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Due to their widespread geographic distribution and frequent outbreaks,

mosquito-borne flaviviruses, such as DENV (DENV), Zika virus (ZIKV), Japanese

encephalitis virus (JEV), yellow fever virus (YFV), and West Nile virus (WNV), are

considered significant global public health threats and contribute to dramatic

socioeconomic imbalances worldwide. The global prevalence of these viruses is

largely driven by extensive international travels and ecological disruptions that

create favorable conditions for the breeding of Aedes and Culex species, the

mosquito vectors responsible for the spread of these pathogens. Currently,

vaccines are available for only DENV, YFV, and JEV, but these face several

challenges, including safety concerns, lengthy production processes, and

logistical difficulties in distribution, especially in resource-limited regions,

highlighting the urgent need for innovative vaccine approaches. Nucleic acid-

based platforms, including DNA andmRNA vaccines, have emerged as promising

alternatives due to their ability to elicit strong immune responses, facilitate rapid

development, and support scalable manufacturing. This review provides a

comprehensive update on the progress of DNA and mRNA vaccine

development against mosquito-borne flaviviruses, detailing early efforts and

current strategies that have produced candidates with remarkable protective

efficacy and strong immunogenicity in preclinical models. Furthermore, we

explore future directions for advancing nucleic acid vaccine candidates, which

hold transformative potential for enhancing global public health.
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1 Introduction

Mosquito-borne flaviviruses are a collection of emerging

infectious pathogens that constitute huge threats to human health

globally (1). These viruses have, in recent times, caused an

unprecedented increase in disease outbreaks and a dramatic

expansion in their geographic distribution owing to urbanization,

climate changes, international trade, and other factors that favor

their continuous emergence (2, 3). Annually, not less than 400

million human infections, with several million mortalities, are

recorded globally (4). Apart from their direct impact on human

health, outbreaks of mosquito-borne flaviviral infections are always

associated with disproportionate socio-economic imbalances,

especially in developing countries, which are already confronted

with other public health-related challenges (2). The most important

mosquito-borne flaviviruses include dengue virus (DENV), West

Nile virus (WNV), yellow fever virus (YFV), Japanese encephalitis

virus (JEV), and Zika virus (ZIKV), which are all single-stranded,

positive-sense enveloped RNA viruses that belong to the genus

Orthoflavivirus in the Flaviviridae family. Their genome is

approximately 10-11 kb in length and is made up of a single open

reading frame that is translated into a polyprotein processed by

cellular and viral proteases into 10 mature proteins (5). Three of

these proteins are structural, namely, capsid (C), pre-membrane

(PrM) or membrane and envelope (E), and form the core of the viral

particles, while the other seven nonstructural proteins including

NS1, NS2A, NS2B, NS3, NS4A, NS4B and NS5 are crucial to virus

replication following infection in a susceptible host (6).

Mosquito-borne flaviviruses are transmitted by various species

of mosquitoes. Aedes aegypti and Ae. albopictus mosquitoes, which

are widely distributed across the tropical and subtropical areas, are

responsible for the transmission of YFV, DENV, and ZIKV to

humans. On the other hand, the dispersal of WNV and JEV is

facilitated by Culex species of mosquitoes (7). Generally,

Flaviviruses are maintained in an enzootic cycle between

mosquitoes and mammals/avians, which act as amplifying hosts

(8). Flavivirus infection in mosquitoes occurs when the mosquito

ingests a blood meal containing the virus, which replicates in the

insect’s midgut epithelial cells and, subsequently, the salivary gland

(9), leading to the secretion of the virus in the mosquito’s saliva.

Infection of a new host then occurs following mosquito bite which

introduces the virus into the host, causing viraemia. While pigs and

water birds function as amplifying hosts for specific flaviviruses,

humans typically assume the role of dead-end hosts. This is

attributed to their general inability to generate adequate viremia

for the infection of other hosts, with the exception of instances

involving immunocompromised individuals (10). Nevertheless,

humans may serve as amplifying hosts for DENV, ZIK and YFV.

Transmission may also take place through blood transfusion, sexual

contact, and transplacental transmission. This transmission mode

can result in abnormal gestational development in the fetus,

particularly in the case of ZIKV, (11) and to a certain extent WNV.

Despite the huge public health burden of mosquito-borne

flaviviruses globally, to date, no specific drugs are available to

treat most of the illnesses caused by those viruses (11, 12).

Consequently, vaccines stand to be the most effective
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countermeasures against the Flaviviruses. At present, no vaccine

has been approved for the control of ZIKV and WNV (13).

Noteworthy, a few vaccines have been approved to control Yellow

fever, Japanese encephalitis and Dengue fever (2, 13). However,

these vaccines are mainly conventional live attenuated vaccines or

inactivated whole virus vaccines with serious shortcomings that

significantly limit their clinical usefulness. For instance, the

Dengvaxia (CYD-TDV), a tetravalent chimeric live attenuated

vaccine produced by engineering yellow fever virus vaccine strain

to vector the PrM and E structural proteins (PrM/E) of DENV from

serotypes 1−4 (14, 15), has been shown to significantly increase the

risk of cytoplasmic leakage syndrome, especially among those with

no prior exposure to DENV (3, 16). As a result, the World Health

Organization has discouraged the use of this vaccine in areas where

Dengue fever endemicity is low (17). Similarly, 17DD, 17D-213 and

17D204 substrains are live attenuated Yellow fever vaccines

developed through extensive cell culture attenuation and large-

scale production in embryonated eggs (18). Although they have

track records of safety and effectiveness, there are concerns that they

could result in some rare side effects, such as neurologic or

viscerotropic syndromes or anaphylaxis, particularly in infants,

pregnant women, and immunocompromised individuals (19).

More so, the development of these conventional vaccines is

considerably slow and limited by the requirement of BSL-3 to

produce large quantities of the vaccine virus. Thus, in order to

address the expanding threats of these and several other newly

emerging mosquito-borne flaviviruses, there is an urgent need for

novel vaccines with remarkable effectiveness and improved safety.

With the increasing pace of genomic sequencing, reverse

vaccinology approaches have evolved to rapidly identify potential

protective antigens, thereby accelerating vaccine development against

any pathogen at a much-reduced cost compared to the conventional

approach (20). Indeed COVID-19 pandemic has shown us that

emerging technologies could be used to fast track vaccine

development against new public health threats in our modern

society (21, 22). Some of the next-generation technologies applied

to develop vaccines against mosquito-borne viruses include virus

vectors, virus-like particles, engineered peptide subunits, and nucleic

acid-based platforms (23). Among these platforms, nucleic acid

vaccines (DNA and mRNA) stand out as the most advanced

fighters against mosquito-borne flaviviruses, with several of them

already advancing to various phases of clinical trials.

Although some excellent reviews on nucleic acid-based vaccines

targeting specific mosquito-borne flaviviruses, DENV and ZIKV,

have recently been provided (24), comprehensive overviews

covering all five major mosquito-borne flaviviruses, including

JEV, YFV, and WNV, are lacking scanty in the existing literature.

Furthermore, available literature on modern vaccine platforms for

these viruses (12, 13) often does not extensively emphasize the

progress, challenges, and strategies for improving the future

prospects of DNA and mRNA-based vaccines against mosquito-

borne flaviviruses. Scientific challenges such as enhancing vaccine

immunogenicity, ensuring broad coverage against different strains,

and dealing with the complex molecular biology of flavivirus

replication have further slowed progress (25, 26). Thus, there is a

need for a dedicated review that focuses on the development of
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nucleic acid-based vaccines against all these significant pathogens,

providing a detailed exploration of the past achievements, current

advancements, and future directions. Our review aims to fill this gap

by providing a comprehensive update on the progress and

challenges associated with nucleic acid vaccine development

against these rapidly emerging viruses. Additionally, we will

discuss future directions for advancing these vaccines to better

address global public health challenges.
2 Nucleic acid vaccine platform

Nucleic acid vaccines utilize the genetic material of pathogens to

selectively elicit a strong immune response against the respective

pathogen. These vaccines are engineered with complete instructions

for producing protein antigens specific to the pathogen. Upon

administration, the body’s protein-synthesizing machinery

manufactures the encoded antigen, initiating an immune response.

Nucleic acid vaccines may be based on either DNA or mRNA (27).

The initial demonstration that direct in vivo gene delivery could

trigger an immune response was by Tang et al. (28), showing an

antibody response after delivering the human growth gene into mice

skin using a biolistic device. Around the same time, plasmid vaccines

encoding Influenza A nucleoproteins were found to elicit protective

immune responses in mice, highlighting the potential of DNA

vaccines (29). DNA vaccines, capable of inducing cytotoxic T cell
Frontiers in Immunology 03
responses, became a promising platform due to their safety, stability,

and ease of manufacturing. They were developed for various

infectious diseases (30, 31) and cancer (32). Plasmid DNA vaccines

include key elements for efficient antigen expression, such as viral

promoters (commonly the CMV promoter), the Kozak sequence for

translation, and codon optimization for host-specific protein

expression (33) (Figure 1A). Additionally, polyadenylation signals,

such as the SV40 signal, enhance transgene expression. DNA vaccines

can be administered through various routes like intramuscular or

mucosal, where the plasmid DNA is internalized by cells and triggers

immune responses via MHC pathways (34). However, despite their

relative stability and ease of production, DNA vaccines generally

exhibit lower immunogenicity compared to mRNA vaccines, which

may necessitate multiple booster doses or the use of adjuvants to

improve efficacy. The reduced immunogenicity of DNA vaccines is

primarily due to their reliance on nuclear entry for transcription, an

inherently inefficient process. In contrast, mRNA functions directly

in the cytoplasm, enabling faster and more robust antigen expression.

Safety concerns with DNA vaccines, such as the potential for genomic

integration leading to mutations and the risk of inducing anti-DNA

autoimmunity, further limit their widespread use (33). Consequently,

only a few DNA vaccines have been approved for human use. These

issues and strategies for improvement are discussed in detail in recent

reviews (35–37).

For mRNA vaccines, research dates back decades, with Wolff et al.

(38) for the first time demonstrating in vivo protein expression in
FIGURE 1

Structural elements in nucleic acid-based vaccines (A) DNA vaccine and (B) various types of mRNA vaccines encapsulated in lipid nanoparticle (LNP).
Figures were created using BioRender (https://app.biorender.com).
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mice. This was followed by another fantastic study, which showed

that diabetes insipidus could be reversed by intrahypothalamic

injection of vasopressin mRNA in rats (39) (Figure 1B). However,

mRNA technology faced challenges due to its instability and

degradation before reaching target cells. Recent advancements in

nanobiotechnology, particularly lipid nanoparticles (LNPs), have

revolutionized mRNA vaccine delivery, allowing for robust immune

responses and making mRNA vaccines critical in combating the

COVID-19 pandemic (40). There are two major types of mRNA

vaccines: conventional mRNA and self-replicating mRNA. Self-

replicating vaccines include viral replication machinery, enabling

larger antigen expression at lower doses (41). In general, the

synthesis of mRNA vaccines involves the transcription of plasmid

DNA templates, followed by purification to remove impurities that

could cause immune reactions (42). Delivery remains a significant

challenge due to mRNA’s susceptibility to degradation (43). LNPs have

emerged as the leading delivery system (44), but innovations are

ongoing to enhance endosomal escape and cellular uptake. Once

successfully delivered into the cytoplasm of antigen-presenting cells,
Frontiers in Immunology 04
the mRNA construct is acted upon by the host’s translational

machinery to produce the encoded protein. This process is swiftly

followed by intracellular antigen processing, which culminates in the

maturation of antigen-presenting cells. The matured antigen-

presenting cells are characterized by the expression of co-stimulatory

molecules, a response triggered by IFN-1 induction (45). Subsequently,

these mature antigen-presenting cells migrate to the nearby lymph

nodes. Here, they engage in close interactions with CD4+ and CD8+

cells, initiating the activation of humoral and cell-mediated immune

responses through relevant major histocompatibility complex

pathways. This intricate process has been extensively reviewed

elsewhere (46, 47) (Figure 2).

It is however noteworthy that, although they are more

immunogenic than DNA vaccines, mRNA vaccines are more

sensitive to degradation, posing challenges in distribution, especially

in regions with limited cold-chain infrastructure. While recent

advancements in LNPs and nanotechnology have largely addressed

these issues, their higher production complexity and cost may limit

accessibility in low- and middle-income countries where mosquito-
FIGURE 2

Mechanism of Action of mRNA Vaccines. This diagram illustrates the intracellular processes involved in mRNA vaccine function, starting with the
transfection of mRNA into the cell and its endocytosis. The mRNA is then translated into protein by the ribosome. The synthesized proteins are
processed and presented via MHC class I and II pathways, leading to the activation of the adaptive immune response. This includes the stimulation
of naive CD8+ and CD4+ T lymphocytes, B lymphocytes, and the production of plasma cells, culminating in a targeted immune attack against
infected cells. Figures were created using BioRender (https://app.biorender.com).
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borne flaviviruses are endemic (48). The main safety concerns with

mRNA vaccines include potential inflammatory reactions due to

immune recognition of the mRNA itself and the risk of unintended

immune responses to impurities in the vaccine. However, mRNA does

not integrate into the host genome, reducing long-term risks (49).
3 Nucleic acid-based vaccines
for flaviviruses

3.1 Flaviviral proteins used as
vaccine antigens

The Flaviviral genome is organized into a single open reading

frame (ORF) flanked by 5’ and 3’ untranslated regions (UTRs). The

ORF encodes a single polyprotein, which is cleaved by viral and host
Frontiers in Immunology 05
proteases into three structural proteins—capsid (C), premembrane/

membrane (prM/M), and envelope (E)—and seven nonstructural

proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B, NS5). The structural

proteins are essential for viral particle assembly and entry into host

cells, while the nonstructural proteins are involved in viral replication,

immune evasion, and replication complex assembly (12) (Figure 3A).

In the development of novel vaccines against flaviviruses, the

most commonly targeted proteins are the E, prM, and NS1 proteins

(50). Although these proteins are relatively conserved across

flaviviruses, their amino acid composition can vary among

different viruses and even among serotypes of a single virus, such

as DENV (Figure 3B). The E protein is crucial for viral entry into

host cells and serves as the primary target for neutralizing

antibodies. Structurally, the E glycoprotein consists of three

domains (DI, DII, DIII), each with distinct functions (55).

Domain II contains a fusion loop that facilitates membrane
FIGURE 3

Genome organization of Flavivirus and structure of the key viral proteins used as vaccine antigens (A) Schematic representation of the Flavivirus
genome (10-11Kb). The genome encodes a single polyprotein which is post-transcriptionally processed into three structural and seven non-
structural proteins. (B) Structural models and sequence alignments were generated for prM, E-III, and NS1 proteins, which are used as targets for
vaccine development against DENV and other mosquito-borne flaviviruses. The prM and E-III protein structures were modeled using PDB entry 8fe3
(51), while the NS1 protein structure was based on PDB entry 6weq (52). The sequence alignment highlights conserved residues across different
DENV serotypes, with color coding used to indicate the level of conservation (53, 54). Figures were created using BioRender
(https://app.biorender.com).
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fusion, allowing viral RNA to enter the host cell cytoplasm. Domain

III (EIII), in particular, plays a key role in receptor binding and is

frequently targeted in vaccine designs to elicit neutralizing

antibodies. Targeting EIII reduces the risk of antibody-dependent

enhancement (ADE), a concern with dengue vaccines (56).

The prM protein acts as a chaperone during viral assembly,

protecting the E protein from premature fusion before the virus

matures. It ensures proper folding of the E protein, and upon

maturation, prM is cleaved into the mature membrane (M) protein,

making the virion infectious (57). Although prM is generally less

immunogenic than the E protein, it still contributes to immune

responses by promoting overall viral stability and assisting in the

formation of neutralizing antibodies against the E protein.

However, Antibodies generated against prM have consistently

been shown to trigger ADE (58). This presents a significant

challenge in the development of vaccines for dengue and other

flavivirus infections, requiring careful evaluation of prM’s inclusion

in vaccine formulations. While prM may play a supportive role in

immune responses, its critical contribution to ADE makes it a less

favorable candidate as a vaccine antigen. Despite its common use in

flavivirus vaccine development efforts, we believe prM’s

involvement should be reconsidered to minimize ADE-related

risks. Ongoing research seeks to clarify prM’s interactions with

the immune system to refine its application in vaccine design.

NS1 is a multifunctional nonstructural protein involved in viral

replication and immune evasion. It exists in intracellular, membrane-

associated, and secreted forms, influencing viral replication and

modulating the host immune response, particularly by inhibiting

complement activation (5). While NS1-targeted antibodies do not

neutralize the virus directly, they can aid in eliminating infected cells

and limiting viral spread. Importantly, NS1-based vaccines are less

likely to induce ADE, making them an attractive alternative for

dengue vaccines (59). However, NS1’s role in dengue pathogenesis

must not be underestimated. First, anti NS-1 antibodies may

recognize and bind to epitopes on human endothelial cells,

contributing to disease pathogenesis (60). Secondly, NS-1 protein is

overexpressed in severe dengue infections, functioning as a pathogen-

associated molecular pattern that activates Toll-like receptor-4 on

peripheral blood mononuclear cells. This activation leads to the

production of pro-inflammatory cytokines and contributes to

vascular leakage (61). Furthermore, anti-NS1 antibody titers are

significantly higher in patients with severe dengue compared to

those with mild forms of the disease. The anti-NS1 antibody

repertoire also differs between severe and non-severe dengue cases,

suggesting a link between specific NS1 epitopes and disease severity

(62). Given these complexities, while whole NS1 is frequently used in

newer vaccine designs, future strategies should prioritize targeting

NS1 regions that elicit protective rather than pathogenic antibody

responses to enhance vaccine safety and efficacy.
3.2 DNA vaccines

3.2.1 DENV
The first DNA immunization against DENV was by Kochel

et al. (63), showing that plasmids encoding truncated E and PrM
Frontiers in Immunology 06
proteins induced neutralizing antibodies in mice. Interestingly,

adding CpG molecules was shown to boost this immunologic

response (64). In non-human primates, full-length E and PrM

plasmids led to higher antibody titers when administered

intradermally (65). Studies also showed stronger immune

responses with full-length E and PrM plasmids (66, 67). Moderate

protective efficacy was also observed against Denv type-3 following

immunization of Aotus monkeys with a plasmid DNA expressing

PrM and E protein (68) even though up to 80% survival rate was

observed in another study (69). Intriguingly, enhanced

immunogenicity and protective efficacy were noted when a

plasmid DNA expressing DENV-2 PrM/E was administered in

mice via electroporation (70). The same observation was made

when a bivalent vaccine consisting of pVAX1-D1ME and pVAX1-

D2ME was used to immunize BalbC mice (71).

Simmons et al. (72) explored DENV DNA vaccine

immunogenicity through a prime-boost strategy, using a DNA

vaccine followed by protein boosters or a combination of both,

showing slightly better neutralizing antibodies. Further studies (73–

75) confirmed enhanced protection using DNA priming and

protein/virus-vector boosting (76) also found increased antibody

titers with combined DNA and protein vaccines. Adding lysosome-

associated membrane protein sequences or co-administering DNA

vaccines with GM-CSF improved immune responses (77, 78).

Enhanced efficacy was also noted with plasmids expressing NS1

and tPA (74), though tPA didn’t always boost immunity (79). Co-

administration of E and NS1 plasmids showed strong neutralizing

immunity (80).

A tetravalent DNA vaccine based on domain III of the E protein

or conserved epitopes from all four DENV serotypes induced long-

term neutralizing immunity (81, 82) and provided strong protection

against DENV type-2 (83, 84). Immunization with a mix of four

plasmids expressing PrM/E genes from each serotype led to robust

antibody responses post-challenge (85). Electroporation and prime-

boost strategies further enhanced tetravalent immunity (86). A

PrM/E tetravalent vaccine neutralized all serotypes but offered

partial protection upon challenge (87). Synthetic consensus

domain III of the E protein also induced strong immunity (88,

89). Combining DNA vaccines with inactivated or protein-based

vaccines boosted immunogenicity (90), and priming with DNA

followed by a live attenuated DENV vaccine resulted in anamnestic

immune responses (Monika 91).

A DENV DNA vaccine combining PrM/E and NS-1 induced

strong, long-lasting protection in mice (92), though its suitability in

addressing poor immunogenicity remains uncertain. Co-expressing

E and NS-1 in a bicistronic vector produced anti-E antibodies but

failed to elicit NS-1 antibodies (93). Immunogenicity was lower in a

PrM/E DNA vaccine compared to an inactivated DENV-4 vaccine,

though 80% of mice were protected (94). Novel adjuvants have

shown promise, with a lipid-based adjuvant (Vaxfectin)

significantly boosting immune responses in preclinical trials (95).

Higher protection was also noted when using NS1-loaded PLGA/

PEG microspheres in mice (96). Co-expressing PrM/E, NS-1, and

GM-CSF improved neutralizing antibodies and protection against

DENV-2 (97), though caution is advised with GM-CSF due to

immune suppression risks (98). A chimeric DNA vaccine
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substituting JEV PrM/E with DENV EDIII also generated high

neutralizing antibodies and reduced infection enhancement (99).

Multi-epitope DNA vaccine that encodes conserved

immunogenic HLA-restricted cytotoxic T cells epitopes derived

from DENV serotype 1 was found to induce strong immune

response, suggesting the possibility of using this approach in

developing universal DENV vaccine (100). Similarly, Hou et al.

(101) reported that that mosaic vaccines comprising of DENV

serotype 1 and 2 variant epitopes could stimulate strong and broad

immune responses against all four serotypes. Indeed, the strategy of

fusing the consensus EDIII for each serotype with a single NSI

derived one of the serotypes was proven to be efficacious in eliciting

significant protective immunity in preclinical models (56). Other

approaches involved the use Plasmids encoding the scFv aDEC205,
or an isotype control (scFv ISO), fused to the DENV2 envelope

protein domain III (EDIII) to induce neutralizing immune response

(102). Furthermore, an innovative approach involving the use of

adeno associated vectors to enhance the delivery of DENV DNA

vaccine has recently been described (103).

3.2.2 Other mosquito-borne flaviviruses
3.2.2.1 Zika virus

Following the widespread ZIKV outbreaks from 2015 to 2016,

Larocca et al. (104) and Dowd et al. (105) reported the development

of a recombinant plasmid DNA expressing Zika pre-membrane and

envelope proteins. A single administration of this vaccine provided

full protection in susceptible mice when challenged with a strain of

ZIKV linked to the outbreak in northeast Brazil. Same observation

was made in non-human primates (106). Noteworthy, the observed

protective efficacy predominantly relied on neutralizing antibody

titers, since passive protection was conferred through the adoptive

transfer of purified IgG from vaccinated mice and that depletion of

CD4 and CD8 T lymphocytes in vaccinated mice did not diminish

this protective efficacy. In another study, immunization of

IFNAR-/- mice with a novel synthetic ZIKV DNA vaccine

expressing PrM/E via electroporation elicited antigen-specific

cellular and humoral immunity, along with neutralizing activity.

This led to 100% protection of IFNAR-/- mice against infection-

induced brain pathology following in vivo viral challenge.

Moreover, passive transfer of non-human primate anti-ZIKV

immune serum protected IFNAR-/- mice against subsequent viral

challenge, further emphasizing the significance of immune

responses targeting PrM/E in ZIKV infection (107). In addition,

Yi et al. (108) showed that a DNA vaccine encoding the complete

ZIKV PrM/E provides robust protection against ZIKV infection in

humanized mice. Post-vaccination, the humanized DRAG mice

demonstrated seroconversion, producing antibodies targeting

ZIKV, as indicated by ELISA and neutralization assays. Indeed

subsequent ZIKV challenge revealed markedly reduced viral loads

in both human cells and serum of vaccinated animals compared to

unvaccinated controls, highlighting the vaccine’s potent antiviral

efficacy (108).

Maternal administration of a DNA vaccine candidate has been

shown to confer specific protection against post-natal ZIKV

infection in immunocompetent BALB/c mice (109). DNA

immunization strategy may also offer the potential to deliver
Frontiers in Immunology 07
highly potent monoclonal antibodies against Zika virus for

infection control in non-human primates (110). It has also been

shown to reverse ZIKV-induced infertility (111) and improve

negative fetal outcomes among ZIKV exposed pregnant macaques

(112). Additionally, a heterologous prime-boost vaccination

approach, comprising priming with a recombinant DNA vaccine

followed by boosting with non-replicating vaccinia virus-based

vaccines, shows promise in combatting ZIKV infection (113). In

another strategy, IL-36 gamma has been shown to demonstrate

excellent adjuvant properties, enhancing the protective efficacy of

Zika DNA vaccine following lethal viral challenge in mouse model

(114). Surprisingly, the DNA vaccine encoding the Zika EDIII

domain could not provide protection against lethal viral challenge

(115); despite eliciting a anti E protein antibody mediated response

in the vaccinated hosts (116). This contrasts with what is known for

other flaviviruses. While this result may signify the unsuitability of

EDIII as a vaccine candidate against ZIKV, it is possible that the

immunogenic potential of this protein may increase when used in

combination with NS-1.

DNA vaccine encoding NS-1 alone was shown to elicit

protective immune response in the form of reduced viremia and

viral burden in tissues upon ZIKV challenge (117). Indeed, when

fused to Herpes Simplex Virus (HSV) glycoprotein D (gD) protein,

enhanced immunogenicity and protective efficacy were observed,

further demonstrating the relevance of NS-1 protein as a Zik

vaccine antigen (118). It is however crucial to highlight that prior

exposure to other flaviviruses, whether through vaccination or

infection, could influence the effectiveness of DNA immunization

against ZIKV. For example, individuals who received the ZIK DNA

vaccine (VRC5283), a plasmid encoding ZIK PrM and E, without

prior exposure to flaviviruses or vaccination demonstrated limited

binding ability towards various viruses in their antibody response.

Conversely, those with previous flavivirus exposure displayed

varying binding capability of vaccine-induced antibodies, albeit

without neutralization of distantly related flaviviruses being

observed (119).

3.2.2.2 JEV

Lin et al. (120) demonstrated that plasmid DNA expressing JEV

NS1 induces protective immunity in mice as effectively as constructs

expressing PrM/E, for the first time suggesting genetic

immunization as a strategy for JE infection. Although JEV E

protein is key to protective immunity (121, 122), single

vaccination with plasmid DNA encoding PrM/E induces low

initial antibody titers, which significantly increase after viral

challenge, highlighting the role of anamnestic response (123).

Additionally, immunity to JEV PrM/E is long-lasting due to

virus-specific memory B cells (124).

To improve the immunogenicity of a DNA vaccine expressing

JEV NS-1, Chen et al. (125) co-administered it with another

plasmid encoding heat shock protein 70. This approach

significantly enhanced T cell proliferation and cytotoxicity,

although it did not boost humoral responses. Similarly, Ashok

and Rangarajan (126) showed protection against JEV challenge

despite undetectable antibody titers, emphasizing the role of cell-

mediated immunity (127). Other strategies include using colloidal
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gold particles with plasmid DNA to elicit a strong immune response

(128), gene-gun delivery of chitosan-based vaccines (129), and

microcapsule-encapsulated DNA vaccines, which improved

Th1-Th2 responses. These findings reflect the need for integrating

multiple strategies, rather than relying on individual approaches, to

dramatically improve the immunogenicity of JEV DNA vaccines by

effectively addressing both cellular and humoral immune responses.

A combined approach of plasmid DNA and protein-based JEV

vaccines in mice led to a synergistic boost in neutralizing immune

responses (130). Gene gun-assisted immunization also enhanced

JEV DNA vaccine efficacy (131, 132), and the use of the Vaxfectin

adjuvant further improved immunogenicity in both mice and

human trials, where it was well tolerated (130, 133). A prime-

boost strategy using plasmid DNA priming followed by protein-

based boosting proved effective in inducing protective immunity

(134, 135). Co-immunization with IL-15 also improved antibody-

mediated immunity (89). Multiple strategies, such as co-

administering PrM/E and GM-CSF, significantly enhanced

protection against lethal JEV challenge (136, 137). However,

certain cytokines could negatively impact JEV-specific responses,

requiring careful evaluation of their use as adjuvants (138).

Imoto et al. (139) reported the induction of robust neutralizing

antibody mediated immunity that protected against fetal

mummification in pregnant sows following needle free

immunization with a mixture of JEV plasmid DNA and

inactivated vaccines. In another studies, immunization with the

JEV DNA vaccine construct containing murine ICAM-1 gene

(pICAM-1) resulted in a notable increase in the percentage of

CD4(+) and T cells, high level of JEV-specific cytotoxic T

lymphocyte response, and high production of T helper 1 (Th1)-

type cytokines in splenic T cells (140). Thus, the strategies for

improving the immunogenicity of JEV DNA vaccines are
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numerous, involving the rational manipulation of the vaccine

antigen, use of novel adjuvants and optimal use of vaccine

delivery systems (Figure 4).

3.2.2.3 YFV

Although DNA vaccine has been developed against a variety of

pathogens more than 3 decades ago, it is only recently that platform

was utilized for YFV control. This might not be unconnected with

the long-standing success of the existing 17D YFV vaccines. The

iDNA vaccine technology represents a newly emerged vaccine

strategy that combines the safety of DNA vaccine and the efficacy

of live attenuated vaccines. In this approach, the entire genomic

RNA of the virus is placed under the control of a eukaryotic

promoter, allowing intact viral RNA to be transcribed in vivo

following vaccination. This enables limited rounds of virus

replication, as demonstrated by (141) in their study on a novel

vaccine against Venezuelan equine encephalitis virus. Using this

technology, Tretyakova et al. (142) showed that immunization of

BalbC mice with a plasmid DNA containing the full-length 17D

YFV cDNA under the transcriptional control of cytomegalovirus

promoter induced robust seroconversion and virus-specific

neutralizing antibodies. It was also shown to be safe in AG129

mice, genetically engineered mice that lack IFN a/b/g receptors.
In another study, two DNA vaccine candidates encoding the full-

length YFV envelope protein or the full-length YFV envelope protein

fused to the lysosomal-associated membrane protein signal, LAMP-1

were reported (143). Findings revealed that vaccine constructs elicited

robust T cell responses and neutralizing antibodies in C57Bl/6 and

BALB/c mice. In particular, the construct with the LAMP-1 signals

for enhanced MHC class II presentation generated higher interferon-

gamma (IFN-g) spot-forming cells and stronger epitope-specific

responses. Furthermore, the vaccine candidates provided 100%
FIGURE 4

Strategies to Enhance the Immunogenicity of Nucleic Acid-Based Vaccines. Approaches Involving (1) Antigen Design, (2) Vaccine Administration, and
(3) Vaccine Delivery. Figures were created using BioRender (https://app.biorender.com).
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protection against intracerebral YFV challenge in mouse models

(143). This indicates that the candidates are promising and may be

considered for further development in clinical studies.

3.2.2.4 WNV

Several DNA vaccines have been explored for preventing WNV

infection. In 2001, a DNA vaccine expressing WNV PrM proteins

and E glycoprotein was developed, which provided 100% protection

against WNV in mice and elicited strong neutralizing antibody

responses in horses (144). A similar vaccine encoding the E

glycoprotein ectodomain protected mice from WNV with a single

dose, and subsequent injections of recombinant E domain DIII

further boosted immunity (145). A heterologous prime-boost

strategy combining DNA and inactivated vaccines led to higher

neutralizing antibody levels (146). Another study using DNA

priming followed by a protein boost with WNV E glycoprotein

significantly improved neutralizing antibody titers and protected

mice from lethal WNV challenge, although DNA alone failed to

generate a measurable immune response (147).

A limited number of DNA vaccines targeting proteins other

than the WNV E glycoprotein have been developed. One such

vaccine focused on the C protein of the NY99 WNV strain,

demonstrating strong antigen-specific humoral, Th1, and

cytotoxic T-cell responses in mice (148). Hall et al. developed a

DNA vaccine encoding full-length cDNA of Kunjin virus, a closely

related virus toWNV, with mutation in the NS1 protein (Pro-250 to

Leu). This vaccine, containing an attenuated Kunjin virus, protected

mice from WNV NY99 and Kunjin viral challenges (149). Another

group created a replication-defective Kunjin-based DNA vaccine

that generated single-cycle viral replication, eliciting strong immune

responses and virus-neutralizing antibodies in horses (150). To

improve vaccine yield, capsid protein expression was enhanced by

using different forms of the C protein and a stronger

promoter (151).

Two DNA vaccines for WNV have undergone clinical trials.

The first, VRC 302, was developed based on a licensed WNV DNA

vaccine for horses and targeted the PrM and E glycoproteins of the

NY99 strain. In a phase I trial (NCT00106769), it was shown to be

safe, immunogenic, and capable of producing neutralizing

antibodies, similar to those protective in horses (152). The second

vaccine, VRC 303, an improved version of VRC 302, used a

modified promoter (CMV/R) to enhance protein expression. In a

phase I trial (NCT00300417), it induced strong neutralizing

antibody and T-cell responses in both younger and older adults,

with better T-cell responses than VRC 302 (153).

Several factors may have contributed to the lack of approved

WNV vaccines despite extensive clinical trials. The unpredictable

nature of outbreaks makes it challenging to design efficacy studies,

as selecting appropriate geographic areas and obtaining ethical

approval before outbreaks occur is logistically complex.

Additionally, the disease primarily affects a subset of the

population, such as individuals aged 50 or older or those with

certain underlying conditions, leading to low case counts and

prolonged trial enrollment (154). The high costs of vaccination

programs, as indicated by cost-effectiveness models, also pose a

significant barrier to large-scale implementation. To address these
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issues, an age- and incidence-based vaccine program could improve

cost-effectiveness and reduce disease burden. Furthermore, by

targeting areas with sustained high incidence, vaccination

programs could ensure more consistent demand.
3.3 mRNA vaccines

3.3.1 DENV
Unlike the DENV DNA vaccine candidates widely found in the

literature, only a few mRNA vaccines are being developed against

DENV. Roth et al. (59) were the pioneers in reporting the utilization

of the mRNA vaccine platform against DENV infection. Their

method involved the use of viral non-structural proteins, known for

their conservation across all viral serotypes or their ability to induce

a cross-reactive inter-serotype cell-mediated immune response.

Consequently, the immunogen in their vaccine comprised a

consensus 540-amino acid long multiepitope string derived from

DENV-1 NS3, NS4b, and NS4. Interestingly, employing a prime-

boost vaccination strategy with this modified mRNA at a low

dosage, administered to human HLA class I transgenic mice, not

only resulted in a robust T cell immune response but also provided

significant protection against DENV-1 infection, especially when

combined with a temporary inhibition of the IFN type I receptor

(59). However, while the study has yielded promising data

regarding protective efficacy against homologous viral challenge

with DENV-1, it remains to be determined whether the immune

response elicited by this vaccine is cross protective against all the

DENV serotypes.

An alternative approach in the field involves formulating an

mRNA vaccine that integrates PrM/E and E80—in addition to NS1

derived from DENV-2 (155). This strategy demonstrates the

efficacy of E80-mRNA, whether administered independently or in

conjunction with NS1-mRNA to serve as an excellent vaccine

antigen. Indeed, this particular combination has been observed to

trigger a robust immune response characterized by the production

of potent neutralizing antibodies and T cell responses. Critically,

these formulated vaccines exhibit a high level of efficacy, providing

full protection against DENV-2 challenge. Notably, the inclusion of

E80, either alone or in combination with NS1, has proven

particularly effective in eliciting protective immunity against the

DENV-2. Interestingly, vaccination with NS1-mRNA alone also

stimulates antigen-specific T cell responses and the development of

antigen specific antibodies, conferring partial protection against the

DENV-2 virus in immunocompetent BALB/c mice (155). This

suggests that the vaccine, even when focusing solely on NS1-

mRNA, holds promise in conferring immunity against DENV-2

viral challenges.

In another strategy, LNP-mRNA encoding PrM and E proteins

were used as a immunogen to target DENV-1 (156). The open

reading frame of these fused proteins (PrM and E) was inserted

downstream of various signal peptides from either Japanese

encephalitis virus, IL-2, tissue plasminogen activator, or Gaucia

luciferase, all previously shown to increase transgene expression

(157). Mice immunization using constructs with JEV signal peptide

led to robust antiviral immune responses, characterized by high
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levels of neutralizing antibody titers and antiviral CD4+ and CD8+

T cells. Indeed, immunocompromised AG129 mice vaccinated with

the PrM/E mRNA-LNP vaccine were protected from a lethal

DENV-1 challenge, demonstrating the potential of this strategy to

trigger strong protective immunity against DENV as earlier asserted

by (158).

As a unique approach for stimulating tetravalent immunity and

simultaneously avoiding potential Antibody-Dependent

Enhancement (ADE), He et al. (159) constructed a modified

mRNA vaccine consisting of conserved EDIII and NS-1 from

DENV-2. The vaccine antigens were placed immediately

downstream of the tPA signal peptide but upstream of the C-

terminal vesicular stomatitis virus G protein transmembrane and

cytoplasmic domains. Findings revealed that this strategy stimulates

a robust antiviral immune response that not only neutralizes all four

DENV serotypes but also significantly reduces ADE (159). This

demonstrates that the combination of EDIII and a conserved

nonstructural protein is an attractive strategy for inducing a safe

and effective immune response against DENVes (Figure 4).
3.3.2 Other mosquito-borne flaviviruses
3.3.2.1 Zika virus

Pardi et al. (160) reported that LNP-encapsulated modified

mRNA encoding the ZIKV PrM/E elicited robust immune

responses in animal models, with vaccinated mice and non-

human primates developing high titers of neutralizing antibodies,

resulting in complete protection against ZIKV challenge (161).

Richner et al. (162) applied a similar approach, demonstrating

that a single low-dose vaccination with a ZIKV mRNA vaccine

could induce potent neutralizing antibody responses and confer

protection against ZIKV infection in mice, showcasing the vaccine’s

efficacy. In addition, Jagger et al. (163) reported that ZIKV mRNA

vaccine encoding PrM/E elicited higher levels of antigen-specific

long-lived plasma cells and memory B cells, while significantly

reducing ADE in mice. Similarly, Medina-Magües et al. (164)

reported that ZIKV PrM/E mRNA-LNP vaccine candidate elicited

protective antibody responses in AG129 mice lacking interferon

(IFN) alpha/beta/gamma receptors. More so, two-dose

immunization strategy with this vaccine led to the induction of E-

specific double-positive IFN-g and TNF-a T cells in BALB/c mice.

This makes it a potential candidate for further development.

Zhong et al. (165) introduced a novel approach by developing a

self-amplifying mRNA (SAM) vaccine encoding ZIKV PrM/E

antigens. This approach, which allows for prolonged antigen

expression, induced strong immune responses in mice, signifying the

potential of SAM vaccines to enhance the immunogenicity of mRNA

vaccines against ZIKV. 166) explored another innovative strategy by

combining mRNA encoding ZIKV PrM/E with mRNA encoding the

conserved non-structural protein NS1 with the aim of eliciting both

antibody-mediated and cellular immune responses. Interestingly, mice

vaccinated with this combination developed high levels of neutralizing

antibodies and strong T cell responses, providing significant protection

against the ZIKV challenge. This shows that the inclusion of NS1 was

particularly effective in enhancing the overall immunogenicity of the

ZIKV mRNA vaccine candidate.
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More recently, Shin et al. (167) described the development of a

ZIKV mRNA vaccine encoding full-length ZIKV PrM/E proteins

using porous silica nanoparticles (PPSNs) as a delivery vehicle. The

vaccine was shown to elicit strong immune responses, including

high levels of neutralizing antibodies and ZIKV-specific T cell

responses. Furthermore, a single injection with the vaccine

provided complete protection against the ZIKV challenge in

C57BL/6 mice (167). This indicates that the vaccine could be a

promising candidate for further clinical development and potential

application against ZIKV infection. Taken together, the

development of mRNA vaccine candidates against ZIKV has

significantly progressed in the last few years, demonstrating

promising preclinical results on safety and immunogenicity in

mice models. Indeed, some candidates have already advanced to

clinical trials where they demonstrate tolerability and effectiveness

in healthy flavivirus seropositive and seronegative adults (168). This

progress suggests a great future for mRNA vaccines as a cornerstone

platform for controlling ZIKV infections. However, it is important

to consider the implications of anti-ZIKV antibodies on acute

DENV infections. A recent study by (Estofolete et al. (169)

indicated that prior Zika infection could be a risk factor for

severe dengue disease and hospitalization, though not necessarily

through the widely recognized mechanism of ADE.

3.3.2.2 JEV

At present, there is only one study on the development of

mRNA vaccine against JEV. The vaccine candidate, similar to other

mRNA vaccine candidates for flaviviruses, utilized PrM/E as

antigen and was encapsulated in LNP. When used to immunize

C57BL/6J mice at the dose of 15µg per mouse and boosted 3 weeks

later with same dose of the vaccine, a significant increase in

neutralizing antibody titer was observed, with PRNT50 reaching

approximately 1:200 in vaccinated mice. More so, a strong

proliferation of CD8+, but not CD4+, T cells was observed. Most

importantly, a 100% protection was observed following the

challenge of vaccinated mice with 1 × 106 PFU JEV P3 strains 3

weeks after booster immunization (170). This indicates that mRNA

vaccine is a promising platform for the development of safe and

effective JEV vaccines.

3.3.2.3 Yellow fever virus

Recently, a study byMedina-Magües et al. (171) found that mRNA-

based vaccine candidates targeting the Yellow Fever (YF) virus elicited

strong immune responses and provided significant protection in a dose

dependent manner. Formulated in LNP, the vaccines were designed to

express YFV PrM/E and the non-structural protein 1 (NS1). Findings

revealed that vaccination with PrM/E mRNA-LNP induced high titers

of neutralizing antibodies and robust T cell responses in both mice and

non-human primates, leading to protection against experimental YFV

challenge. Indeed, vaccinated mice not only showed reduced viral loads

and minimal disease symptoms, passive transfer of their serumwas able

to confer protection in naive mice (171). These findings collectively

indicate that mRNA vaccines encoding PrM/E and NS1 antigens have

the potential to become effective YF vaccines and overcome the

limitations of current vaccines.
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4 Future trends

The development of recombinant DNA and engineered mRNA

vaccines against mosquito-borne flaviviruses has recorded a great

deal of progress, yet there remains a considerable journey ahead.

While several candidates are currently in clinical trials (Table 1),

further research is required to refine various aspects of these

vaccines. Future efforts should concentrate on enhancing vaccine

design to create more effective and safer candidates by targeting

conserved regions of viral proteins, thereby reducing the risk of

ADE. In this regard, utilizing a combination of the EDIII domain

and various non-structural proteins (not only NS-1) as vaccine

antigens could particularly be attractive.

To date, there are excellent candidates targeting single serotypes of

DENV with remarkable preclinical efficacy. Consequently, efforts must

be directed towards developing more tetravalent DENV vaccines to

ensure comprehensive coverage of all circulating strains. Additionally,

there is a pressing need for more mRNA vaccine candidates against all

mosquito borne flaviviruses. Novel delivery platforms should also be

explored to enhance immune responses and reduce dosage

requirements. In this context, the development of self-amplifying

mRNA vaccines, which have demonstrated enhanced antigen

expression at lower doses (41), appears particularly promising. For

ZIKV in particular, efforts should be focused on developing safe and

effective vaccines, particularly for individuals who are pregnant or may

become pregnant and those living in or traveling to Zika-endemic

regions. At present, different neutralization methods are used to

evaluate ZIKV neutralization titers. There is therefore the need to

define universal correlates of protection based on a normalized

neutralization assay, for future efficacy studies. Same applies to JEV

and WNV where similar challenges in neutralization, antigen design,

and correlates of protection must be addressed to improve

vaccine efficacy.
5 Concluding remarks

It is glaringly evident that nucleic acid-based vaccines represent a

promising platform for the control of mosquito-borne flaviviruses. So

far, a number of candidates have been reported for DENV and other

mosquito-borne flaviviruses, with several candidates in clinical trials.

However, most of these candidates are DNA vaccines, with a few

mRNA vaccines available for all the viruses. Currently, no mRNA

vaccine for DENV is in clinical trials, while only a few are available for

ZIKV. In fact, WNV does not even have a single preclinical mRNA

vaccine candidate while JEV and YFV each has only a single

candidate in preclinical trials. Therefore, there is a need to develop

more mRNA vaccines against these viruses since mRNA vaccines

have proven to be the cornerstones of modern vaccinology.

Early efforts to develop nucleic acid vaccines focused on using

full PrM/E as antigens. However, it is now becoming evident that

the whole envelope protein might harbor epitopes, particularly in

the EDI and EDII regions, which have the tendency to elicit ADE in

immunized individuals. Consequently, recent approaches are

concentrating on using the EDIII domain known to be devoid of

these motifs, particularly in DENV and ZIKV vaccines. New
Frontiers in Immunology 11
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TABLE 1 Continued

ases Study Design Reference

Allocation:
Non-randomized
Intervention Model: Sequential
Masking: None
Primary Purpose: Prevention

Unpublished

Allocation:
Randomized
Intervention Model: Sequential
Masking:
Triple (Participant, Investigator,
Outcomes Assessor)
Primary Purpose: Prevention

Unpublished

Allocation: Randomized
Intervention Model: Parallel
Masking: None
Primary Purpose: Prevention

Gaudinski, et al.,
2018 (173)
DOI: 10.1016/
S0140-6736(17)
33105-7

Allocation:
Randomized
Intervention Model: Parallel
Masking: None
Primary Purpose: Prevention

Gaudinski, et al.,
2018 (173)
DOI: 10.1016/
S0140-6736(17)
33105-7

Allocation:
Randomized
Intervention Model: Parallel
Masking:
Double (Participant, Investigator)
Primary Purpose: Treatment

Unpublished

Allocation:
Non Randomized
Intervention Model: Parallel

Tebas et al., 2021
(174):
DOI:
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Virus NCT # Study Title Status Interventions Sponsor P

BIOLOGICAL: Tetravalent Dengue
Vaccine TVDV with Vaxfectin¬Æ
(High Dose)

NCT03831503
A Study of INO-A002 in
Healthy Dengue Virus-
naive Adults

COMPLETED

BIOLOGICAL:
INO-A002
DEVICE: CELLECTRA¬Æ 2000
DEVICE: Dengue Fever
Antibodies (IgG)

University
of
Pennsylvania

Phase1

Zika virus

NCT03110770
VRC 705: A Zika Virus
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A Study of Zika Vaccine
mRNA-1893 in Adult
Participants Living in
Endemic and Non-
Endemic Flavivirus Areas

COMPLETED

BIOLOGICAL:
mRNA-1893
BIOLOGICAL:
Placebo

ModernaT
Inc.

NCT03014089

Safety, Tolerability, and
Immunogenicity of
mRNA-1325 in Healthy
Adult Subjects

COMPLETED
BIOLOGICAL:
mRNA-1325
OTHER: Placebo

ModernaT
Inc.

NV

NCT00300417
Phase I Study of West Nile
Virus Vaccine

COMPLETED
DRUG:
VRC-WNVDNA020-00-VP

National
Institute o
Allergy an
Infectious
Diseases
(NIAID)

NCT00106769
Vaccine to Prevent West
Nile Virus Disease

COMPLETED
DRUG:
VRC-WNVDNA017-00-VP

National
Institute o
Allergy an
Infectious
Diseases
(NIAID)

YF

NCT01290055

Turnover of Antigen
Specific Lymphocytes and
Monocytes After
Immunization With the
17D Yellow Fever Vaccine

COMPLETED

BIOLOGICAL:
Yellow fever vaccine
OTHER: Deuterium (70% enriched
2H2O) labeled water

Sri
Edupugan

NCT03870061
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vaccine candidates are also exploring the addition of non-structural

proteins to expand the breadth of the immune response to include

cell-mediated immunity, which plays a crucial role in viral

clearance. Furthermore, novel adjuvants, including various

cytokines, are being explored to improve the immunogenicity of

new vaccine candidates. Various delivery systems, including gene

gun biolistics, have also been explored. Taken together, to effectively

control mosquito-borne flaviviruses using either DNA or mRNA

vaccine platforms, there is a need for a combination of multiple

strategies encompassing rational antigen design, the use of novel

adjuvants, and the careful selection of delivery systems.
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