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Autoimmune rheumatic diseases (ARD) present a significant global health

challenge characterized by a rising prevalence. These highly heterogeneous

diseases involve complex pathophysiological mechanisms, leading to variable

treatment efficacies across individuals. This variability underscores the need for

personalized and precise treatment strategies. Traditionally, clinical practices

have depended on empirical treatment selection, which often results in delays in

effective disease management and can cause irreversible damage to multiple

organs. Such delays significantly affect patient quality of life and prognosis.

Artificial intelligence (AI) has recently emerged as a transformative tool in

rheumatology, offering new insights and methodologies. Current research

explores AI’s capabilities in diagnosing diseases, stratifying risks, assessing

prognoses, and predicting treatment responses in ARD. These developments in

AI offer the potential for more precise and targeted treatment strategies,

fostering optimism for enhanced patient outcomes. This paper critically

reviews the latest AI advancements for predicting treatment responses in ARD,

highlights the current state of the art, identifies ongoing challenges, and

proposes directions for future research. By capitalizing on AI’s capabilities,

researchers and clinicians are poised to develop more personalized and

effective interventions, improving care and outcomes for patients with ARD.
KEYWORDS
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Introduction

Autoimmune rheumatic diseases (ARDs) account for a

substantial portion of the global disease burden. These distinct

disorders arise from abnormal immune responses against normal

tissues, attributed to a dysregulated immune system. The reported

prevalence of ARDs varies according to studies, ranging from 4.5%

to 9.4% (1, 2). Common ARDs include systemic lupus

erythematosus (SLE), rheumatoid arthritis (RA), Sjögren’s

syndrome (SS), inflammatory myopathies (IM), and systemic

sclerosis (SSc). Due to the high heterogeneity among patients,

therapeutic outcomes differ significantly, especially with complex

treatments such as biological DMARDs (bDMARDs). The

challenge of precision medicine in the clinic necessitates ongoing

research into accurately predicting treatment responses (3). The rise

in big data and advanced analytical techniques has ushered in new

possibilities in rheumatology. In recent years, significant

innovations have been seen in the digitization of rheumatology.

The World Health Organization defines “e-health” as the “cost-

effective and secure use of information and communications

technologies in support of health and health-related fields,

including healthcare services, health surveillance, health literature,

and health education, knowledge, and research.” (4). This digital

revolution encompasses electronic health records, telemedicine,

virtual visits, wearable technology, and mobile health, all

enhanced by advancements in information technology and

artificial intelligence (AI).

AI originated in 1956 at a workshop at Dartmouth College (5). It

is defined as “a system’s ability to interpret external data correctly, to

learn from such data, and to use those learnings to achieve specific

goals and tasks through flexible adaptation” (6). It often relies on

developing sophisticated algorithms based on vast amounts of

information to perform independent tasks without human

guidance (7, 8). AI is a broad term that encompasses various

learning methods including search algorithms, knowledge graphs,

natural language processing (NLP), expert systems, evolution

algorithms, text and speech synthesis, computer vision, robotics,

machine learning (ML), and deep learning (DL) (9). Recently, the

terms AI, ML, and DL have been frequently mentioned in both

academia and industry and are sometimes used interchangeably due

to their overlapping scopes. Generally, AI is the broadest concept,

with ML being one of its most important subfields (10). ML focuses

on developing models through advanced statistical learning from

high-dimensional data without the need for explicit parameter

programming (11). DL, a subset of ML, uses neural networks with

multiple layers to analyze complex patterns in data.

ML methods can be categorized based on their learning

approaches and objectives: supervised learning, unsupervised

learning (or clustering), dimensionality reduction, semi-

supervised learning, reinforcement learning, and DL (10). ML

models can be broadly classified into classical and modern

models. Typical semi-supervised learning methods include K-

nearest neighbors, logistic regression, decision trees, support

vector machines (SVM), and artificial neural networks (10). For

unsupervised learning, K-means and principal component analysis

are two popular techniques. DL is one of the fastest-growing AI
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subfields, demonstrating significant potential in solving complex

real-world problems. DL architectures have the advantage of

solving problems in an end-to-end manner and can be

categorized into (1) standard feed-forward neural network

(FFNN), recurrent neural network (RNN), convolutional neural

network (CNN), and hybrid architectures that combine these basic

types (e.g., Siamese networks and transformers). NLP leverages

complex ML methods to extract semantic information from text

(12). It enables the conversion of unstructured clinical text, such as

electronic health records (EHR) data, into structured information

that AI algorithms can further process (13).

An explosive growth of AI applications has been seen in

medicine. AI in medicine aims to use computer algorithms to

process medical data and provide valuable insight to facilitate

clinical decision-making (14), such as diagnosis, risk predictions,

disease stratification, and treatment selection, ultimately improving

health outcomes and enhancing patient experiences. One of the

most widely studied AI applications is the simulation of physicians

by giving fast and accurate diagnoses (15–18). Several AI diagnosis

technologies in auto-diagnosis have already received FDA approval.

The first “autonomous” AI diagnostic system to receive FDA

approval for the market is the IDx-DR, installed at the University

of Iowa to screen patients for diabetes (3). This is the first fully

automatic device that can provide screening results without any

manual assessment and interpretation from clinicians. In addition

to giving a diagnosis alone, AI can be used with human beings to

reduce the chance of medical errors and enhance work efficiency

(19, 20). Studies have demonstrated a “synergistic effect” when

clinicians and AI “collaborate,” resulting in better outcomes than

either working alone (21, 22).

As we integrate AI into the era of precision medicine, advanced

AI techniques emerge as pivotal solutions for achieving higher

prediction performance in ARD research. These techniques model

complex associations between patient characteristics and treatment

responses, offering real-time insights into disease progression and

facilitating swift clinical decision-making for optimal treatment

outcomes. For instance, the rapid identification and timely

delivery of salvage or alternative therapies can control disease

progression and significantly enhance a patient’s overall health.

Additionally, AI contributes to a deeper understanding of ARDs

origins and progression, enabling more personalized management

approaches for ARDs patients.

Despite the advancements in AI, significant challenges persist in

the effective and reliable prediction of treatment responses for

ARDs patients. The polygenic nature of some ARDs responses

necessitates large datasets to identify statistically meaningful

associations for biomarker development. Another challenge

involves quantifying treatment responses, where achieving

consensus can be difficult for some diseases. This discrepancy

complicates meaningful comparisons across studies and hampers

seamless clinical translation. For example, the target-to-treatment

(T2T) approach is prevalent in managing rheumatoid arthritis

(RA). Additionally, the prediction timeframe varies across studies;

while some predict outcomes months or years after therapy

initiation, others focus on predictions before treatment

commencement. This review article aims to summarize the
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current advancements in AI research for predicting treatment

responses in ARDs, highlighting the size of study populations as

well as the definitions and time frames of treatment response. It

concludes by discussing the challenges and future perspectives in

this field.
Literature search

We performed a comprehensive literature search between 2003

and 2022 at the Web of Science Core Collection (WoSCC) database

on July 15th, 2023. The WoSCC database was chosen due to its

rigorous selection criteria that prioritize high-quality and impactful

research. The search query was set as [TS=(“Auto-immune rheumatic

diseases” OR “auto-immune diseases” OR “rheumatology” OR

“Rheumatic Diseases” OR “Systemic Sclerosis” OR “systemic lupus

erythematosus” OR “rheumatoid arthritis” OR “Sjogren’s syndrome”

OR “Ankylosing spondylitis” OR “vasculitis” OR “inflammatory

myopathies”) AND (“artificial intelligence” OR “machine

intelligence” OR “computational intelligence” OR “machine

learning” OR “deep learning” OR “neural network” OR

“convolutional network” OR “Bayesian*” OR “random forest” OR

“reinforcement learning” OR “hierarchical learning” OR “computer

vision”)]. The literature types as set as “Articles” and “Reviews” with

the exclusion of “Early Access,” “Book Chapters,” “Meeting

Abstracts,” “Letters”, etc. A total of 810 articles and reviews were

found with a rapid increase of publication number since 2016, as

shown in Figure 1. Among those, 155 publications focused on RA,

100 on SLE, 44 on ankylosing spondylitis (AS), 32 on SSc, 25 on SS,

19 on osteoarthritis (OA), 13 on dermatomyositis (DM), 10 on

juvenile idiopathic arthritis (JIA), 9 on psoriatic arthritis (PSA), 8

on fibromyalgia (FM), 8 on Behçet’s disease (BD), and 8 on vasculitis

(VAS) (Table 1). The literature discussed six major types of AI
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subtyping, prognosis and endpoint prediction, and monitoring and

management. Table 2 summarizes the aims of selected publications

on the applications of AI in predicting the treatment response of

ARD patients.
Demographics and statistics

Risk factor identification and modeling by
machine learning

Tumor necrosis factor inhibitors (TNFis) are commonly utilized in

treating rheumatoid arthritis (RA), yet their response rate can be as low

as 70%. Numerous studies have explored innovative treatment

regimens and assessed their efficacy in the RA patient population.

For instance, one study developed penalized regression models that

utilized clinical and genotypic score covariates (23). These models

estimated changes in erythrocyte sedimentation rate (ESR) and swollen

joint count (SJC), both of which are components of the Disease Activity

Score 28 (DAS28), within three to sixmonths following the initiation of

TNFi treatment. However, these models failed to identify strong

predictors of TNFi response among the alleles associated with RA

development. In another study (24), researchers aimed to predict

changes in the disease activity score (DDAS28) at 24 months post-

baseline assessment. They employed various machine learning

techniques—including support vector machine (SVM), Ridge,

Random Forest (RF), logistic regression (LR), and Gaussian process

regression (GPR), and incorporated demographic, clinical, and genetic

characteristics as predictors. Despite the limited contribution of genetic

factors to prediction accuracy, the most effective model reached an area

under the curve (AUC) value of 0.62 in an independent

validation cohort.
FIGURE 1

The number of searched publications related to Artificial Intelligence and autoimmune rheumatic diseases by year. The blue line represents the
absolute number of researched publications (left y axis) and the red bars represent the percentage of publications (right y axis).
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Investigations of RA patient response to traditional

medications, such as methotrexate (MTX), have attracted

researchers’ interest. One study yielded promising performance

(AUC = 0.78) in predicting a 6-month post-treatment response

(DAS28-CRP) to MTX. The prediction was based on a penalized LR

Ridge model trained using the ratio of gene transcript expression

values between 4 weeks of treatment and pre-treatment (25).

Another recent study compared the performance of ML

algorithms, including Lasso, RF, and XGBoost, with LR in

predicting under-response to MTX, as measured by DAS28-ESR

(26). The authors concluded that the ML algorithm (specifically

XGBoost with an AUC of 0.77) has seen minimum advantages over

LR (AUC of 0.78) in prediction performance.

Lee et. Al. input clinical and laboratory data from nearly 600 AS

patients into an artificial neural network (ANN), as well as other

ML algorithms (e.g., XGBoost), to predict early TNF responders

(27). The ANNmodel achieved the best performance (AUC=0.783).

In addition, C-reactive protein (CRP) and erythrocyte sediment rate

(ESR) were identified as the most important baseline features for

predicting early TNFi response using the gradient descent-based

feature importance analysis.

Investigators also studied the response of JIA patients to MTX

monotherapy and TNFi using the DAS44/ESR-3 index. For the

MTX monotherapy, electron medical records before and after drug

administration (over three months) were collected from 362

patients and used for response prediction by XGBoost, SVM, LR,

and RF modeling (28). Ten pre-treatment predictors and six

predictors from a mixture of pre-treatment and post-treatment

variables were selected for separate model development by the

XGBoost algorithm, achieving a performance of 0.97 and 0.99 for

AUC, respectively. Regarding TNFi, the response to the treatment

was modeled in 87 patients using the clinical information collected

before the administration of the drug (29). Multiple ML algorithms

were adopted, including XGBoost, Gradient Enhanced Decision

Tree (GBDT), Extreme Random Tree (ET), LR, and RF. The
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XGBoost model achieved an optimal performance (AUC=0.79)

with only four features included as predictors. The XGBoost

method was also applied to predict cardiovascular side effects

from analgesics for OA treatment and identify high-risk factors

(30). More than 300 demographic, anthropometric, comorbidity,

hematological, and physical activity characteristics were obtained

from 4350 patients provided by the OAI dataset, and 20 high-risk

factors were finally identified by the XGBoost predictive model,

which achieved an AUC of 0.92.

Gottlieb et al. aimed to predict treatment responses in patients

with PsA (n = 2148) (31). In their study, the Bayesian elastic net ML

algorithm was used to model the efficacy of the initial dose of the

Interleukin (IL)-17A inhibitor, secukinumab. The research analyzed

efficacy endpoints—such as ACR20/50, PASI 75/90, PASDAD, and

Health Assessment Questionnaire (HAQ)-DI—at week 16,

considering 275 predictors. Although no single predictor

demonstrated strong discriminatory power, common covariates

across all endpoints included baseline inflammation. The study

also identified subgroups of patients who might benefit more from

the 300 mg dose, notably those not concurrently treated with

methotrexate (MTX) or those with psoriasis. The area under the

curve (AUC) scores for these endpoints ranged from 0.75 to 0.81.

In a separate study on idiopathic inflammatory myopathy (IIM)

(32), AI was utilized to evaluate the response of IIM patients to IVIg

and 20% Subcutaneous Immunoglobulin (SCIg) therapy. The

diagnosis followed the established EULAR/ACR criteria, with

treatment efficacy assessed using parameters such as serum

creatine kinase levels, muscle strength, disease activity, and

disability. Key predictors for IVIg and 20% SCIg treatments were

identified using a combination of supervised machine learning

algorithms, including Lasso, Ridge, Elastic Nets, Classification and

Regression Trees, and RF. The findings highlighted that muscle

strength, as determined by the Manual Muscle Test 8 (MMT8)

score during follow-up, was influenced by the presence of dysphagia

and skin disease at the start of treatment, as well as the Myositis

Intention to Treat Activity Index (MITAX). The correlation

between muscle strength and MITAX suggested that IVIg

treatment might be more effective in patients with more active

systemic disease. Moreover, methods like Elastic Net emerged as the

most feasible, efficient, and effective ML approaches for predicting

clinical outcomes related to MMT8 and MITAX in myositis.
Large-scale clinical research by NLP

NLP techniques were also widely applied in ARD research due

to their high efficiency in extracting essential information from text-

based clinical notes. One study by Cai et al. adopted NLP to identify

arthralgia in the clinical records of patients with inflammatory

bowel disease (IBW), allowing them to further compare the risk of

arthralgia between two treatments, vedolizumab and TNFi. The

results showed no significant increase in arthralgia rate with

vedolizumab administration (33). This study also demonstrated

the superior performance of NLP in arthralgia identification

compared to the conventional ICD9 code.
TABLE 1 The number of publications counted by specific autoimmune
rheumatic diseases.

Rank Disease Counts

1 Rheumatoid arthritis (RA) 155 (19.14%)

2 Systemic lupus erythematosus (SLE) 100 (12.35%)

3 Ankylosing spondylitis (AS) 44 (5.43%)

4 Systemic sclerosis (SSc) 32 (3.95%)

5 Sjögren’s syndrome (SS) 25 (3.09%)

6 Osteoarthritis (OA) 19 (2.35%)

7 Dermatomyositis (DM) 13 (1.60%)

8 Juvenile idiopathic arthritis (JIA) 10 (1.23%)

9 Psoriatic arthritis (PsA) 9 (1.11%)

10 Fibromyalgia (FM) 8 (0.99%)

11 Behçet’s disease (BD) 8 (0.99%)

12 Vasculitis (VAS) 7 (0.86%)
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NLP has also been applied with web crawling techniques to

extract meaningful information from social media networks.

Treato, a once popular data analytics service that combines NLP

processing pipelines, medical ontology mapping, classifiers, and

sentiment analysis, was employed to extract drug safety data from

social media. In one study, Treato analyzed over 785,000 posts

related to inflammatory arthritis and investigated patient-reported

incidents of herpes zoster associated with arthritis medications,

achieving a high positive predictive value of 91% (34). Another

study by Dzubur et al. utilized web crawling for social media data

extraction. Both Treato and latent Dirichlet allocation (LDA) were

adopted for topic modeling to examine the knowledge, attitudes,

and beliefs of AS patients about biological therapies (35). They

examined 27,000 posts across over 600 social media sites and
Frontiers in Immunology 05
identified 112 themes, with 36 related explicitly to AS biologic

therapies, covering aspects like side effects, biological attributes, and

concerns about treatment agents. Treato was also used to analyze

RA patients’ perceptions of 13 disease-modifying antirheumatic

drugs (DMARDs) (36). For sentiment analysis, NLP helped identify

medical concepts and extract patients’ self-descriptions of health

conditions and medication experiences. Notably, patients showed

more positive attitudes toward biologic DMARDs (bDMARDs) and

targeted synthetic DMARDs (tsDMARDs) compared to

conventional synthetic DMARDs (csDMARDs). Efficacy and side

effects emerged as the most frequently discussed topics.

Other studies have utilized text-mining techniques to identify

potential risk factors. For instance, researchers in Japan employed

text-mining methods to analyze data from a post-marketing adverse
TABLE 2 Summary of selected publications on the applications of AI in predicting treatment response of ARD patients.

Disease First author Year
of Publishing

Journal No. of Patients Aim

RA Weiyang Tao (42) 2021 Arthritis
& Rheumatology

80 Predict Clinical response to
adalimumab and etanercept therapy in
patients with rheumatoid arthritis

RA Helen R. Gosselt (26) 2021 J. Pers. Med. 355 Machine learning algorithms and
multivariate logistic regression in the

prediction of under-response to
methotrexate in patients with

rheumatoid arthritis

RA Yuanfang Guan (24) 2019 Arthritis Rheumatol. 2706 Predicting anti-TNF drug responses of
rheumatoid arthritis patients by

integrating clinical and
genetic markers

RA Darren Plant (44) 2019 Rheumatology
(Oxford)

85 Gene expression profiling identifies a
classifier of methotrexate non-response
in patients with rheumatoid arthritis.

AS Seulkee Lee (27) 2020 Scientific Reports 595 Predicting early TNF inhibitor users in
patients with ankylosing spondylitis

OA Liangliang Liu (30) 2018 BMC Systems Biology 4796 An interpretable boosting model to
predict side effects of analgesics for

osteoarthritis

SSc Showalter K (45). 2021 Ann. Rheum. Dis. 26 To identify molecular signatures that
can predict the treatment response
(improvers vs. non-improvers)

SSc Taroni J.N (46). 2017 J. Invest. Dermatol. Meta-analysis
(total 35)

To evaluate gene expressions on skin
biopsies and predict response to

different treatments

SSc Ebata S (47). 2022 Rheumatol. Oxf. Engl. 54 To find possible predictors of favorable
response to RTX

SSc Zamanian R.T (48). 2021 Am. J. Respir. Crit.
Care Med.

57 To evaluate RTX response in SSc-
related PAH

SSc Franks J.M (49). 2020 Ann. Rheum. Dis. 63 To evaluate stem cell response in
severe SSc

IIM
inflammatory
myopathies

Maria Giovanna
Danieli (50)

2022 Autoimmunity
Reviews

51 Predicting therapeutic response to
intravenous and subcutaneous

immunoglobulin in patients with
inflammatory myopathies

AOSD Jinchao Jia (40) 2020 Front. Immunol. 106 Predicting organ involvement and
response to glucocorticoids in

AOSD patients
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event (AE) reporting database. Their goal was to identify signs and

symptoms that appeared before developing severe infections in

patients with RA who were treated with the Interleukin (IL)-6

inhibitor tocilizumab (37). Signs and symptoms recorded within 28

days before a severe infection were extracted from unstructured

clinical narratives. These were then coded according to the

preferred terminology of the Medical Dictionary for Regulatory

Activities (MedDRA) and reviewed to assess their commonality in

textbooks or clinical practice. The analysis revealed that over 60% of

the patients diagnosed with a severe infection had developed

indicative signs or symptoms within the 28 days preceding

their diagnosis.
Real-world application in smartphone

AI algorithms have been implemented in smartphone

applications to address chronic pain conditions. Smartphone

application MyBehaviorCBP leveraged reinforcement learning and

sequential decision-making algorithms to analyze routine behaviors

and recommend physical activity in patients with chronic back pain

(CBP) (38). A similar smartphone-based application driven by

multilayer perceptron (MLP) was also introduced to improve self-

management of chronic neck and back pain (32).
Molecular biomarkers

Liu et al. (39) developed a predictive model for TNF blocker

treatment response by assessing quantitative changes in IgG

galactosylation, alone or in combination with AS-related single

nucleotide polymorphisms (SNPs). They created eight ML models,

achieving the best AUC of 0.87 for SVM and 0.82 for flexible

discriminant analysis (FDA). Meanwhile, glucocorticoids (GCs) are

commonly used as first-line therapeutic agents for patients with

Adult-Onset Still’s Disease (AOSD). A Chinese research group

investigated GC therapeutic response using SVM prediction

modeling by considering clinical and laboratory characteristics,

including four neutrophil extracellular capture proteins (40). The

first SVM model explored whether these proteins could serve as

biomarkers for AOSD diagnosis, while the second aimed to predict

patient responsiveness or resistance to low-dose GC based on

circulating protein levels. The AUC values for the first and

second models were 0.88 and 0.91, respectively. In addition, they

emphasized the importance of considering the side effects while

maximizing the efficacy of the treatment.

Protein kinases have become one of the most critical targets for

RA therapy. Protein kinase inhibitors can block the signaling of

inflammatory cells by inhibiting kinases, thus inhibiting the

transcription of inflammation-related factors. In 2020, Xing et al.

established a classification model targeting three kinases (SYK, JAK,

and BTK) by combining ML (XGBoost, SVM) models and deep

neural networks (41). Morgan fingerprint, Mol2vec descriptor, and

MOE descriptor were also used in this study to describe the molecules

comprehensively. The model achieved a satisfactory performance

with an extensive set of evaluation metrics, including accuracy (0.89 -
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0.91), precision (0.90 - 0.93), recall (0.9329 - 0.95), f1 score (0.92 -

0.94), AUC (0.95 - 0.96), Matthew’s correlation coefficient (MCC)

(0.74 ~ 0.79), Kappa (0.74 - 0.78), and Brier score (BS) (0.067 - 0.084)

reported in the study. In addition, a high recall (92%) and AUC (0.93)

were obtained on the external validation set. This integrated model

can be used to screen dual-target inhibitors acting on two different

signaling pathways, thus producing synergistic therapeutic effects for

RA and laying the foundation for subsequent RA drug discovery.

One year later, Tao et al. conducted a study on the gene

expression and DNA methylation profiles of peripheral blood

mononuclear cells (PBMCs), monocytes, and CD4+ T cells in 80

patients with RA prior to initiating anti-TNF therapy with

adalimumab (ADA) or etanercept (ETN) (42). The researchers

initially identified transcriptional and epigenetic features

associated with treatment responses by analyzing differential gene

expression and DNA methylation. Utilizing these features, they

developed a machine-learning model using the Random Forest

algorithm to predict responses before treatment commenced. Based

on differential genes, the model demonstrated an overall accuracy of

85.9% for ADA and 79% for ETN. Even higher accuracy—84.7% for

ADA and 88% for ETN—was achieved by considering differentially

methylated positions (DMPs). Follow-up studies confirmed the

robust performance of these models. Notably, the study

uncovered distinct genetic profiles between responders to the two

different TNF inhibitors, suggesting divergent mechanisms of

treatment response. The researchers concluded that machine

learning models based on molecular features could accurately

predict pre-treatment responses to ADA and ETN, potentially

enhancing personalized anti-TNF therapy.
Imaging

In recent years, image-based DL and ML algorithms for

assessing treatment response have also seen accelerating

developments. For instance, Chandrika et al. developed an

architecture for assessing bisphosphonate response in 28 patients

with chronic nonbacterial osteitis (CNO) based on 55 image pairs

(43). The proposed architecture consists of two parts, followed by

an integration method that categorizes the scans as “improved,”

“poor,” or “stable.” First, the InceptionV3 network extracts features,

embeddings, and representations, which are then used in a linear

logistic model to generate probability scores. Second, unsupervised

clustering techniques labeled the images, and the SVMs generated

the probability scores. Despite the less promising results (i.e., low

specificity and accuracy), this study highlights the potential of AI

for investigating rare rheumatic and musculoskeletal diseases, even

in cases with class imbalance and limited training samples.
Challenges and future perspectives

AI technologies have shown promising potential for predicting

treatment responses in ARDs. Advances in this field could represent

a significant leap toward precision medicine. By fostering

collaborative efforts, embracing interdisciplinary approaches, and
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leveraging rapidly evolving AI technologies, we can pioneer

personalized, effective, and widely accessible therapeutic strategies

for ARDs.

Up until now, support vector machines and random forests are

the most used machine learning methods with high performance

reported in research related to AI and autoimmune diseases (8).

Meanwhile, it is still important to be aware of the advantages and

disadvantages of different machine learning models in order to

choose the most appropriate ones for the target scenario. For

example, decision trees are simple and highly interpretable, but

often reported to achieve inferior performance due to its low

stability under small sample size. The use of random forest

methods can improve performance, but at the cost of losing

interpretability. K-nearest neighbor is another nonparametric

method that performs well in separating classes with complex

boundaries, but such high sensitivity often leads to overfitting,

resulting in poor classification results during validations.

Therefore, the most suitable model should be evaluated based on

a combination of factors including clinical endpoint, dataset

characteristics and the need for interpretability.

Meanwhile, challenges still lie ahead, and questions that remain

unsolved could shape the future of ARDs research (1). One key

challenge is the large clinical and molecular heterogeneities among

patients with ARDs, which could significantly impede effective

treatment allocations and reduce treatment efficacy (2, 51). The

insufficient sample size during analysis, particularly on some rare

ARDs such as mixed connective tissue disease, polymyositis, SS, and

vasculitis, could prevent researchers from drawing meaningful

conclusions. Multi-center research or database sharing could be

solutions to the current challenge (3). Compared to standard

clinical experiments, the retrospective collected data may suffer

from low data quality (e.g., lack of control of confounding factors)

and lack of standardization (52). Those disadvantages could

significantly impede the research and deployment cycle and

increase the risk of false discovery. How to effectively standardize

the data without sacrificing the richness of information is also an

issue that needs to be addressed (5). There still exists the risk of

algorithmic biases that reinforce discriminatory practices based on

race, gender, or other characteristics (4, 53) . Finally, safeguarding

patient medical information presents challenges as well. A data

breach can have catastrophic consequences. Implementing

blockchain technology could be one solution to enhance data

security, but it may restrict geographical collaborations in

digital healthcare.

Large models with complex structures and large number of

parameters are preferred in research due their high prediction
Frontiers in Immunology 07
accuracies and versatilities. However, they can be computationally

expensive in the application stage, requiring more advanced

hardware and consuming more energy. In future research, model

compression techniques, such as weight pruning, knowledge

distillation, and quantization, can reduce the size and

computational requirements of the model while maintaining its

performance. In addition, researchers can explore lightweight

neural network architectures such as MobileNets and

EfficientNets (54, 55), which are designed for mobile and edge

computing environments for efficient inference. These approaches

not only help to reduce the energy consumption of devices, but also

reduce the carbon footprint of data processing, driving the

development of green computing.
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