). It is

known that soluble TM (sTM), fragments of the extracellular region

of membrane-bound TM cleaved by leukocyte-derived proteases or

metal loproteases, are released into the circulation in inflammatory

diseases (50). Multiple studies have reported the usefulness of

measuring sTM to evaluate the severity of DIC. EPCR, a

transmembrane glycoprotein present on the surface of ECs,

increases the efficiency of APC generation by presenting PC

zymogen to thrombin/TM complex (51). However, the PC system

is damaged in AP patients characterized by low levels of PC and
FIGURE 1

Pathophysiology of coagulopathy in acute pancreatitis. The activation of coagulation by inflammation cascade are essential reactions for host
defense during acute pancreatitis. Initiation of coagulation activation is caused by expression of tissue factor on activated monocytes and is
ineffectually offset by tissue factor pathway inhibitor. TF expression and release triggers the extrinsic coagulation pathway by binding factor VII/factor
VIIa to form TF-FVIIa complex, converting factor X to factor Xa. FXa, as the prothrombinase then, thrombin is formed. At the same time, endothelial-
associated anticoagulant pathways, in particular the protein C system, which includes PC, Thrombomodulin and endothelial cell protein C receptor,
is impaired by pro-inflammatory cytokines. Also, fibrin removal is severely obstructed by inactivation of the endogenous fibrinolytic system, mainly as
a result of upregulation of its principal inhibitors, plasminogen activator inhibitor type 1 and thrombin activated fibrinolytic inhibitor. Finally, increased
fibrin generation and impaired break down lead to deposition of (micro) vascular clots.
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APC (52, 53), and significantly increased levels of plasma sTM and

EPCR (54).
ATIII

ATIII, as a serine protease inhibitor, which inactivates TF-

FVIIa-FXa Complex, FIXa, FXIa, thrombin, and is the most

abundant and most important physiological anticoagulant (55).

ATIII makes complexes not only with thrombin but also bind to

heparan sulfate of the glycocalyx at the ECs surface (56) (Figure 1).

ATIII deficiency can result in severe venous thromboembolism,

plasma levels of ATIII activity is positively correlated with the

severity of DIC (57). In AP patients, the level of ATIII decreases as

severity increases, which is rather pronounced in cases of biliary AP

(52). This phenomenon could be ascribed to a combination of

impaired synthesis because of the negative acute phase response,

degradation by elastase, and consumption because of thrombin

generation (37, 58).
Fibrinolysis

Tissue-type plasminogen activator (t-PA) and urokinase-type

PA (u-PA) released by ECs are the main activators in the

fibrinolysis, which transform plasminogen into plasmin, and then

catalyze clot dissolution and fibrinolysis. PA inhibitor, type 1 (PAI-

1) and thrombin activated fibrinolytic inhibitor (TAFI) are the

regulators of the fibrinolysis, of which PAI-1 is the principal

inhibitor (59) (Figure 1). It has been shown that the production

of PAI-1 is affected by proinflammatory, anti-inflammatory

cytokines and the elevated levels sustain longer (60). In healthy

volunteers, endotoxin induces a rapid activation in the coagulation

system with a concurrent rise in tPA. This temporal activation in

fibrinolysis is subsequently counteracted by a greater and sustained

rise in PAI-1 (61), The marked increase in PAI-1 level causes

fibrinolysis shutdown, subsequently failing to counteract the

systemic deposition of fibrin clots during system inflammatory

reaction syndrome, leading to thrombosis and DIC (59). Patients

with OF have significantly higher plasma levels of PAI-1, and non-

survivors demonstrate more potent suppression of fibrinolysis than

survivors (36). In severe AP, the level of TAFI also rises at the onset

of the disease (58), inhibits fibrinolysis by separating

carboxyterminal lysine residues and preventing binding to

plasminogen (62).
Role of platelets and P-selectin in the
coagulopathy of AP

Cytokines (63) and thrombin (64–67) activate platelets by

DAMP receptors (68) (Figure 1), myeloid differentiation factor 88

(MyD88) and cGMP-dependent protein kinase intracellular

pathways (67), as well as protease associated receptors (64, 65).

Upon platelet activation, dense and a-granules fuse with the cell
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membrane (65), dense granules are rich in adenosine diphosphate,

which further stimulates and amplifies platelet activation via

receptors P2Y1 and P2Y12, whilst a-granules contain P-selectin

that mediates activation of leukocytes via binding to PSGL-1,

chemokines, and pro-coagulant factors. Glycoproteins IIb/IIIa

(GPIIb/IIIa) and Iba (GPIba), expressed on the surface of

activated platelets (69), bridged by fibrinogen or von Willebrand

Factor (vWF), which constitute another receptor category that

promotes platelet degranulation and aggregation (69, 70). VWF,

from a-granules, facilitate platelet adhesion to the endothelium (71)

(Figure 1). FcgRIIa triggers an intracellular pathway for platelet

activation by phosphorylating the tyrosine kinases Src, Syk, and

phospholipase c gamma 2 (PLCg2) (70). Mechanical interactions

are potentiated by change from discoid to stellate shape (72).

Activated platelets have also been found to release polyphosphate

(PolyP), an inorganic polymer that exerts procoagulant activity. In

vitro, PolyP initiates the contact pathway by FXII activation (73).

Further, activated platelets aggregate with leucocytes to form

platelet-leucocyte aggregates (PLA) (74), PLA in turn cause

release of platelets-activating neutrophil extracellular traps

(NETs), which form a vicious cycle. Platelets are essential cellular

components of the coagulation system in AP animal models (8). In

AP, thrombocytopenia is associated with increased disease severity

and an ominous prognosis (75).
P-selectin

P-selectin stored in granular structures of ECs and platelets can

be quickly mobilized towards the cell surface upon stimulation (76).

P-selectin and its ligand, PSGL-1 linking is the first step for platelet

adhesion (56) (Figure 1). PSGL-1 expressed on platelets, monocytes,

and neutrophils mediate leukocyte and platelet rolling on the

vascular wall as well as platelet-neutrophil and platelet–platelet

aggregations to link inflammatory infiltration and thrombus

formation (77). The expression of P-selectin on the platelet

membrane not only mediates the adherence of platelets to

leukocytes and endothelial cells but also enhances the expression

of TF on monocytes (78). Notably, monocyte-derived, TF

containing MPs fail to incorporate in thrombi when infused into

P-selectin null mice, indicating that the accumulation of leukocyte-

derived TF in growing thrombi is mediated by PSGL-1 on the

MPs (79).

The levels of P-selectin are related to the development and

course of AP, it’s value on admission may play a pivotal role as

indicators of overall prognosis (80). The elevated level of P-selectin

markedly strengthens the leukocyte–endothelium interaction and

the thrombosis (81). Suppressing P-selectin inhibits leukocyte and

platelet rolling in postcapillary venules of the inflamed pancreas

(82), protecting against thrombosis (83) and improving pancreatic

microcirculation and histopathology of acinar necrosis without

causing any bleeding complications (84). Escopy et al. reviewed

both preclinical and clinical trials that have evaluated therapeutic

potential of biologic and small-molecule inhibitors as well as

antibodies of P-selectin in a variety of diseases linked to
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immunothrombosis and coagulopathy (85) . Wherein,

crizanlizumab, a monoclonal antibody of P-selectin, has been

evaluated for the treatment of vaso-occlusive crises with sickle cell

disease (Food and Drug Administration approval in 2019) and

COVID-19 vasculopathy (NCT04435184 and NCT04505774).

Inclaclumab, a newly developed monoclonal antibody of P-

selectin, was noted to reduce myocardial damage of non-ST-

elevation in patients with myocardial infarction in a phase 2

clinical trial (NCT01327183). Currently, a multicenter phase 3

trial is in progress to determine whether inclaclumab could

reduce the frequency of vaso-occlusive crises (Thrive-131;

NCT04935879) and to evaluate its long-term safety (Thrive-133

open-label extension; NCT05348915). Except for these anti-P-

selectin antibodies, PSI-697, PSI-421, as small-molecule inhibitors

of P-selectin, have also been widely studied (85, 86). P-selectin and

P-selectin glycoprotein ligand-1 play a fundamental role in

aggravating pancreatic inflammation and their antibodies alleviate

inflammatory responses in experimental severe AP (82). Therefore,

it is believed that further research on the therapeutic potential of

these inhibitors of P-selectin and related pathways in severe AP

maybe promising.
Role of neutrophil and NETs in the
coagulopathy of AP

DAMPs also activate neutrophils, which are typically the first

responders to AP. Activated neutrophils exert their antimicrobial

activity mainly through three processes: phagocytosis,

degranulation, and the release of NETs (87). Neutrophil

activation and release of NETs are considered as the initial and

indispensable event in thrombus formation (88) (Figure 1). NETs as

a meshwork of DNA fibers, comprise histones, antimicrobial

proteins, and high-mobility group box 1 (89), which promote

endothelial dysfunction (90), increase platelet activation,

adhesion, aggregation (89–91), in turn contribute to thrombin-

mediated fibrin generation (92, 93). NETs also propagate

thrombosis by capturing TF and TF-positive extracellular vesicles

from the circulation, further driving coagulation (94). Wherein,

thrombin formation consists of NETs-induced platelet-dependent

mechanisms and platelet-poor plasma via activation of the intrinsic

coagulation pathway (95). Interaction of NETs with membrane-

derived MPs released by activated neutrophils further enhanced

NET-mediated intrinsic coagulation pathway activation (96).

However, the role of NET components, or intact NETs on

thrombosis is debatable, and merit further investigation. Except

for prothrombotic role, NETs were also shown to interfere with the

endogenous anticoagulant mechanisms. More specifically,

extracellular nucleosomes within NETs facilitated TFPI

degradation by neutrophil elastase on the surface of activated

neutrophils (97), neutrophil elastase bound to DNA complexes

was also shown to cleave plasminogen into fragments, cell-free

DNA was capable of binding to plasmin and fibrin at the same time,

resulting in decreased plasmin production and impaired fibrinolysis

(98). H3 and H4, could also interact with TM and PC, leading to the

inhibition of APC generation (99).
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In AP patients, the plasma levels of NET components increase

significantly compared to the controls (100). Platelets regulate the

formation of NETs and NET-MPs aggregations (100–102) and in

turn, NETs recruit platelets and neutrophils, reinforcing each other

and injuring the endothelium within pancreatic microvasculature

(100, 103). Exosomes adhere to NETs in vitro where they have a

dose-dependent pro-coagulant effect. NETs also activate the

intrinsic coagulation pathway via autoactivation of Factor XII

(102). NETs are complex structures composed of DNA and

cytotoxic granule proteins, including myeloperoxidase and

neutrophil elastase. NETs targeting, either preventing their

formation or degrading the NETs that have already formed, has

been proved to prevent tissue damage and reduce risk of thrombus

formation in the context of infections (104). Preventing NETs

formation by inhibition protein-arginine deaminase 4, neutrophil

elastase, or gasdermin D, has been proved to be effective in several

preclinical inflammatory disease models. While whether inhibition

of NETs formation has a detrimental effect on host defense

mechanisms has not been determined (105). Another strategy

could be to interfere with NETs that have already formed: a

recombinant human deoxyribonuclease I (rhDNase) is already

used for the treatment of cystic fibrosis with safety confirmed,

making it a very viable option for other diseases. A phase Ib study

for patients with systemic lupus erythematosus (SLE) showed that

DNase was well tolerated without severe adverse effects. Significant

recent developments in the field of rhDNase targeting the NET have

led to testing of new NET-targeted drugs in clinical trials of patients

wi th COVID-19 (NCT04409925 , NCT04541979 and

NCT05139901) (105). Heparins, as a class of anticoagulant drugs,

has been proposed to destabilize NETs by dissociating histones

from the chromatin backbone of the extracellular traps as well as to

prevent phorbol myristate acetate-induced NET formation (106).

Colchicine, destabilization of actin cytoskeleton in NETs has been

tested in Gout. N-acetyl cysteine, a ROS scavenger, improved the

condition of patients with SLE and acute liver failure. Anti-TNF

monoclonal antibodies have been used for the treatment of

rheumatoid arthritis (RA) and inflammatory bowel disease, and

anti-IL-17 antibodies have also shown some efficacy for the

treatment of RA (107). The involvement of NETs has been well

established in the pathobiology in experimental models and patients

of severe AP (100, 108, 109). All the aforementioned therapeutic

agents targeting NETs are expected to have significant potential to

mitigate severe AP in transitional research (105).
Role of complement system in the
coagulopathy of AP

The complement system shares a common origin with the

coagulation system and influences each other. It is activated

through proteolytic cascades (110), leading to the formation of

membrane attack complexes, ultimately polymerizing and inducing

lysis of the cellular target (111). Recent studies have shown specific

crosstalk between complement and coagulation in AP patients

(112). First, in addition to activation by serine proteases,

granzyme B and trypsin also cleave the central complement
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components, generating C3a and C5a (113). Second, C3a and C5a

release TF from monocytes and ECs and promote platelet

activation, leading to thrombogenesis (110, 111). Moreover, C3 is

essential for the recruitment of neutrophils into the pancreas and

NET formation (114). After C3a and C5a complement activation,

the direct products also stimulate the platelets and promote

coagulation by stimulating phosphatidylserine exposure (111)

(Figure 1), enhancing the activation of platelets, granulocytes,

and ECs, increasing the microcirculation thrombosis and

pancreatic injury.
Diagnosis, monitoring and potential
biomarkers of the coagulopathy in
acute pancreatitis

Early diagnosis and monitoring of coagulopathy is sometimes

not straightforward and complicated in daily clinical practice.

Among the items of the International Society on Thrombosis and

Hemostasis (ISTH) score, fibrinogen concentrations and platelet

counts might be increased in the early phase of AP because of

inflammation (3), thrombocytopenia may also be due to other

conditions, such as immune thrombocytopenia, heparin-induced

thrombocytopenia, thrombotic microangiopathies, or medication-

induced bone marrow depression (115), and poor sensitivity of the

ISTH criteria for the diagnosis of DIC has been reported (116).
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Vitamin K deficit and liver insufficiency may also be present at the

same time with AP associated coagulopathy, this differentiation is

not always easy (117). Plasma D-dimer alone could predict

coagulopathy and severity in patients with AP (118), while it

might also be increased because of inflammation (119). It would

be interesting to see whether new diagnostic criteria for DIC from

the Japanese Society on Thrombosis and Hemostasis, which takes

into account the underlying diseases (116). Thrombelastography is

a viscoelastic assay that measures clotting of whole blood over time

measured using a spinning wire probe, and is increasingly employed

in severe AP patients with a hypercoagulable state (120). In total,

early diagnosis and monitoring of coagulopathy in severe AP

is still a challenge (15, 121), sequential assessment of fibrinogen

(122), point-of-care tests (123) and biomarkers base on

immunothrombosis might be more helpful and yield diagnostic

insight (124). Further elucidation of the mechanisms of

coagulopathy as well as the proper diagnostic criteria, and

potential biomarkers would contribute to the improved

management of prognosis of this intractable disease.
Clinical evidence on drugs targeting
the coagulopathy of AP

The efficacy of Food and Drug Administration (FDA)-

approved drugs commonly used in clinical practice, such as
FIGURE 2

Imbalance of coagulation system in acute pancreatitis. Pro-inflammatory cytokines activate the coagulation cascade by neutrophil extracellular traps,
tissue factor and platelets, downregulate crucial endogenous anticoagulant mechanisms through tissue factor pathway inhibitor, protein C system
and antithrombin, concurrently dysregulate fibrinolytic mechanisms with plasminogen activator inhibitor type 1 and thrombin activated
fibrinolytic inhibitor.
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heparin, has been fully tested AP patients by several small-scale

clinical investigations (Table 1). In addition to FDA approved

drugs, a variety of currently non-FDA-approved agents, including

APC and rTM, have also been evaluated in AP (Table 1).

According to the international guidelines, anticoagulant

medications are not recommended for AP or severe AP, or AP

patients coexisting DIC and splanchnic vein thrombosis (SVT)

(146). Although the PC pathway defects are associated with the

progress of multiple OF (53), the coagulation disorder in severe

AP with APC treatment is not improved in patients (125), and the

recovery from coagulopathy is slower than the placebo group

(126). Studies assessing the efficacy of TM have shown more

promising results, as rTM administration resulted in decreased

mortality and was not associated with increased bleeding events in

AP-induced coagulopathy (127–129). A recent study also showed

that rTM effectively prevented the development of walled-off

necrosis (127, 129). Similarly, low molecular weight heparin

(LMWH) is not recommended in the initial managements of

moderately severe AP and severe AP patients, although some

studies have found a beneficial effect on OF, local complication,

mortality, length of stay (LOS) without increase the risk of

bleeding complications112-116. As for anticoagulation therapy in

the AP patients complicated with SVT in the later stage, heparin

or LMWH followed by warfarin or novel oral anticoagulant are

not approved for clinical use in AP due to both inconclusive

results for their efficacy (139, 140, 142–145, 147, 148) and an

increased risk for bleeding side effects (139, 142). Carrying out

larger, multicenter clinical trials designed to evaluate the potential

treatment benefit of LMWH and rTM replacement in AP

is encouraged.

There are still many potential drug targets that are only being

used in research, and seldom in clinical practice. In an animal study,

ATIII (500 mg/kg) was injected intravenously 30 min before or after

the induction of severe AP in rats, which in turn ameliorate SAP-

induced kidney injury by inhibiting inflammation, oxidative stress,

and apoptosis (149). Inhibitors of P-selectin has been proved to

have the therapeutic potential on diseases l inked to

immunothrombosis and coagulopathy (85), NETs targeting might

also reduce risk of thrombus formation in the context of infections

(104, 105). Inhibition of P-selection or NET formation do attenuate

OF and neutrophil recruitment in the inflamed pancreas (150) and

improve survival by improving pancreatic microcirculation (82, 84,

151), thereby necessitating the translation of these findings into

clinical trials of severe AP patients.
Conclusion

Taken together, pro-inflammatory cytokines activate the

coagulation cascade, downregulate crucial endogenous

anticoagulant mechanisms, and dysregulate fibrinolytic

mechanisms (Figure 2). The coagulopathy has been ascribed a

critical pathophysiological role in AP, arising from the complex

interplay between innate immune, endothelial cells and platelets.

Thus, a single-target therapy may be insufficient, requiring novel

drugs. Large-scale clinical trials are needed to identify the
T
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appropriate drug and the adequate dose under various

clinical situations.
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