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Acute hypoxia stress mediates
HIF-1a-Yki-Cactus axis to
facilitate the infection of
Vibrio parahaemolyticus in
Litopenaeus vannamei
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Introduction: Hypoxia stress renders aquatic animals more susceptible to

bacterial disease, yet the underlying mechanism remains elusive.

Methods: We conducted an acute hypoxia stress experiment to investigate the

impact of stress on the immune response of Litopenaeus vannamei via

transcriptome analysis, RT-qPCR and Western blot.

Results: Our results showed that acute hypoxia stress disrupted the tissue

architecture, and significantly changed the gene expression profiles in the

hepatopancreas of shrimp. More importantly, acute hypoxia stress significantly

changed the expression levels of immune-related genes. Ladderlectin, GBP 1,

Caspase-1, CLEC4F,MR1 and GBP 2 were significantly down-regulated, but HIF-

1a, Cactus, TIPE, Akirin-2, Ivns1abp and TLR3were significantly up-regulated. We

further demonstrated that acute hypoxia activated Yki via HIF-1a to enhance

expression level of Cactus, and then Cactus inhibited the phosphorylation of

Dorsal and its nuclear translocation, thereby suppressing antibacterial immunity.

Subsequently, the challenge experiment following stress revealed that exposure

to acute hypoxia stress amplified the infectivity and lethality of Vibrio

parahaemolyticus to shrimp. The mechanism of HIF-1a-Yki-Cautus axis

provided an explanation for this phenomenon.

Discussion: This study offered new insights into interactions among

environmental hypoxia stress, host immunity and pathogens, thereby providing

practical guidelines for optimizing shrimp culture practices.
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1 Introduction

Hypoxia exerts significant impacts on the development,

morphology, behavior, reproduction and physiological

metabolism of aquatic animals (1–3). Hypoxia stress renders

aquatic animals more susceptible to bacterial disease. The

mortality of Oreochromis niloticus infected with streptococcus

agalactiae was found to be significantly elevated under hypoxia

condition (4), while the mortality of Scylla paramamosain infected

with Vibrio alginolyticus also exhibited a notable increase (5). It is

noteworthy that hypoxia has been shown to suppress the non-

specific immune response of aquatic animals (6). For instance,

exposure to hypoxia stress resulted in a significant decline in the

activities of lysozyme and phenoloxidase in Callinectes sapidus and

Eriocheir sinensis (7–9), while a notable decrease was observed in

the haemolymph’s phagocytic, bacteriolytic, and antibacterial

activities in E. sinensis and M. rosenbergii (10–12). Additionally,

the exposure to hypoxia stress was found to significantly suppress

the immune system of Macrobrachium rosenbergii, thereby

augmenting its susceptibility to Enterococcus infection (13).

Litopenaeus vannamei is the shrimp species with the highest

production in worldwide aquaculture due to its high growth rate

and wide tolerance for salinity ranging between 0.5-40‰ (14). Its

global production reached 6.32 million tons, which constitutes a

staggering 51.7% of total shrimp output across the globe (15).

Shrimp are the most sensitive to hypoxia stress in crustaceans (6).

An adult L. vannamei consumes oxygen is about 1.23 mg.h-1, and

their tolerance level is about 1.02 mg.L-1 (16). When water dissolved

oxygen (DO) fell below the 3 mg.L-1, the phenoloxidase,

phagocytosis, bacteriolytic and antibacterial activity in

haemolymph of L. vannamei were remarkably suppressed (12).

The suppression of these immune parameters increased its

susceptibility to pathogen, such as the exposure of L. vannamei to

cyclic serious/medium hypoxia resulted in an increased mortality

upon challenge with Vibrio parahaemolyticus (17). V.

parahaemolyticus is one of the most common bacterial pathogen

that can widely infect fish, shellfish and crustacean (18), which

harboring a virulence plasmid encoding PirA/B can cause a lethal

disease in shrimp, known as the acute hepatopancreatic necrosis

disease (AHPND) (19). This disease can result in a 100% mortality

rate among infected shrimps within 30-35 days, leading to huge

economic losses for the shrimp farming industry (20, 21). The

hepatopancreas of the AHPND shrimp exhibit a pale yellow or light

yellow coloration, accompanied by evident atrophy, and black spots

or streaks become observable in advanced stages of the disease (20,

22). The intestines of the diseased shrimp exhibit emptiness, with a

thinned midgut wall and detached intestinal mucosa floating in the

lumen (20, 22). The progression of AHPND in L. vannamei is

intricate and contingent upon a multitude of factors, including

environmental, host-related, and pathogenic factors (18). The

outbreak of bacterial diseases in shrimp is more likely to occur

when anoxia and concentrations of ammonia and nitrite are

excessively high in aquaculture (23). Most of the studies lack the

mechanisms that elucidate the complex interplay between the

environmental conditions and development of bacterial diseases

for shrimp. Therefore, it is imperative to elucidate the underlying
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mechanism of bacterial disease outbreaks of shrimp in response to

hypoxia stress.

HIF-1, composed of HIF-1a and HIF-1b, functions as a pivotal
regulator of oxygen homeostasis (24). The role of HIF-1a in

regulating host glucose metabolism has been extensively

investigated in shrimp (6, 25), while limited information exists

regarding the regulation of shrimp immune response by HIF-1a.
Invertebrates including shrimp solely rely on innate immunity for

their defense response, due to the absence of specific immunity

based on immunoglobulin (26). The Toll-like receptors (TLR) is a

pivotal regulator of the innate immune response in shrimp (27).

TLR signaling induces the upregulation of diverse antimicrobial

peptides through activation of the NF-kB transcription factor

Dorsal, thereby exerting the protective function against bacterial

infections (26). The Ik‐B protein Cactus acts as a suppressor of

Dorsal. Cactus impairs the phosphorylation of Dorsal and hinders

Dorsal entry into the nucleus, thus impacting the antimicrobial

capacity of hosts (26). The invertebrate Yorkie (Yki) is the homolog

of mammalian YAP, which is a crucial effector within Hippo

signaling pathway (28, 29). The pivotal role of Hippo signaling

pathway in innate immunity of invertebrate is initially documented

in 2016, wherein Yki directly facilitates the transcriptional

activation of the IkB homolog Cactus in Drosophila, thereby

repressing the expression of TLR-induced antimicrobial peptide

genes (30). Thus, the inhibition of Yki augments host’s antibacterial

immune response (30). Yki has been shown to inhibit the activation

of Dorsal by up-regulating the Cactus in both L. vannamei and

Macrobrachium nipponense (31–33). However, the interaction

network of these pivotal genes in shrimp exposed to hypoxia

stress remains unclear.

Herein, the intricate relationship among hypoxia, V.

parahaemolyticus and host immunity in L. vannamei were

studied. We conducted an acute hypoxia stress experiment to

explore the impact of stress on immune response of host through

transcriptome analysis and RT-qPCR. Then, we performed an

injection challenge experiment with V. parahaemolyticus

following stress to examine its colonization in the hepatopancreas

of shrimp post-stress. Our findings revealed detrimental impact of

acute hypoxia stress on attenuate antibacterial immunity of shrimp,

rendering the host more susceptible to bacterial pathogen.

Specifically, acute hypoxia stress induced HIF-1a-Yki-Cactus axis
to inhibit the antibacterial immunity that weakens the shrimp’s

resistance against V. parahaemolyticus infections.
2 Materials and methods

2.1 Experimental design and
sample collection

L. vannamei (~ 6 g) were obtained from the breeding base of

Doumen Nanhai Institute of Oceanology in Zhuhai, China. The

salinity range of aquaculture ponds feeding L. vannamei in Zhuhai

varies from 0.67 to 2.81‰ (34). Before the experiment, the shrimp

were reared in a temporary tank with water temperature of 27°C and a

salinity of about 3‰, and one-third of the water was replaced daily.
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Then, we conducted a hypoxia stress experiment (Figure 1A): Initially,

shrimp were transferred from ponds to laboratory for temporary

rearing. After two days, the shrimps were allocated into the hypoxia

group (with controlled DO levels at approximately 1 mg.L-1) and

normoxia group (approximately 7 mg.L-1) (Supplementary Table S1).

Each group had three aquariums with 30 shrimp in each aquarium.

We collected hepatopancreas from six randomly selected shrimp in

each group at 3h, 6h and 12h post-stress. The tissue of one shrimp was

classified as a separate sample. Samples were stored at -80°C prior to

RNA extraction. Hepatopancreas were collected at 12h post-stress and

subsequently processed into paraffin sections using the methodology

described in previous study (35). The sections were stained using a

Hematoxylin and Eosin Staining Kit (Beyotime; cat. no. C0105S),

followed by microscopic examination.
2.2 The transcriptome sequencings

Total RNA was extracted using Trizol reagent, and the quantity

and quality of RNA were assessed with a Nanodrop2000

spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA)

and Agient2100 (Perkin Elmer, Waltham, MA, USA). RNA quality
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met the requirements for library construction as follows: The total

amount ≥ 2 mg, concentration ≥ 40 ng.mL-1, volume ≥ 10 mL, OD260/
280 ratio from 1.7 to 2.5, OD260/230 ratio from 0.5 to 2.5, normal

display of the absorption peak at 260 nm, and RIN value ≥ 7. The

qualified samples were enriched with eukaryotic mRNA by magnetic

beads containing Oligo (dT). Then, mRNA fragmentation was

achieved through random interruption using Fragmentation Buffer.

First cDNA strand synthesis and subsequent double-stranded cDNA

synthesis were carried out utilizing mRNA as a template, followed by

purification of synthesized cDNA. cDNA underwent end-repair, a-

tailing, and connection of sequencing adapters to form sequencing

libraries with selected fragment sizes using AMPure XP beads. Finally,

PCR enrichment yielded the desired cDNA library. After the

construction of library, preliminary quantification was performed

using Qubit 3.0 fluorometric quantifier at a concentration above 1

ng.mL-1, followed by the detection of inserted fragments using Qsep400

high-throughput analysis system. Once inserted fragments met

expected criteria, accurate quantification of library’s effective

concentration (> 2 nM) was conducted using RT-qPCR to ensure its

quality. The cDNA library was subjected to sequencing on Illumina

NovaSeq 6000 platform (Illumina, San Diego, CA, USA) at Biomarker

Technologies Co. Ltd. (Beijing, China).
FIGURE 1

(A) Schematic representation of the experimental procedure for inducing acute hypoxia stress. (B) Acute hypoxia stress disrupted the tissue
architecture in the hepatopancreas of shrimp. The arrow indicates severe atrophy of the glandular duct in the hepatopancreas of hypoxia-stressed
shrimp, with the presence of gas bubbles observed between the glandular ducts. The symbol “*” represents the sampling time point.
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2.3 Bioinformatic analysis

We conducted raw data trimming using Trimmomatic (version

0.39) with default parameters and check quality using FastQC

(version 0.11.8). Then, each set of clean reads was independently

aligned to the L. vannamei genome (ASM378908v1) in orientation

mode using TopHat. The expression level of each transcript

calculated based on the fragment per kilobase of exon per million

mapped reads (FPKM) method. The DESeq2 was employed to

identify differentially expressed genes (DEGs) based on gene count

values. During the process of differential expression analysis,

screening criteria were set as false discovery rate (FDR) < 0.01,

where fold change (FC) represented the ratio of expression levels

between the normoxia and hypoxia groups and FDR was obtained

by correcting the significance of differences with p-values. To

facilitate comparison, differential FC was presented as log2FC. A

larger absolute value of log2FC indicated a smaller FDR value for

genes in two groups, highlighting more pronounced differences.

The GO functional enrichment of DEGs was analyzed using

Goatools, and KEGG pathway analysis of the DEGs was

performed using KOBAS.
2.4 Experiment of V. parahaemolyticus
injection challenge after stress and
quantification of V. parahaemolyticus

We conducted an injection challenge experiment with V.

parahaemolyticus following stress to investigate its colonization in

hepatopancreas of shrimp post-stress. The V. parahaemolyticus

originated from Guangdong Microbial Culture Collection Center,

and harbor pVA1-like plasmids containing virulence genes pirAVp

and pirBVp. Shrimp (~6 g) were transferred to laboratory for

temporary rearing. After two days, the shrimps were allocated

into four groups: the hypoxia (whose DO was about 1 mg.L-1),

hypoxia+V. parahaemolyticus (1 mg.L-1), normoxia (7 mg.L-1) and

normoxia+V. parahaemolyticus (7 mg.L-1) groups (Supplementary

Table S1). Each group had three aquariums with 30 shrimp in each

aquarium. The previously preserved V. parahaemolyticus was

inoculated into Luria-Broth medium at a dilution ratio of 1:100.

The bacteria solution was incubated in a shaker at 180 r/min at 28°C

for 14h, and then diluted into PBS at a concentration of about 105

CFU per 50 mL to perform an injection challenge experiment when

hypoxia stress reached 12h. The mortality rates in each group were

recorded at 24h intervals for a duration of 168h following challenge,

enabling the calculation of survival rates. Repeated the above

experiment and collected the hepatopancreas from six randomly

selected shrimp in each group at 6h, 12h and 24h following

challenge. The tissue of each shrimp was classified as a sample.

All samples were stored at -80°C before RNA and DNA extraction.

Extracted DNA from hepatopancreas (0.1 g) was subjected to

absolute qPCR for quantification of V. parahaemolyticus (36), using

primers listed in Supplementary Table S2. The plasmid pGEM-T-

Easy containing a 336-bp DNA fragment from the pirAVp was

serially diluted to 10-fold for the generation of a standard curve.

The quantification of V. parahaemolyticus copies in the sample was
Frontiers in Immunology 04
determined based on the established standard curve. The PCR

reaction mixture (10 ml) contained 5 ml LightCycler®480 Probes

Master (Roche; cat. no. 04707494001), 2.5 ml DNA template, 1 ml of
10 mM primers and 0.02 ml of 100 mM TaqMan fluorogenic probe,

1.48 ml H2O. The absolute qPCR conditions were 1 cycle at 95°C for

8 min, 40 cycles of 10 s at 95°C, 25 s at 60°C, and 1 s at 72°C. Each

sample was carried out with three replicates.
2.5 Immune-related genes quantification
by RT-qPCR

Relevant tissues of shrimp were subjected to total RNA extraction

using the Eastep Super Total RNA Extraction Kit (Promega, Shanghai,

China). The genomic DNA of shrimp tissues was extracted using a

genomic DNA extraction kit (V, Guangzhou, China). First-strand

cDNA synthesis was performed using a cDNA synthesis kit (Takara,

Dalian, China). The expression levels of genes were quantified using

LightCycler 480 System (Roche, Basel, Germany) in a final reaction

volume of 10 mL. This reactionmixture consisted of 1 mL of 1:10 cDNA
diluted with ddH2O, 5 mL of GoTaq RT-qPCR Master Mix (Promega,

Madison, WI, USA; cat. no. A6002), and 250 nM of specific primers.

The primers utilized in this study are listed in Supplementary Table S3.

The cycling program was conducted as follows: an initial cycle at 95°C

for 2 min, followed by 40 cycles consisting of denaturation at 95°C for

15 s, annealing at 62°C for 1 min, and extension at 70°C for 1 s. The

cycling process concluded with a final denaturation step at 95°C using a

heating rate of 5°C/s to generate the melting curve. The expression level

of each gene was determined using the Livak (2-△△CT) method after

normalization to EF-1a (GenBank accession No. GU136229).
2.6 Detection of phosphorylation and
nuclear migration of Dorsal

Hepatopancreas was collected from each group (n=5) at 12h

post-stress and prepared for the extraction of total protein, nuclear

protein and cytoplasmic protein, respectively. For total protein

extraction, 30 mg hepatopancreas was treated with 200 mL of pre-

added Protease Inhibitor Cocktail (Beyotime; cat. no. P1005) RIPA

Lysis Buffer (Beyotime; cat. no. P0013B), thoroughly homogenized

using a glass homogenizer, and subsequently incubated on ice for 30

min. The suspension was subjected to centrifugation at 15000 g and

4°C for 10 min. Obtained supernatant served as a total protein

sample for assessing both the phosphorylation level of Dorsal and

its overall protein abundance. Nuclear and cytoplasmic proteins

were extracted from 30 mg hepatopancreas using a Nuclear and

Cytoplasmic Protein Extraction Kit (Beyotime; cat. no. P0028), with

the addition of Protease and Phosphatase Inhibitor Cocktail

(Beyotime; cat. no. P1045) beforehand. Detailed steps can be

found in the provided instructions. Protein samples were

separated using SDS-PAGE gels. Then transferred to PVDF

membranes (Merck; cat. no. IPVH00010) and incubated with the

corresponding antibodies. Primary antibodies used in this study

consisted of rabbit anti-Dorsal (Genecreate antibody

customization), rabbit anti-p-Dorsal (Genecreate antibody
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customization), rabbit anti-b-actin (CST; cat. no. 8457T) and rabbit

anti-PCNA (CST; cat. no. 13110T). The secondary antibody used in

this study was anti-rabbit IgG HRP-conjugate (Promega; cat. no.

W4011). These antibodies were diluted in TBS-T containing BSA

(0.5%) for 2 h. The density of immunoblotted protein bands was

quantified using ImageJ software. Same approach was employed to

detect the phosphorylation and nuclear translocation of Dorsal in

the hepatopancreas of V. parahaemolyticus-infected shrimp

subjected to acute hypoxia stress.
2.7 Statistical analysis

Student’s t-test was used to compare differences in the

expression levels of host genes detected by RT-qPCR and copy

numbers of V. parahaemolyticus between the hypoxia and

normoxia groups. The survival rates were analyzed using

GraphPad Prism software to generate the Kaplan-Meier plot (log-

rank c2 test) for statistical analysis. Asterisks indicate statistical

significance (* means p < 0.05; ** means p < 0.01), ns means

no significance.
3 Results

3.1 Acute hypoxia stress damaged the
hepatopancreas of shrimp

After 12h of hypoxia stress, the cellular connections within the

hepatopancreas tissue of shrimp exhibited noticeable sparsity,

accompanied by severe vacuolation and hepatic tubule

destruction in the hepatopancreas cells (Figure 1B). Therefore, the

acute hypoxia stress disrupted the tissue architecture in

the hepatopancreas.
3.2 Acute hypoxia stress significantly
changed the gene expression profiles

The Volcano plot analysis demonstrated significant (P < 0.05 in all

cases) up- and down-regulation of numerous DEGs in the

hepatopancreas under acute hypoxia stress (Figure 2A;

Supplementary Table S4). There was a significant distinction in

expression of differentially regulated genes between these two groups

(Supplementary Figure S1). More precisely, a total of 963 DEGs were

detected in the hepatopancreas tissue, with 410 being down-regulated

and 560 up-regulated, respectively (Figure 2B). The KEGG annotation

results revealed that the genes exhibiting significant alterations in the

hepatopancreas tissue under hypoxia stress primarily contributed to

oxidative phosphorylation (both down- and up-regulated), propanoate

metabolism (both), carbon metabolism (both), protein export (only

down), valine, leucine and isoleucine degradation (only down), cysteine

and methionine metabolism (both), citrate cycle (TCA cycle) (only

down), glyoxylate and dicarboxylate metabolism (only down), biotin

metabolism (only down), fatty acid degradation (only down), fatty acid
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(only up), ribosome (only down), mitophagy-animal (only up), fatty

acid elongation (only down), peroxisome (only down), renal cell

carcinoma (only up), mRNA surveillance pathway (both) and

biosynthesis of amino acids (both) (Figure 2C; Supplementary Figure

S2). Additionally, the GO annotation results revealed these DEGs were

assigned to 33 GO_classify2 under three major categories

(Supplementary Figure S3). The DEGs belonging to biochemical

processes were mainly attributed to cellular process (337), metabolic

process (275), biological regulation (148), response to stimulus (70),

localization (97), signaling (44), developmental process (42),

multicellular organismal process (37), multi-organism process (21)

and reproduction (18). The DEGs belonging to cellular component

were attributed to cellular anatomical entity (411), intracellular (224)

and protein-containing complex (80), and which belonging to the

molecular function were attributed to binding (294) and catalytic

activity (275). All above results indicated that acute hypoxia stress

significantly changed the gene expression profiles in the

hepatopancreas of shrimp.
3.3 Acute hypoxia stress changed the
expression of immune-related genes

Based on the gene annotation results, we performed NCBI

sequence alignment for all DEGs, and identified 13 immune-related

genes in the hepatopancreas, with 7 being down-regulated and 7

being up-regulated, respectively (Supplementary Table S5). The

expression levels of LOC113813710 (Ladderlectin), LOC113813385

(GBP 1), LOC113809173 (Perlucin 1), LOC113823293 (Caspase-1),

LOC113805525 (CLEC4F) , LOC113819956 (MR1) and

LOC113807239 (GBP 2) were significantly (P < 0.05 in all cases)

down-regulated, while LOC113823783 (HIF-1a), LOC113823636
(Cactus), LOC113823947 (TIPE), LOC113823754 (Akirin-2),

LOC113822408 (Ivns1abp), LOC113820234 (TLR3) and

LOC113804912 (Yki) exhibited a significant up-regulation

(Supplementary Table S5). We investigated the dynamic changes in

expression levels of these 13 immune-related genes in the

hepatopancreas under acute hypoxia stress (Figure 3). The results

showed thatGBP 1was significantly down-regulated from 6h, and the

Ladderlectin, Caspase-1, CLEC4F, MR1 and GBP 2 were significantly

down-regulated from 12h. HIF-1a was significantly up-regulated

from 6h, and Cactus, TIPE, Akirin-2, Ivns1abp and TLR3 were

significantly up-regulated from 12h. More importantly, these data

confirmed that Ladderlectin, GBP 1, Caspase-1, CLEC4F, MR1 and

GBP 2 were significantly down-regulated, but HIF-1a, Cactus, TIPE,
Akirin-2, Ivns1abp and TLR3 were significantly up-regulated under

stress at 12h.
3.4 Acute hypoxia stress mediated HIF-1a-
Yki-Cautus axis to decrease immunity

What is the underlying mechanism behind the substantial up-

regulation of Cactus in response to acute hypoxia stress? Previous
frontiersin.or
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studies have demonstrated that the transcription factor Yki in Hippo

signaling pathway promoted the expression level of Cactus (31, 37),

whileHIF-1a can directly induce the expression of Yki (38, 39). Indeed,

our transcriptome and RT-qPCR results revealed a significant up-

regulation of TLR3 and Cactus expression levels in the hepatopancreas

of shrimp subjected to acute hypoxia stress, while expression level of

Dorsal remained unaltered; concurrently, the expression levels of HIF-

1a and Yki (LOC113804912) were found to be significantly up-

regulated (Figure 4A; Supplementary Table S4). Furthermore, our

WB analysis revealed that acute hypoxia stress inhibited the

phosphorylation level of Dorsal in the hepatopancreas and reduced

its nuclear translocation (Figures 4B, C; Supplementary Table S6).

Thus, although expression of TRL3 was increased, then Cactus

inhibited Dorsal entry into the nucleus. More significantly, the

expression of HIF-1a in the host is markedly up-regulated under

acute hypoxia stress, subsequently inducing Yki expression, and this

induction enhances Cactus, and then Cactus ultimately impacted

Dorsal entry into the cell nucleus, thereby influencing host

immunity (Figure 4D).
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3.5 Acute hypoxia stress facilitated the
colonization of opportunistic pathogen in
the hepatopancreas of shrimp

We conducted an injection challenge experiment of V.

parahaemolyticus subsequent to shrimp exposure to acute

hypoxia stress for 12h (Figure 5A). Survival rate of shrimp in

both the normoxia and hypoxia groups reached 100% within 168h.

However, the survival rate of hypoxia-stress shrimp was

significantly lower compared to that of control shrimp, with only

approximately 10% survival observed in the former and up to 60%

in the latter (Figure 5B). A significantly (P < 0.05 in all cases) higher

abundance of V. parahaemolyticus of shrimp in the hypoxia group

at 24h after challenge, with the copies of V. parahaemolyticus in the

normoxia group was approximately 8.8×103 in the hepatopancreas,

but it reached up to 1.3×106 in the hypoxia group (Figure 5C).

Under normal circumstances, bacterial infection can rapidly

activate Hippo through the regulation of TLR, resulting in the

inhibition of Yki and subsequent down-regulation of its
FIGURE 2

(A) Volcano plot analysis results of differentially expressed genes (DEGs) in the hepatopancreas of shrimp under acute hypoxia stress. (B) Numbers of
DEGs in the hepatopancreas under stress. (C) KEGG annotation results of DEGs.
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FIGURE 3

Dynamic changes of immune-related DEGs with down-regulated (A) and up-regulated (B) in the hepatopancreas tissues of shrimp under acute hypoxia
stress. * means p < 0.05; ** means p < 0.01, ns means no significance.
FIGURE 4

(A) The RT-qPCR results showed that a significant up-regulation of TLR3 and Cactus expression levels in the hepatopancreatic under acute hypoxia
stress, while expression level of Dorsal remained unaltered; concurrently, the expression levels of HIF-1a and Yki were found to be significantly up-
regulated. (B, C) The WB results indicated that acute hypoxia stress inhibited the phosphorylation level of Dorsal in the hepatopancreas and reduced
its nuclear translocation. (D) The expression of HIF-1a in the host was markedly up-regulated under acute hypoxia stress, subsequently inducing Yki
expression, and this induction enhanced Cactus, and then Cactus ultimately impacted Dorsal entry into the nucleus. ** means p < 0.01, ns means
no significance.
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downstream target gene Cactus, thereby triggering an immune

response (30) (Figure 6A). However, we found that acute hypoxia

stress appeared to suppress the immune capacity of host. Our

results could explain this phenomenon: the expression level of

TLR3 was significantly up-regulated with challenge post-stress,

but HIF-1a expression was also markedly increased;

consequently, there was a significant up-regulation of Yki and

Cactus expression levels, while there was no significant difference

in the expression of Dorsal (Figure 6B). Importantly, acute hypoxia

stress induced a reduction in Dorsal phosphorylation and inhibited

its nuclear translocation within the hepatopancreas after 12h of V.

parahaemolyticus infection (Figures 6C, D; Supplementary Table

S6). Interestingly, Yki expression was initially not significantly

changed at 6h with challenge post-stress; however, it was

subsequently significantly up-regulated at 12h and 24h

(Figure 6B). Acute hypoxia stress induces a significant up-

regulation of HIF-1a and then which induces YAP (Yki homolog

in mammal) (38, 39), while pathogen infection inhibits the

expression of Yki (30). Our findings suggested that although

pathogen infection temporarily inhibited Yki following acute

hypoxia stress, it cannot overcome the induction effect of HIF-1a
on Yki. Therefore, Yki expression was significantly up-regulated at

12h and 24h with challenge post-stress. Although both the hypoxia

and V. parahaemolyticus infection could induce the up-regulation

of TLR3 expression, but HIF-1a up-regulation exerted a stronger

induction effect on Yki; consequently, significantly increased-Yki

expression promoted the up-regulation of Cactus, thereby

inhibiting Dorsal entry into the nucleus (Figure 6E). Ultimately,

this led to an increased infectivity of V. parahaemolyticus and a

higher mortality in shrimp.
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4 Discussion

The emergence of diseases is a consequence of interactions

between host immunity, bacterial pathogens and environmental

stress (40–42). This study elucidated the intricate interplay among

acute hypoxia stress, L. vannamei and V. parahaemolyticus. Our

study provided a molecular explanation for how acute hypoxia

suppresses the host immunity and enhances susceptibility to

bacterial infections.

Exposure to hypoxia has been demonstrated to suppress the non-

specific immune response of aquatic animals (6), but molecular

mechanisms underlying the immune defense response to hypoxia

remain poorly understood. Our findings demonstrated that acute

hypoxia stress diminished the resistance of L. vannamei by activating

the HIF-1a-Yki-Cactus axis to suppress the role of Dorsal in

antimicrobial response. This elucidation of the molecular

mechanism, combined with previously reported biochemical and

physiological parameters, provided insights into how hypoxia

attenuates shrimp immune response. The expression of HIF-1a in

the majority of decapods significantly increases under hypoxia stress,

aligning with previously reported hypoxia responses observed in

vertebrates (25). The relationship between hypoxia and metabolic

genes targeted by HIF-1a has been investigated in several decapod

crustaceans (6). In L. vannamei, the downstream genes of HIF-1a are

involved in glucose metabolism (43–47). In mammals, HIF-1a and

YAP were found to be co-activators of each other (48, 49). HIF-1a
facilitates YAP activation by enhancing its expression and facilitating

nuclear localization, thereby significantly promoting tumor cell

proliferation, invasion, and differentiation (48, 50). On the other

hand, hypoxia stress promotes the binding of YAP to HIF-1a in the
FIGURE 5

(A) Schematic representation of experimental procedure for an injection challenge experiment of V. parahaemolyticus subsequent to shrimp
exposure to acute hypoxia stress. (B) Survival rate of shrimp in the hypoxia group was significantly lower compared to that in the normoxia group.
(C) The copy numbers of V. parahaemolyticus in the hepatopancreas of shrimp in the hypoxia group were significantly higher than that in the
normoxia group at 24h after challenge. * represents the sampling time point. ** means p < 0.01.
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nucleus, maintaining the stability of HIF-1a protein and participating

in processes such as cartilage differentiation and glycolysis (51, 52).

Therefore, a potential positive feedback regulation betweenHIF-1a and

Ykimay exist in response to hypoxia stress, and this regulation may be

a conserved response to hypoxia. However, the regulatory mechanism

between HIF-1a and Yki in shrimp remains poorly understood and

necessitates further investigation. Our study unveiled the inhibitory

impact of HIF-1a on Dorsal-induced antibacterial immune of hosts
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during acute hypoxia stress, thereby expanding our comprehension of

HIF-1a’s immunological functions in shrimp. A recent study has

reported that ammonia stress can induce increased Cactus expression

through heat shock factor 1, resulting in inhibition of an arthropod

interferon analog Vago-L produced by NF-kB pathway, ultimately

facilitating infection by white spot syndrome virus (WSSV) in M.

japonicus (53). It has also been reported that WSSV promotes Yki

activation by inhibiting the Hippo signaling pathway, thereby
FIGURE 6

(A) Bacterial infection can rapidly activate Hippo through the regulation of toll-like receptors, resulting in inhibition of Yki and subsequent down-regulation of
its downstream target gene Cactus, thereby triggering an immune response. (B) Acute hypoxia stress appeared to suppress immune capacity of host: the
expression level of TLR3 was significantly up-regulated with the challenge post-stress, but HIF-1a expression level was also markedly increased;
consequently, there was a significant up-regulation of Yki and Cactus expression levels, leading to inhibition of Dorsal. (C, D) Acute hypoxia stress induced a
reduction in Dorsal phosphorylation and inhibited its nuclear translocation within the hepatopancreas of shrimp after 12h of V. parahaemolyticus infection. (E)
Acute hypoxia stress induced the HIF-1a-Yki-Cactus axis that promoted the V. parahaemolyticus infection to shrimp. * means p < 0.05; ** means p < 0.01,
ns means no significance.
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inhibiting the Dorsal mediated anti-viral mechanism and promoting

viral infection (54). These studies and our findings suggest that the

HIF-1a-Yki-Cactus axis can influence the host immune response to

pathogens, including bacteria and viruses, by modulating the Toll

pathway. We suspected that Cactus may serve as a pivotal molecule

involved in response to diverse stresses and act as a regulatory switch

modulating host resistance against pathogens by regulating immune

pathways. Further investigations are urgently needed to unravel

intricate regulatory networks governing the immune gene responses

in crustaceans exposed to hypoxia stress.

Additionally, our study unveiled significant alterations in the

gene expressions under acute hypoxia stress, involved in the

oxidative phosphorylation, propanoate metabolism, carbon

metabolism in the hepatopancreas. Similarly, hypoxia stress

upregulates the transcription of genes associated with glycolysis

and the Krebs cycle pathways in L. vannamei, leading to an

accumulation of carbohydrates and lactic acid (43). M. rosenbergii

exhibits enhanced activity of glycolytic-related enzymes, reduced

mRNA expression levels of aerobic respiratory enzymes, and

significantly decreased concentrations of various amino acids

under hypoxia condition (55). Notably, host metabolism plays a

pivotal role in both environmental stress and pathogen infection.

Bacterial pathogens can utilize the host cell metabolism via diverse

mechanisms to promote their infection. Salmonella induces the

metabolic reprogramming of macrophages through the T3SS

effector SopE2 that enhancing cellular glycolysis, and the

accumulated 3-phosphoglyceric acid serves as a carbon source to

facilitate Salmonella replication, while the accumulated pyruvate

and lactate acts as signaling molecules to activate the expression of

Salmonella virulence factors (56). Edwardsiella piscicida utilizes the

polyamine transport system of fish to metabolize host cytoplasmic
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arginine into ornithine, effectively impeding the efflux of host

potassium ions and thereby inhibiting NLRP3 inflammasome

activation, ultimately facilitating systemic infection by E. piscicida

in host (57). Therefore, the exploitation of host metabolism by

bacteria plays a pivotal role in their successful establishment of

infection. We suspected that hypoxia stress may create a more

conducive environment for pathogenic bacterial infections by

modulating host metabolism, including glycolysis, fatty acid

metabolism and amino acid metabolism, thereby facilitating the

onset of bacterial diseases.

Our study also found that acute hypoxia stress rendered L.

vannamei more susceptible to infection by V. parahaemolyticus,

thereby leading to an increase in host morbidity and mortality.

Vibrio genus exhibits a wide distribution in estuarine, coastal, and

pelagic waters, sediments, as well as aquatic animals (58).

Numerous species within this genus have been identified as

potential pathogens (59, 60), such as the V. parahemolyticus (61),

V. harveyi (62), V. alginolyticus (63), and V. vulnificus (64).

Vibriosis has long been a persistent challenge in aquaculture,

particularly in mariculture (65, 66). The pathogenic Vibrio can

infect a wide range of host species, and its proliferation and

dissemination are highly influenced by aquaculture environment

(58, 67, 68). During the culturing process, the continuous influx of

nutrients such as nitrogen and phosphorus promotes the

proliferation of microorganisms like bacteria and algae (59, 61).

Excessive biological oxygen demand or algal blooms can lead to

oxygen depletion in aquaculture water (2). In such circumstances, if

Vibrio pathogens are present, it can trigger epidemic and explosive

death of economic animals such as farmed fish, shellfish and

crustaceans (61). Given extensive distribution of Vibrio

pathogens, the expansion of anoxic areas will inevitably augment
FIGURE 7

Acute hypoxia stress induced the tissue damage in digestive system of shrimp, compromising its immune response and rendering it susceptible to
bacterial infection, ultimately resulting in the bacterial disease outbreaks.
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the morbidity and mortality of bacteriosis among aquatic animals in

aquatic ecosystems (69). Therefore, it is crucial to investigate the

impact of vibriosis under hypoxia stress on the aquaculture and

aquatic ecosystem.

In conclusion, this study demonstrated that acute hypoxia stress

disrupted the tissue architecture and significantly changed genes

expression profiles in the hepatopancreas of shrimp. More

importantly, acute hypoxia stress suppressed the antibacterial

immunity of shrimp by inhibiting the Dosal-induced signaling

pathway through the HIF-1a-Yki-Cactus axis (Figure 7). This

research provided novel insights into interactions among the

hypoxia stress, host immunity and pathogen and established a

theoretical foundation for strategies aimed at preventing and

managing outbreaks of bacterial diseases in hypoxia environments.
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Gómez Jiménez S, Yepiz Plascencia G. Alternative splicing generates two lactate
dehydrogenase subunits differentially expressed during hypoxia via HIF-1 in the shrimp
Litopenaeus vannamei. Biochimie. (2012) 94:1250–60. doi: 10.1016/j.biochi.2012.02.015

46. Godoy Lugo JA, Miranda Cruz MM, Rosas Rodrıǵuez JA, Adan Bante NP, Icedo
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