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Precision medicine is revolutionizing the world in combating different disease

modalities, including cancer. The concept of personalized treatments is not new,

but modeling it into a reality has faced various limitations. The last decade has seen

significant improvements in incorporating several novel tools, scientific

innovations and governmental support in precision oncology. However, the

socio-economic factors and risk-benefit analyses are important considerations.

This mini review includes a summary of some commendablemilestones, which are

not just a series of successes, but also a cautious outlook to the challenges and

practical implications of the advancing techno-medical era.
KEYWORDS

precision oncology, molecular biomarkers, artificial intelligence, clinical trials,
personalized treatment
1 Introduction

Oncology therapies are commonly designed to target the highly dysregulated molecular

pathways, including Ras/MAPK, Myc, Wnt/b-catenin, TGFb, PI3K/mTOR, Notch

signaling, Hippo pathway, cell cycle, oxidative stress response and/or p53 signaling (1–

3). However, therapeutic resistance poses a constant struggle, whether it is ‘intrinsic’ due to

genetic/molecular dysregulations or ‘acquired’ due to cancer cells adapting to the cellular

changes (4). Tumor heterogeneity, complex tumor microenvironment and genetic

predisposition have complicated the treatment options further. Personalized treatment

approaches are therefore successfully proving to be the present and future of medicine.

Precision Oncology is constantly evolving to acknowledge, accept and utilize every human

being’s uniqueness, characterized by a distinct set of genetic make-up (5, 6). As the “one

size fits all” theory is challenged at various levels in therapeutic arena, precision medicine

has emerged to rescue the unique individual cases (7–9), where common FDA approved

chemotherapeutics and/or immunotherapy drugs fail to eliminate the cancer cells (10–13).

As with great power comes bigger economic impact, personalized healthcare requires

large sums of investments and some of the underrepresented or minority groups may have

limited access to such novel technologies (14). This coincides with Eroom’s law, which

describes the ever-slowing rate of drug discovery and applicability with increasing costs

associated with it (15). This further widens the gap between research and its practical
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applications (15). Balancing the resources with medical goals,

patient requirements, time involved, and risk assessment is critical.

Although there are multiple tools used to support the

personalized approach, attempting to reverse the Eroom’s law, one

of the approaches gaining traction is incorporation of artificial

intelligence/machine learning (AI/ML) into biotechnological

advancements (16). Since 2016, FDA has seen an exponential

increase in usage of AI/ML to new oncology clinical trials, in

different phases from patient recruitment and precise clinical

designs (17) using de-identified electronic health records (18) to

data collection and analysis (19–22). These technologies provide a

major boost to generating customized treatment plans for specific

groups/sub-groups/individuals based on the target mutations. AI/ML

algorithms can identify complex patterns and correlations by

analyzing large datasets, which may not be possible at human/

physician level (22).

Targeting the molecular and cellular characteristics of tumors has

been the focus of precisionmedicine for decades (23). Genetic profiling

methods combined with immunophenotyping, transcriptomics and

epigenetic analyses assist in de-coding the complex deregulated

pathways of tumor microenvironment at a high throughput level,

while conventional methods such as FISH (Fluorescence in situ

hybridization) and IHC (Immunohistochemistry) are commonly

used to detect predictive biomarkers (24). Some common

immunotherapeutic drugs targeting PD-1/PD-L1 (nivolumab),

CTLA (ipilimumab), TIGIT (tiragolumab), LAG3 (Relatlimab) are

well-studied and used by clinicians (25–27). However, in cases

concerning rare cancers (such as angiosarcoma (28), metaplastic

breast cancer (29)), high risk, relapsed or refractory pediatric cancers

(such as Neuroblastoma (30), pediatric brain tumor (31),

medulloblastoma, Wilms’ tumor (32, 33)), and resistant cancer sub-

types (characterized by overexpression of HER2, Ras/MAPK pathways

(34)), customized/personalized cell therapy, gene therapy,

immunotherapy, and/or a combination of treatments in a timely

manner can successfully aim to prolong symptom free survival in

cancer patients (35–41).
2 Current landscape of precision
oncology therapy

Modern clinical medicine relies on the 4Ps, serving as pillars to

support therapeutic decision making, namely, Predictive,

Preventative, Personalized and Participative approach, focusing on

robust treatment options in a patient-centric framework (42).

Treating the patients with the right medicine at the right time is

always the clinical goal, however, the concept of “personalized

treatment” has evolved within the last few years. The success and

FDA approval of HER2-specific breast cancer targeting drug:

trastuzumab in 1998 (43, 44) and BCR-ABL tyrosine kinase

inhibitor Chronic Myeloid leukemia drug: Imatinib in 2001 (45)

were the first major stepping stones in this field, followed by a wide

range of gene-targeting treatment options (46). As cancer is described

as both genetic and molecular group of diseases, it became important

to encompass other intricate alterations involved, such as epigenetic

factors (47), biomarkers (48) and anatomical/histological
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modifications (49) to understand the disease progression and

design individualized “precision medicine” treatments (Figure 1).

Gene and molecular-targeted therapy (designed to target only

cancer cells) and Immunotherapy (used to boost body’s immune

system against cancer), are the major approaches used individually

or in combination with chemotherapy and/or radiotherapy to treat

cancer patients. Within last 20 years, a plethora of drugs, including

checkpoint inhibitors, monoclonal/bispecific antibodies, antibody-

drug conjugates, chimeric antigen receptor T (CAR-T) cells have

been developed to combat the complexities of this disease. The

approval of blinatumomab, the first bispecific antibody in 2014 (50)

and tisagenlecleucel, the first CAR-T cell therapy in 2017 (51)

marked milestones in oncology research. Based on OncoKB (RRID :

SCR_014782) (updated June 19, 2024), FDA has approved 186 new

targeted therapy drugs since June 1998, out of which 96 are

precision oncology drugs.

CAR-T therapy is a highly promising treatment for

hematological malignancies. As in most cases it works by using

patients’ own T-cells (autologous), this therapy is highly precise and

effective (52). Peripheral blood derived T cells are genetically

modified to integrate CAR expression cassette into the genome,

and CAR proteins are subsequently expressed on surface of T-cells.

These modified cells are expanded and infused back into the

patients. CAR recognizes specific cancer antigens, forms an

immune synapse and lyses the tumor cell by activating granzyme-

perforin axis, Fas/Fas ligand pathway and release of cytokines (52).

So far, six CAR-T therapies have been FDA approved for use in

clinics, targeting two antigens- CD19 and BCMA (53). However,

owing to the long term adverse effects of CAR-T, such as cytokine

release syndrome and neurological toxicity (54), further research

and advancements are moving this field forward, such as

integration of CAR with other immune cells - NK/NKT cells,

dendritic cells, macrophages, regulatory T cells and B cells (55,

56), which may have the potential to be safer for long-term use and

hold high therapeutic potential for clinical use.

Moreover, metabolic dysregulation is a well-known phenomenon

in tumors, characterized by accelerated glycolysis, upregulation of

lipid and amino acid metabolism, alterations in mitochondrial

biogenesis and macromolecule biosynthesis- all of which are

considered hallmarks of cancer (57). Various chemotherapeutics

targeting the altered molecules in metabolic machinery are well

established for clinical use. Some examples include enasidenib for

mutated isocitrate dehydrogenase 2 (IDH2) and Ivosidenib for

mutated isocitrate dehydrogenase 1 (IDH1) in acute myeloid

leukaemia (AML), 5-fluorouracil inhibiting Thymidylate synthase

in gastric and breast cancer, and Methotrexate inhibiting

dihydrofolate reductase (DHFR) in breast and lung cancer (58, 59).

However, activation of DNA repair pathway, induced apoptosis

resistance, target alterations, and reprogramming of immune cells

by limiting nutrient availability within tumor microenvironment can

lead to resistance towards these therapies (60, 61). Understanding the

overall picture of the tumor complexity reinforces the concept of

combination therapy precisely designed to target the cancer cells

from various angles (58, 62).

Traditionally, clinical trials are drug-centered, blinded and

randomized to minimize bias. However, due to large variability in
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patients’ tumor microenvironment, molecular profiles and unique

genomic characteristics, the outcomes are far from ideal (63).

Therefore, innovative patient- centered trials are now customized

to recognize genomic alterations and employ novel biomarker-

guided methodologies to address the distinctive needs of patients

(64) (Figure 1). A unifying clinical trial framework known as master

protocols includes testing multiple drugs in parallel, for patients

with same or different types of cancer (65). The major trial designs

under master protocols are summarized in Table 1 and are detailed

as follows:
2.1 Basket trials

These include testing of a new drug in patients with common

genetic mutation (pan-cancer gene defect) or biomarkers, in more

than one cancer types (66). Common examples of drugs targeted to

specific genes include Pembrolizumab for tumor mutational burden

high (TMB-H) and mismatch repair deficiency/microsatellite

instability high (dMMR/MSI-High) (67), and Larotrectinib (68)

and entrectinib (69) in tumors with NTRK fusion. Well known

basket trials such as NCI‐MATCH (Molecular Analysis for Therapy
Frontiers in Immunology 03
Choice) (70) and National Cancer Institute’s Molecular Profiling‐

Based Assignment of Cancer Therapy (NCI-MPACT) (71), TAPUR

(Targeted Agent and Profiling Utilization Registry) (72) were phase

2 trials based on molecular profiling of different cancer sub-types. In

some cases, such trials may not accurately predict the response rates

due to heterogeneity of the tumors and appropriate control groups

may not be available (73).
2.2 Umbrella trials

Test of multiple therapies in one disease group with common

histological aberration, stratified in sub-groups based on different

biomarker or genomic subsets. Some examples include The Lung

Matrix trial (74), Myeloid Malignancies Molecular Analysis for

Therapy Choice (myeloMATCH) (75), Adjuvant Lung Cancer

Enrichment Marker Identification and Sequencing Trial

(ALCHEMIST) (76, 77), Investigation of Serial Studies to Predict

Your Therapeutic Response With Imaging And moLecular Analysis

2 (I-SPY-2) (78), and The UK plasma based Molecular profiling of

Advanced breast cancer to inform Therapeutic Choices

(plasmaMATCH) (79). One challenge with these trials is the
FIGURE 1

Patient centered personalized care for cancer treatment. To understand the unique molecular make-up of each patient, biopsy samples are analyzed
via different sequencing techniques, (including genetic, epigenetic, RNA and ncRNA sequencing) and through medical imaging/histological analysis.
These techniques potentially reveal the different pharmacogenomic markers commonly altered in different cancer types, including but not limited to,
KRAS (Kristen Rat Sarcoma Viral oncogene homolog), HER2 (human epidermal growth factor receptor 2), BRCA1/2 (breast cancer gene), EGFR
(epidermal growth factor receptor), HLA-B (human leukocyte antigen B), ALK (anaplastic lymphoma kinase), PIK3CA (Phosphatidylinositol-4,5-
Bisphosphate 3-Kinase Catalytic Subunit Alpha), B-RAF (v-raf murine sarcoma viral oncogene homolog B1), VHL (Von Hippel-Lindau), BCR-ABL1
(breakpoint cluster region and Abelson murine leukemia viral oncogene homolog 1), PTEN (phosphatase and tensin homolog deleted on
chromosome 10), TP53 (tumor protein p53) (7, 8, 168). Additionally, different molecular patterns, biomarkers or integrated panels are also analyzed,
serving as predictive or diagnostic signatures. These include, but are not limited to, dMMR (deficient DNA mismatch repair)/MSI-high (microsatellite
instability-high), TMB (Tumor mutation burden), RET (REarranged during Transfection) genetic fusion, NTRK (neurotrophic tyrosine receptor kinase
gene) fusion, PD-1/PD-L1 (Programmed Cell Death Protein 1 and Programmed Cell Death Ligand 1), T-cell or B-cell focused gene signature profile,
PSA (prostate-specific antigen), GEP (T cell–inflamed gene expression profile), tumor imaging and histology (34). AI/ML is used for a myriad of
functions such as sorting the markers, screening across real world data (RWD), generating prognostic models, risk prediction, selecting specific
targets, and testing drug combinations (169). Patient-derived data (based on tested samples and medical history) is curated and streamlined not only
for specific clinical trial design, but also to record, statistically analyze, and compare the results (169).
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requirement of sub-grouping of patients that could slow down the

enrollment process in case of rare cancers (80).
2.3 Platform trials

They are also known as multi-arm, multi-stage design trials

which include testingmultiple drugs against a common disease. Based

on the interim analysis, these trials allow changes to the ongoing trial

vis à vis addition of a control arm, drug, patient population or even

early termination, as needed (80). This flexibility enables platform

trials to be confirmatory. Some examples include ComboMATCH

(NCI Combination Therapy Platform Trial with Molecular Analysis

for Therapy Choice) (81), and SHIVA (Study of Randomized,

Molecularly Targeted Therapy Based on Tumor Molecular Profiling

versus Conventional Therapy for Advanced Cancer) (82). Since

platform trials are large scale and logistically complex, the cost and

time duration involved could be high (80).
Frontiers in Immunology 04
2.4 Octopus trials

These are completed Phase I/II trials, which evaluate the

combinatorial effects of multiple drugs with a common intervention

(83). An example is phase IIb multi-cohort study QUILT-3.055, which

tests combinations ofN-803 (a fusionprotein inducingproliferation and

activity of natural killer and cytotoxic T-cells) in patients who received

pre-treatment with PD-1/PD-L1 immune checkpoint inhibitors (83).

Since these trials are multi-arm, data generation could be

interdependent, leading to potential statistical limitations (84).
2.5 N-of-1 trial

Randomized and blinded trial conducted in a single patient.

These are, in a true sense, personalized trials based on specific

biologic characteristics (85). These can be effective in treating rare

cancers and to provide objective comparison of different treatments

and perform time series analyses (83). Various N-of-1 trials are

comprehensively summarized by Gouda et al. (86). Some examples

include I-PREDICT study (87), rare pediatric cancer, such as- the

case of a 2-year old child with metastatic glomus tumor and activated

NOTCH1 (88), and the ALK-fusion positive high grade glioma in a 3-

year old (89). However, there are serious considerations to

performing these trials, ranging from lack of appropriate control

and highly conservative treatment selection to data collection and

analysis, statistical limitations, false-negatives and the high cost

involved in putting together the infrastructure for each trial (83).

Since the patient-centric biomarker-based studies rely on

appropriate detection of the relevant disease indicators, several

methods are used to analyze and aid in designing the

treatment plans.
3 Onco-precision toolkit

Technological advancements in cancer biology have enabled

researchers and clinicians to explore options beyond the common

drug targets for patients. Even though the DNA sequencing

techniques have been in use since 1970s (90), the most widely

accepted next generation sequencing (NGS) was adapted in clinical

diagnosis and prognosis within the last decade (91). With the

development of clinical applicability of whole genome sequencing

(92, 93), whole exome sequencing (WES) (94, 95), RNA-seq (paired

with WES (96)) or in single-cell/bulk variations (97)), spatial

transcriptomics (98), hybrid capture NGS for targeted oncology

panels (99) and comprehensive omics analyses (100, 101), the

integration of large-scale genomic data (102) is now possible to drive

the personalized treatment approaches. Besides the genetic mutations

at DNA and RNA level, several ncRNAs such as miRNA (103, 104),

circular RNA (105–107) as well as epigenetic markers (108–111) are

being analyzed to comprehensively map individuals at genetic and

molecular level. These techniques draw the cellular landscape of
TABLE 1 This table summarizes the precision oncology clinical trial
types, unified as master protocols.

Trial
Type

Examples Purpose Challenges

Basket NCI-MATCH,
NCI-MPACT,
TAPUR (70–72)

Tests new drug in
multiple cancer types
with pan-cancer gene
defect or biomarkers

Tumor
heterogeneity
leading to less
accurate prediction
of response rates;
Lack of
appropriate
controls (73)

Umbrella Lung Matrix,
myeloMATCH,
ALCHEMIST, I-
SPY-2,
plasmaMATCH
(74–79)

Tests multiple
therapies in one disease
group with common
histological aberration
(sub-grouped with
different biomarkers or
genomic sub-sets)

Slow enrollment
process due to
sub-grouping of
patients (80)

Platform ComboMATCH,
SHIVA (81, 82)

Tests multiple drugs
against a common
disease with flexibility
of modifications,
as needed

High cost and time
duration due to
higher
complexity (80)

Octopus QUILT-3.055 N-
803 in patients
who received pre-
treatment with
PD-1/PD-L1
immune
checkpoint
inhibitors (83)

Tests the combinatorial
effects of multiple
drugs by
simultaneously
investigating several
treatment arms

Interdependent
data generation
may lead to
statistical
limitations (84);
high cost

N-of-1 I-PREDICT, rare
pediatric cancer
cases (86–89)

Matches patients to
drugs and RWD,
effective for rare,
resistant and
metastatic cancers

Suboptimal
controls;
conservative data
collection and
analysis; statistical
limitations; false-
negatives and high
cost (83)
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tumors and help in discovering biomarkers associated with clinically

relevant genomic alterations, as summarized in Figure 1.

Radiomics or high dimensional medical imaging via PET, CT,

Ultrasound andMRI (112) formonitoring the tumor characteristics is

combined with machine learning to extract the specific features/

characteristics of individual tumors, to guide their specific treatment

course (113, 114). Theranostics (therapy + diagnostics) utilizes

radionuclide linked to targeted biomarkers, which allows diagnosis

through targeted imaging (radiomics) and targeted therapyat the same

time (115). Some examples include Lutathera (lutetium 177Lu

dotatate), the first FDA and EMA approved theranostic drug, which

releases radiation to kill cancer cells by binding to cell surface receptors

somatostatin on gastroenteropancreatic neuroendocrine tumors

(116), and Pluvicto for castration-resistance prostate cancer using

Lutetium-177 that targets PSMA on cell surface in prostate

cancer (117).

Various ML methods, such as deep neural networks are also

used to predict clinical outcomes using the supervised and

unsupervised learning models (118, 119) to enhance the efficiency

of cancer diagnosis and increase the probability for predictive

prognosis. With the use of de-identified electronic health records

(EHRs) (120), paired with specific genotypic training data (121) and

bioinformatic regressionmodels (122), the auto-encoders can extract

intrinsic features of the tumors (118). This high throughput real-

world data (RWD) paves the way to deeper understanding of
Frontiers in Immunology 05
complex biomarkers associated with heterogenous tumor sub-

populations, microsatellite instability and tumor mutational

burden (TMB) (123–125). Figure 2 summarizes the tools available

for personalized cancer treatment for specific population groups, to

achieve the clinical goals of treatment and prolonged survival.

Various governmental organizations such asNCI,NCBI and FDA

provideopenaccess public repositories to study the pharmacogenomic

pattern of larger population groups with drug response, increased

clinical efficacy probability and reduced adverse drug reactions. Some

examples includeTCGA (reportsmolecular characterization of 20,000

primary tumors) (RRID : SCR_003193), ClinVar (public archive of

human diseases and corresponding drug responses) (RRID :

SCR_006169), COSMIC (catalogue of somatic mutations in cancer)

(RRID : SCR_002260), PharmKGB (Pharmacogenomics

Knowledgebase for genotype-phenotype relationship, genetic

variants and drug associated guidelines) (RRID : SCR_025580),

Drugbank (for comprehensive drug-target data) (RRID :

SCR_002700), FDA’s pharmacogenetic associations and ClinGen

(human genetic variants database) (RRID : SCR_014968) (9, 126).

Precision FDA is also a free computing platform to analyze large

biological datasets and learn from experts in the field.

Utilization of these vast array of tools available carries its fair

share of challenges ranging from the cost and time involved in

generating the large datasets to managing, storing, aligning and

assessing this data, with high quality, accuracy and reproducibility.
FIGURE 2

Different Precision Oncology tools utilized for diagnosis, prognosis, data collection and analysis. The target population for personalized treatment
includes, but is not limited to, patients that share genetic dysregulation/common biomarkers altered/patients with therapeutic resistance, patients
with rare cancer types, pediatric patients with high-risk, relapsed or refractory cancers. The current goals are defined by achievable level of cure or
longevity of symptom free survival; some tools such as NGS, preventative personalized vaccines and specific AI/ML technologies can be used for
prevention or early precautionary measures. The data collected can also be stored in repositories to guide treatments for other patients, can be used
as training data for next generation of advanced technologies and to design novel future medical interventions.
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Aligning multi-reads, incorrect sequence mapping, absence of

reference sequences, computational challenges spanning splice or

fusion junctions, misalignment and false-positive identification are

a few common problems noted with NGS and RNA-seq methods

(127, 128). At experimental level, the quality of RNA and DNA

extracted from formalin fixed embedded (FFPE) tissues derived

from tissue banks may not be the best in some cases for high

throughput analyses (129).

Moreover, clonal diversity and tumor heterogeneity is a major

challenge in a constantly evolving tumor microenvironment, which

can interfere with accurate detection of driver mutations and novel

factors leading to resistance towards therapy. Common examples of

acquired resistance include splice variants affecting ATP-

competitive tyrosine kinase inhibitor binding sites, activating or

sub-clonal mutations in PI3K, RAS/MAPK pathways, mutations in

“undruggable” genes such as Myc, KRAS and Tp53, FLT3 mutant

leukemia (130), and somatic mutations in cancer stem cells (4).

Realistically, biopsy at recurrence or relapse is not always possible in

case of severe metastasis associated with procedure invasiveness and

underlying co-morbidity (131, 132). However, using resources like

NCI-MATCH and pairing them with sequential screening tests of

samples derived from liquid biopsies, and circulating tumor (ct)-

DNA based targeted sequencing (133) based on specific genetic

panels can be a way to detect actionable genomic alterations and

predict the resistance to adapt customized approaches.
4 Cancer vaccines: a long journey
with promising outcome

Cancer vaccines can be categorized into (a) Preventative, such

as hepatitis B vaccine and human papilloma virus (HPV) vaccine,

administered to reduce the risk of liver cancer and cervical cancer,

respectively (134), or (b) Therapeutic, such as Sipuleucel-T against

metastatic prostate cancer (134), Nadofaragene firadonevec

(Adstiladrin) for early-stage bladder cancer (135), and T-VEC

(Imlygic) to treat advanced melanoma (136).

Although the first cancer vaccine trial dates back to 1890s, when

William B. Coley used heat-killed streptococcal injections in

patients with inoperable sarcomas (137), a major leap forward

was in 1959 when Llyod Old showed that BCG infection in mice

increased their resistance towards transplanted murine tumor cell

lines S-180, carcinoma 755 and Ehlrich ascites (138). The BCG

vaccine containing live attenuated Mycobacterium bovis was later

approved by FDA for early-stage bladder cancer (139).

As preventative cancer vaccines have limited applicability and

efficacy against the plethora of cancer-causing agents, therapeutic

vaccines are emerging as an effective means to activate the immune

response by enhanced tumor antigen presentation and generating

non-exhaustive cytotoxic T cells to improve anti-tumor immunity

(140). These vaccines elicit the immune response by recognizing the

specific epitopes expressedby tumor cells (140).Though therehasbeen

limited success with such vaccines so far, various clinical trials

(clinicaltrials.gov) are now focusing on targeting tumor specific

antigens (TSAs), which are exclusive to tumors and possess high
Frontiers in Immunology 06
immunogenicity (141). TSAs can be viral antigens or non-viral

neoantigens generated by spontaneous somatic mutations in tumor

microenvironment (142, 143). As many neoantigens are unique

to either a small sub-population or specific to an individual

patient, personalized cancer vaccines are gaining attention for

precision targeting.

The most important factors to consider while designing a tailor-

made cancer vaccine are: (a) Accurate identification of highly potent

and immunogenic neoantigens capable of inducing a robust T cell

immunity; (b) Calculative estimation of the probability of TSA-

epitopes binding to MHC; (c) Neoantigen prioritization to predict

the interaction of TCRs withMHC-neoepitope complex; (d) Selecting

appropriate delivery platform for neoantigen based vaccine, which

may include autologous dendritic cells (DCs), peptides, DNA, RNA,

mRNAorviral vectors (144, 145).Autologouswhole tumor cellsmixed

with immunomodulatory adjuvants, genetically modified autologous

tumor cells, autologous cell derived exosomes, DC-tumor cell fusion

vaccine, autologous DC-based or DNA/RNA/mRNA-based vaccines

are a few examples of the ones undergoing clinical trials for

personalized treatment (143, 146, 147). Recombinant viral vectors,

such as Great Ape derived adenoviruses (GAd) and modified vaccinia

virus Ankara (MVA) also serve as a great tool to trigger effective

cytotoxic T cell response, using their intrinsic adjuvant properties

(144). Anti-viral vector immunity can serve as a roadblock though,

whichcan lead to ineffective immunityboost at re-administration.This

challenge is being eradicated via a ‘heterologous-boost approach’ in

various clinical studies, where involving different platforms can

provide stronger immune response, examples include GAd - primed

with MVA boost (148) or with self-amplifying RNA (149).

We are still in initial stages of personalized cancer vaccine

development owing to the complexity and masking skills honed by

tumor cells, which makes it difficult to recognize the distinguishing

epitopes. A weakened immune system with immunosuppressive

proteins expressed on tumor cells (such as PD-L1), loss of TSA

expression or spontaneous alterations in antigen processing

pathways, could be a few potential challenges (144, 150).

Personalized vaccine manufacturing also involves a large cost,

unique supply chain and the extensive process involved could

cause a lag in timely treatment (144). As scientists are progressing

this field forward, there is a need to further refine the cancer vaccine

formulation and preparation workflows and make it more

accessible to the wider group of patients in need.
5 Discussion

Diligent preclinical steps towards choosing the correct research

platform (such as humanized mouse models (151, 152), organoids

(153) or organ-on-chip (154)), appropriate drugs (155), and

carefully curated experimentation strategies, serve as the

foundation of any clinical trial. Undeniably, the molecular

framework of tumors needs to be thoroughly studied at a deeper

level to align with the required treatment regimens. Understanding

resistance mechanisms and adopting alternative approaches is

important from the early research steps (4, 156).
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Combining these aspects with comprehensive AI-assisted

technologies, such as NGS and multi-omics connects the pathway

from preclinical (100, 157–160) to ‘personalized’ clinical stages

(161). Since generative and multimodal AI models play a major

role in patient diagnosis, trial design, planning, patient recruitment,

drug delivery, digital monitoring, and data assessment, it is

imperative to adopt a precautionary regulatory framework (162).

European AI act and FDA have released regulatory policies for the

use of AI in medical field (162, 163), however the rules need to be

clearer and up to date as the field progresses. Keeping in mind the

biases and limitations of large datasets generated from AI-based

systems, the risk-benefit scale needs to be fine-tuned. Using real

world evidence (RWE) also poses privacy and data confidentiality

risks (164), which should be appropriately addressed. Furthermore,

using high throughput screening methods for certain

subpopulations would need comprehensive training models,

absence of which may introduce bias or sub-par results (165).

Thorough investigation of medical interventions is needed to be

cautious of any false claims from personalized drug developers.

Transparent evidence-based information sharing and finding

accelerated solutions to unexpected contradictions is required to

manage the fragmented regulation in clinical settings (162). Going

hand in hand with the ethical considerations, the need for precision

medicine outweighs any opposing schools of thought, recognizing

that each life is important.

Significant progress has been seen in this field, with the launch of

‘Precision Medicine Initiative’ by Barack Obama in 2015 (166) and

the Cancer Moonshot program (167), aiming to bring the public and

private sectors together to provide a broader screening, diagnostic,

therapeutic and supportive biomedical platform. Though many

organizations are focused on developing cutting-edge technologies

tailor-made to patients’ needs, we are still many steps away from

accessible and affordable personalized healthcare for everyone in

need. However, with precision oncology propelling cancer research,

there is a gleam of hope for a healthier not-too-distant future.
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