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Background: Gliomas are aggressive brain tumors associated with a poor

prognosis. Cancer stem cells (CSCs) play a significant role in tumor recurrence

and resistance to therapy. This study aimed to identify and characterize glioma

stem cells (GSCs), analyze their interactions with various cell types, and develop a

prognostic signature.

Methods: Single-cell RNA sequencing data from 44 primary glioma samples

were analyzed to identify GSC populations. Spatial transcriptomics and gene

regulatory network analyses were performed to investigate GSC localization and

transcription factor activity. CellChat analysis was conducted to infer cell-cell

communication patterns. A GSC signature (GSCS) was developed using machine

learning algorithms applied to bulk RNA sequencing data from multiple cohorts.

In vitro and in vivo experiments were conducted to validate the role of TUBA1C, a

key gene within the signature.

Results: A distinct GSC population was identified, characterized by high

proliferative potential and an enrichment of E2F1, E2F2, E2F7, and BRCA1

regulons. GSCs exhibited spatial proximity to myeloid-derived suppressor cells

(MDSCs). CellChat analysis revealed an active MIF signaling pathway between

GSCs and MDSCs. A 26-gene GSCS demonstrated superior performance

compared to existing prognostic models. Knockdown of TUBA1C significantly

inhibited glioma cell migration, and invasion in vitro, and reduced tumor growth

in vivo.

Conclusion: This study offers a comprehensive characterization of GSCs and

their interactions with MDSCs, while presenting a robust GSCS. The findings offer

new insights into glioma biology and identify potential therapeutic targets,

particularly TUBA1C, aimed at improving patient outcomes.
KEYWORDS
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Introduction

Gliomas are the most common and aggressive primary tumors

affecting the central nervous system. According to data from the

Central Brain Tumor Registry of the United States (CBTRUS) for

the years 2013 to 2017, these neoplasms accounted for

approximately 25% of all adult primary brain tumors and 81% of

malignant central nervous system tumors in the United States (1).

The National Comprehensive Cancer Network (NCCN) Guidelines

classify glioma as a diverse group of neoplasms. Ranging from low-

grade gliomas (LGGs), such as surgically treatable pilocytic

astrocytomas to highly invasive and virtually incurable

glioblastoma multiforme (GBM) (2). Despite extensive research

into molecular therapies targeting oncogenic pathways and immune

checkpoints in gliomas, significant improvements in patient

outcomes have remained elusive. This situation underscores the

necessity for continued investigation into novel therapeutic

approaches for this challenging group of tumors (3, 4).

Glioma stem cells (GSCs), characterized by their stem cell

attributes, constitute a minor subset within the larger glioma cell

population. The majority of the glioma mass comprises differentiated

progeny, a characteristic conferred upon GSCs due to the capability for

self-renewal (5). Within the cancer stem cells (CSCs) milieu, immune

cells such as cancer-associated fibroblasts (CAFs), tumor-associated

macrophages (TAMs), and myeloid-derived suppressor cells (MDSCs)

secrete cytokines like TGFb significantly contributing toward the EMT-

mediated invasion of CSCs (5, 6). Contemporary research indicates a

significant role of CSCs in glioma recurrence and resistance to

chemoradiotherapy (6, 7). Targeting CSCs and their supportive

microenvironment has emerged as a promising strategy for

developing novel and more effective treatments for gliomas, with the

aim of improving patient outcomes and addressing the challenge of

recurrence. Flow cytometry or magnetic techniques facilitate the

enrichment of CSC populations from bulk tumors, leveraging

specific cell surface markers for selection. However, the expression of

specific markers is not consistently observed across all glioma stem

cells. It is essential to recognize that CSCs, when exposure to novel

microenvironments, are susceptible to alterations in their state, a

phenomenon observed regardless of the methodology used for CSC

enrichment. Notably, in vitro culture conditions can prompt variations

in surface marker expression and modulate the intrinsic biological

states of glioma cells (8). Consequently, examining CSCs without prior

selection provides a valuable opportunity to investigate their inherent

characteristics, potentially yielding insights into the processes by which

CSCs originate and differentiate into the cells implicated

in gliomagenesis.

The enhanced resolution for cell-type identification and

characterization, previously unattainable with bulk RNA sequencing

(RNA-seq), has been facilitated by Single-cell RNA sequencing

(scRNA-seq) (9, 10). Numerous researchers have already leveraged

the advantages of single-cell sequencing to successfully discover cancer

biomarkers and identify potential therapeutic targets (10–14). A

primary objective of scRNA-Seq research is to decipher the

hierarchical differentiation structures of complex tissues (15). To

achieve this, it necessitates an unbiased measure of the differentiation
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potential of individual cells, thus enabling the recognition of either stem

or multipotent progenitor cells and the establishment of a ranking of

individual cells along potency gradients of differentiation (16).

However, current in silico methods present challenges in

differentiating between adult stem cells with long-term regenerative

capabilities and more differentiated cells. Although models based on

gene expression possess the potential to surmount these constraints

(17), the extent of their applicability across varied developmental

systems and an array of single-cell sequencing methodologies

remains to be fully elucidated.

In this investigation, we developed a novel framework

consisting of five distinct algorithms specifically designed to

identify GSCs using scRNA-seq data. Furthermore, we utilized

the SCENIC algorithm and spatial transcriptomics (ST) analysis

to elucidate the transcription factor (TF) activities and cell

communications within these GSCs. Bulk RNA-seq deconvolution

highlighted the significant role of GSCs in predicting poor patient

prognosis. Based on a comprehensive combination of 429

algorithmic combinations, we established a GSC Signature

(GSCS). Ultimately, we conducted in vivo and in vitro

experiments to empirically validate the malignant characteristics

associated with TUBA1C, a gene that identified as the most critical

component within the GSCS.
Methods

Collection and pre-processing of
scRNA-seq data

ScRNA-seq data from 44 primary glioma samples was obtained

from a previous study (18). To ensure data quality, single cells

expressing fewer than 500 expressed genes, over 20% mitochondrial

transcripts, or containing more than 50% ribosomal transcripts

were excluded from further analysis. Additionally, we removed

genes that were expressed in fewer than three single cells. We used

the DoubletFinder Python package was utilized to identify potential

doublets (19). The filtered dataset consisted of 22,8156 cells, which

were analyzed using (20). We normalized gene expression using

Seurat’s LogNormalize method, applying a scale factor of 10,000

(21). Highly variable genes (n=2000) were selected and their

expression values were scaled prior to principal component

analysis (PCA). Batch effects were corrected using the Harmony

R package (22). Data analysis was performed using functions from

the Harmony and Seurat R packages, including NormalizeData,

FindVariableFeatures, ScaleData, RunPCA, FindNeighbors,

FindClusters, and RunUMAP. Cell cycle phases were scored using

Seurat’s CellCycleScoring function (23).
InferCNV analysis

To assess the score of large-scale chromosomal copy number

variations (CNVs) in somatic cells, the inferCNV R package (24)

was utilized. A raw counts matrix, an annotation file, and a gene/
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chromosome position file were prepared according to the specified

data prerequisites (https://github.com/broadinstitute/inferCNV).

T/NK cells and B cells were subsequently designated as the

reference cells for the analysis.
Identification of GSCs

We developed a novel framework that encompasses five distinct

algorithms—CCAT (16), CytoTRACE (17), Monocle3 (25), PAGA

(26), and Slingshot (27)—each meticulously designed to assess

differentiation capacity of cells using sscRNA-seq data. CCAT,

based on the concept of entropy-rate, was executed through the

SCENT R package (16). In contrast, CytoTRACE provides an

unsupervised framework for predicting relative differentiation

states from single-cell transcriptomes, utilizing the CytoTRACE R

package (17). An increase in scores calculated by both CCAT and

CytoTRACE indicates a higher degree of cellular differentiation.

Pseudotime analysis was conducted using the Monocle3 R package,

the Slingshot R package, and the PAGA method in the SCANPY

Python package (27). The framework code can be accessed at the

following GitHub repository: https://github.com/Caolab2024/

Cancer_stem_cells/tree/main.
Abundance of cell types in bulk
RNA-seq data

Cell type abundances were estimated from the bulk kidney

expression data in the TCGA cohort using the BisqueRNA R

package (28). A PCA-based method was employed to deconvolute

the seven primary kidney cell types based on scRNA data for

subsequent analyses.
Gene regulatory network analysis

We applied SCENIC (29), a novel computational approach for

inferring regulatory networks and identifying TFs from scRNA-seq

data, to individual cells. Subsequently, we employed receiver

operating characteristic curve (ROC) analysis to identify regulons

that were preferentially expressed in distinct cell clusters based on

transcription factors or their target genes.
Processing of glioma spatial transcriptome
sequencing data and inferring
cellular localization

We obtained spatial transcriptome data from 28 specimens

available in the OSF repository(https://osf.io/4q32e/), comprising a

total of 88,793 spots. Using the Seurat, an R package for single-cell

genomics (20), we performed the following steps: (1) normalized

and scaled the UMI counts using SCTransform and identified the

most variable features; (2) reduced dimensionality and clustered the
Frontiers in Immunology 03
spots with RunPCA, applying the default parameters and the top 30

principal components.

To deconvolve the transcriptome data into cell-type-specific

gene expression profiles, we utilized RCTD (30), a computational

method for resolving cell types in complex biological samples.

RCTD can help uncover the cellular composition, function and

interactions in biological research.

We estimated cell-type dependencies using MISTy (31), a

method for inferring mutual information between cell types.

MISTy was applied to the RCTD estimates from all slides, and

utilizing a multi-view model with a parameter that weighted the

estimates of neighboring cell types (effective radius = 15 spots). We

interpreted the median standardized importances of each view

across all slides as indicators of cell-type colocalization or mutual

exclusion in various spatial contexts.

CellChat analysis was performed using the CellChat R package

(32). This tool enables the inference and analysis of cell-cell

communication networks from single-cell RNA sequencing data.

By utilizing CellChat, we were able to explore intercellular signaling

pathways and identify key communication patterns among distinct

cell populations.
Collection and pre-processing of bulk
RNA-seq data

We searched several public databases, including The Cancer Genome

Atlas (TCGA, http://portal.gdc.cancer.gov/),ArrayExpress(https://

www.ebi.ac.uk/biostudies/arrayexpress), Chinese Glioma Genome

Atlas (CGGA, http://www.cgga.org.cn/), and Gene Expression

Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo/) for datasets

that met the following criteria: (1) more than 60 samples per cohort;

(2) Affymetrix Human Genome U133 Plus 2.0 Array or high-

throughput sequencing platforms; and (3) primary tumors from

patients who did not receive any treatments before resection. We

obtained a total of 2285 samples from 6 cohorts: TCGA-GBMLGG

(n = 683) (33), CCGA1 (n = 413) (34), CCGA2 (n = 273) (34),

GSE16011 (n = 262) (35), GSE108474 (n = 490) (36), and E-MTAB-

3892 (n =164) (37). Transcripts per million (TPM) data for TCGA-

GBMLGG were downloaded from UCSC Xena database. For data

generated using the Affymetrix Human Genome U133 Plus 2.0

Array, we applied the robust multiarray averaging (RMA)

algorithm from the Affy R package for preprocessing. Finally, We

log2 transformed, z-score normalized, and removed batch effects

from the gene expression data across all cohorts using the surrogate

variable analysis (SVA) algorithm (38).
Development of signatures using an
artificial intelligence network

We sought to develop a precise and robust GSCS for predicting

glioma patient prognosis. To achieve this, we built an artificial

intelligence network incorporating 429 algorithm combinations,

integrating 27 algorithms from traditional regression, machine
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learning, and deep learning approaches. These algorithms included

CoxTime, DeepSurv, DeepHit, Logistic-Hazard, PC-hazard, Akritas,

Coxboost, VSOLassoBag, RSF, GBM, SuperPC, obliqueRSF, CForest,

GLMBoost, BlackBoost, Rpart, Survreg, Ranger, Ctree, LASSO,

plsRcox, survival-SVM, Ridge, Enet, XGBoost, Boruta, and stepwise

Cox. Initially, we conducted univariate Cox regression to identify

prognostic GSC markers in the TCGA cohort at a significance level

of P < 0.05. Subsequently, we applied the 429 algorithm combinations

to these markers to develop predictive models within the TCGA

cohort. The predictive performance of each algorithm combination

was evaluated using C-indices across all validation cohorts. The

optimal algorithm combination was selected based on the highest

mean C-index. We stratified glioma patients into high- and low-risk

groups according to the optimal cutoff value obtained by the survminer

R package. The network code can be accessed at the following GitHub

repository: https://github.com/Caolab2024/Cancer_stem_cells/

tree/main.
Functional annotation of the GSCS

We conducted gene set variation analysis (GSVA) and gene set

enrichment analysis (GSEA) using the MSigDB database employing

the GSVA and clusterprofiler (39, 40) R packages. The differentially

expressed genes (log2FC > 1, adjusted P <0.05) between the low-

and high-risk groups were subjected to Metascape for enrichment

analysis (41).
Cell transfection and RT-qPCR

Cell transfection was conducted using two distinct siRNAs

targeting TUBA1C, synthesized by Ribobio (Guangzhou, China)

and delivered with Lipofectamine 3000 (Invitrogen, USA). The

siRNA sequences are provided in Supplementary Table 1. RNA

extraction from tissues or cell lines was performed using TRIzol

(Thermo) followed by cDNA synthesis with the PrimeScript™RT

kit preceded gene expression quantification was then carried out via

SYBR qPCR Master Mix on the Roche LightCycler 480 (Roche,

GER) (42). Primer sequences were obtained from Tsingke Biotech

(Beijing, China) and detailed in Supplementary Table 1.
Cell counting

In each well of the 96-well plates, two thousand treated cells were

seeded, followed by the addition of the CCK-8 labeling reagent for

further processing (43). Observations and assessments were conducted

on days 0, 1, 2, 3, 4, and 5 to monitor the cell responses and outcomes.
Colony formation

Transfected LN299 and U87 cells (siNC, siTUBA1C-1,

siTUBA1C-2 groups) were seeded at a density of 1,000 cells per

well in a 6-well plate and incubated for 14 days to allow colony
Frontiers in Immunology 04
formation. The medium was replaced every 3 days. After

incubation, the media were aspirated, and the cells were washed

with phosphate-buffered saline (PBS). The cells were then fixed with

4% paraformaldehyde (PFA) for 20 minutes at room temperature,

followed by staining with 0.5% crystal violet (Solarbio, China) for 20

minutes (44). After staining, excess crystal violet was rinsed off with

water, and once dry, the number of colonies per well, defined as

clusters of at least 50 cells, was counted. Colony numbers were

compared across the siNC, siTUBA1C-1, and siTUBA1C-2 groups

to evaluate the impact of gene silencing on colony formation.
Wound healing

Following the transfection process, once cell confluence reached

95%, the transfected cells were seeded into 6-well plates. A sterile

200 mL pipette tip was used to draw a straight line, facilitating the

gentle removal of unattached cells and debris with PBS.

Subsequently, serum-free cell medium was replenished to sustain

the cell culture. Photographs were captured at both the 0-hour and

48-hour time points at identical locations for comparative analysis.
Transwell

Cells were seeded at a density of 2×104 per well in 200 mL of

serum-free medium within the upper chamber, which was either

coated or left uncoated with matrix glue from BD Biosciences, USA.

The lower chamber contained 700 mL of 10% complete medium.

After a growth period of 36 hours, the cells were fixed, stained, and

photographed for quantification.
Subcutaneous tumor xenograft in
nude mice

All mice were housed in the animal facility of Northern Jiangsu

People’s Hospital Affiliated to Yangzhou University and maintained in

a Specific-Pathogen Free (SPF) environment. The animal experiments

were approved by the Ethics Committee of Northern Jiangsu People’s

Hospital Affiliated to Yangzhou University. LN299 NC and Si-1 cell

lines were cultured to the logarithmic growth phase, washed twice with

PBS, and collected. The cell concentration was adjusted to 1×107 cells/

ml. A 100 ml cell suspension was subcutaneously injected into the right

flank of each 6-week-old female nude mouse (BALB/c-nu), using 5

mice per group. Tumor length and width were measured every three

days with calipers, and body weight was recorded. Tumor volume was

calculated using the formula: Volume (mm³) = 0.5 × Length (mm) ×

Width (mm)². On day 21 post-injection, the mice were sacrificed, and

the tumors were excised and weighed.
Ki67 immunohistochemistry staining

The excised tumor tissues were fixed in 10% neutral formalin for

24 hours, followed by paraffin embedding and sectioning at a thickness
frontiersin.org
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of 4 mm. The sections were deparaffinized in xylene, rehydrated

through a graded ethanol series, and endogenous peroxidase activity

was blocked with 3% hydrogen peroxide. Antigen retrieval was

performed using citrate buffer (pH 6.0) in a pressure cooker. After

cooling to room temperature, the sections were blocked with goat

serum for 30 minutes and then incubated overnight at 4°C with a Ki67

primary antibody (1:200 dilution, Abcam). The following day, the

sections were washed three times with PBS for 5 minutes each,

incubated with a secondary antibody for 30 minutes, developed with

DAB, counterstained with hematoxylin, dehydrated, and mounted.
Statistical analysis

Data analysis, statistics, and plotting were performed using R 4.3.1.

Continuous variables were assessed using the Wilcoxon rank-sum test

or the T test. The optimal cut-off value was determined with the
Frontiers in Immunology 05
survminer R package. Survival analysis was conducted using Cox

regression and Kaplan-Meier methods via the survival R package.

The pROC package was employed to implement the ROC curve for

predicting binary categorical variables. The timeROC R package

calculated the time-dependent area under the curve (AUC) for

survival variables. Unless otherwise specified, P < 0.05 is considered

statistically significant.
Results

Clustering and cell-type identification of
single-cell RNA-seq data

The study flow diagram is shown in Figure 1. We analyzed 22,8156

cells from 44 samples that passed quality control steps to uncover the

cellular and molecular heterogeneity of cancer cells in human gliomas.
FIGURE 1

An illustration of the general workflow adopted in this study.
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Unsupervised clustering identified 38 clusters with distinct gene

expression patterns (Figures 2A–D). InferCNV analysis was

employed to distinguish malignant and non-malignant cells based on

the CNV score (Figure 2E). Each cluster was assigned to a cell type

using InferCNV analysis and marker gene expression (Figures 2F, G).
Frontiers in Immunology 06
Identification and characterization of
glioma stem cells

After conducting additional dimensionality reduction and

clustering of glioma cells, our bespoke analytical framework
FIGURE 2

Clustering and cell-type identification of single-cell RNA-seq data. (A–F) UMAP projections of 228,156 aggregate single cells from 44 primary glioma
samples showing the composition of different cell types in human gliomas. UMAP projections are shown by cluster numbers (A), by the patient (B),
by pathological type (C), by grade (D), by Copy Number Variation (CNV) score (E) and by cell types (F). (G) Dot plot showing marker gene expression
and cell cycle score for different cell types.
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enabled us to pinpoint GSCs, as indicated in Figure 3A. Utilizing the

PAGA algorithm, we demonstrated the differential potential of

GSCs as they evolve into various tumor cell subpopulations

(Figure 3B). Analyses integrating Monocle3 and the Slingshot

algorithm further elucidated the fundamental role that GSCs

subpopulations play as the origin of tumoral evolution
Frontiers in Immunology 07
(Figures 3C, D). Both the CCAT and CytoTRACE algorithms

highlighted the pronounced stem-like qualities inherent within

GSCs (Figures 3E, F). Then, we performed a comprehensive

enrichment analysis of the highly expressed marker genes across

various tumor subpopulations, utilizing the Kyoto Encyclopedia of

Genes and Genomes (KEGG) and Gene Ontology (GO) databases.
FIGURE 3

Identification and characterization of glioma stem cells (GSCs). (A) UMAP projections of 92,014 aggregate glioma cells are shown by cell annotation.
(B–D). Trajectory inference using PAGA (B), Slingshot (C), and Monocle3 (D). (E, F) UMAP projections of 92,014 aggregate glioma cells are shown by
Cytotrace score (E) and CCAT score (F). (G) Marker genes and Kyoto Encyclopedia of Genes and Genomes (KEGG)/Gene Ontology (GO) enrichment
analysis for each glioma cell subpopulations. (H) Differential distribution of glioma cell subsets across cell cycle phases (left), histopathological
classifications (middle), and IDH mutation status (right).
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Our findings revealed significant enrichment of GSC marker genes

within pathways associated with cell proliferation, particularly those

involving the cell cycle (Figure 3G). To further elucidate the

proliferative capacity of GSCs, we conducted a detailed

assessment of their cell cycle profiles, which demonstrated a

predominant presence in the G2M and S phases (Figure 3H).

This observation underscores the pivotal role of proliferation in

the maintenance of stemness (45). Moreover, our analysis

uncovered a striking prevalence of GSCs within samples of higher

malignancy, including recurrent GBM, and gliomas with wild-type

(WT) IDH (Figure 3H).
GSCs correlated with
unfavorable prognosis

Utilizing bulk RNA-seq data from the TCGA cohort, we evaluated

the prognostic significance of five distinct tumor cell populations.

Initially, we identified cell-type-specific marker genes at the single-

cell level, characterized by a log2 fold change exceeding 1 and an

adjusted P below 0.05, and proceeded to determine their hazard ratios

(HRs) based on overall survival (OS), progression-free interval (PFI),

disease-specific survival (DSS), and disease free interval (DFI) within

the TCGA cohort. Our observations revealed that GSC marker genes

exhibited the most elevated HRs for OS, PFI, DFI, and DSS

(Figures 4A–D). We ascertained that these GSCs constitute

independent prognostic indicators for OS, PFI, and DSS (P < 0.05)

(Figures 4E–G). Nevertheless, GSCs did not emerge as independent

risk factors for DFI, a finding potentially attributable to the paucity of

DFI data (Figure 4H). Kaplan-Meier analysis further demonstrated that

a higher abundance of GSCs was associated with adverse outcomes

across OS, PFI, DFI, and DSS (P < 0.05) (Figures 4I–L). Moreover, the

area under the curve (AUC) values for the prediction of OS, PFI, DSS,

and DFI consistently surpassed 0.7 (Figures 4I–L), underscoring the

formidable prognostic predictive power of GSCs.
Unique TF profile associated with GSCs

As previous studies (46) showed, TFs are key for cell fate

specification. Each cell type exhibited a unique TFs pattern

(Figure 5A). Strong enrichment was in E2F1, E2F2, E2F7, and

BRCA1 regulon activity in GSCs (Figure 5B). Figure 5C displays the

expression patterns of these four TFs, which correlated with worse

prognosis in glioma patients from the TCGA cohort (P < 0.05)

(Figure 5D). These findings indicated that the four TFs might be

essential for maintaining the stemness of GSCs.
Spatial transcriptomics of glioma reveals
cellular localization

We reduced the dimensionality and clustered the spatial

transcriptome data, identified the predominant cell types at each

spot based on the back-convolutional via the scRNA-seq reference

data, and chose the two samples with the highest GSCs abundance
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for the next step in the analysis (Figures 6A, B). Based on MISTy

results, GSCs had a close spatial location to myeloid-derived

suppressor cells (MDSCs) (Figure 6C). Then, we found that the

MIF pathway was active between GSCs and MDSCs (Figure 6D).

This result confirmed the previous conclusion that GSCs activate

MDSCs to suppress immune responses by secreting MIF (47).
Construction of the GSCS

To further quantify the abundance of GSCs using key genes and

improve the ability to predict prognosis in gliomas, we developed a

GSCS on a novel artificial intelligence network. We first performed

univariate Cox analysis to select the most specific GSCs marker (log2

fold change > 1, adjusted P = 0) with prognostic value (P < 0.05). We

then fitted 429 algorithm combinations on the TCGA cohort and

computed the C-index for each combination on the validation cohorts.

The combination of VSOLassoBag and RSF had the highest mean C-

index of 0.764 (Figure 7A). VSOLassoBag identified 26 genes, which

were used by RSF to construct the GSCS (Supplementary Figures 1A,

B). We stratified glioma patients into high- and low-risk groups based

on the optimal cutoff from the TCGA cohort. Our results showed that

the high-risk group had significantly worse OS than the low-risk group

in all cohorts (P < 0.05) (Figures 7B–G). Moreover, time-dependent

ROC curves demonstrated the robust and stable performance of the

GSCS in the all cohorts (Figures 7B–G).
Comparison of prognostic signatures

The GSCS outperformed age, grade, gender, IDH status, MGMT

promoter status, karnofsky score (KPS), 1p/19q co-deletion,TP53

protein expression, and recurrent status in terms of the C-index

across the all cohorts (Figure 8A). We also compared the GSCS with

other pulished signatures in the TCGA, GSE108474, GSE16011, E-

MTAB-3892, CGCA1 and CGCA2 cohorts (Figures 8B–H). The GSCS

had the highest C-index among all signatures in the all cohorts.
The GSCS exhibited a generalizability
signature in pan-cancer

We calculated the GSCS score for 33 cancers from the TCGA

(Figure 9A) and divided them into High-risk and Low-risk groups. We

observed that high GSCS scores correlated with worse prognosis across

all 15 cancers (P < 0.05) (Figure 9B). These results suggest that GSCS

may also be a key factor affecting the prognosis of various other cancers.
Potential biological peculiarities of
the GSCS

To explore the biological mechanisms underlying the

association between GSCS and proliferative features, we

performed pathway analysis on the GSCS score. We found that

the score is strongly correlated with several tumorigenic pathways,
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such as the G2M DNA replication checkpoint, angiogenesis, E2F

targets, and epithelial-mesenchymal transition (EMT) (P < 0.05)

(Figure 10A). We also observed significant differences in

proliferation-related pathways between the two risk groups (P <

0.05) (Figure 10B). The DEGs between the low- and high-risk
Frontiers in Immunology 09
groups were enriched in immune-related and proliferation-related

pathways (P < 0.05) (Figure 10C). Furthermore, GSEA of kyoto

encyclopedia of genes and genomes (KEGG) terms revealed that the

high-risk group was enriched for ecm-receptor interaction, cell

cycle, P53 signaling pathway, and DNA replication (P < 0.05)
FIGURE 4

Higher GSCs abundance in glioma, linked with poor prognosis. (A–D) GSCs abundance’s association with poor overall survival (OS) (A), disease-
specific survival (DSS) (B), progression-free interval (PFI) (C), and disease free interval (DFI) (D) manifested through HR values for cell type marker
genes from Cox proportional hazards regression. Each dot is a gene, with HR value on x-axis and cell type on y-axis. (E–H). Multivariate Cox
analyses to identify the risk factors in OS (E), DSS (F), PFI (G), DFI (H). (I–L). Time-dependent receiver operating characteristic (ROC) analysis (top)
and Kaplan-Meier (KM) curves (below) of the GSCs abundance in OS (I), DSS (J), PFI (K), DFI (L).
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(Figure 10D). These findings also demonstrated the critical role of

proliferation in maintaining stemness (48).
The silence of the TUBA1C inhibits the
malignant biological behavior of
glioma cells

To investigate the key role of TUBA1C in the pathogenesis of glioma,

we selected the LN299 and U87 glioma cell lines as research subjects and
Frontiers in Immunology 10
used targeted siRNA-mediated knockdown technology to regulate the

expression of TUBA1C (Figure 11A). We evaluated the impact of

TUBA1C knockdown on the viability of glioma cells using the CCK-8

assay. The experimental results showed that the OD value of glioma cells

decreased significantly after TUBA1C expression was silenced

(Figures 11B, C). To further investigate the impact of TUBA1C

suppression on the migration and invasion ability of glioma cells, we

conducted in-depth analyses. Using the Transwell migration and invasion

assay, we observed that the invasion and migration ability of glioma cells

were significantly reduced after TUBA1C knockdown (Figures 11D–F).
FIGURE 5

Unique transcription factor (TF) activity associated with GSCs. (A) Heatmap showing differences in TF activity scored by SCENIC. (B) TF activity of
E2F1, E2F2, E2F7 and BRCA1 projected on UMAP. (C) TF expression of E2F1, E2F2, E2F7 and BRCA1 projected on UMAP. (D) Kaplan–Meier survival
curves for E2F1, E2F2, E2F7 and BRCA1.
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Clonogenic assays confirmed that the proliferation ability of glioma cells

was weakened after TUBA1C knockdown (Figures 11G, H). The wound

healing experiment provided quantitative data, showing that TUBA1C

knockdown significantly slowed the wound healing process, indicating

that cell migration ability was significantly inhibited (Figures 11I, J). Taken

together, we have revealed the key role of TUBA1C in promoting the

proliferation, migration, and invasion of glioma cells. This discovery

underscores the importance of TUBA1C as a potential therapeutic target

in glioma treatment and may provide new ideas and methods for future

glioma treatment.
Silencing TUBA1C inhibits subcutaneous
tumor growth in vivo

We injected LN299 cell lines transfected with either TUBA1C-NC

or TUBA1C-Si-1 subcutaneously into nude mice and dynamically

observed the body weight and tumor growth of the mice. Through
Frontiers in Immunology 11
qPCR analysis, we compared the differences in TUBA1C expression

between the two groups and confirmed the effectiveness of gene

silencing in the xenograft tumors (Supplementary Figure 2). The

results indicated that, compared to the NC group, the tumor weight

and volume were significantly reduced in the Si-1 group mice, while

there was no significant difference in body weight between the groups

(Figures 12A–D). Immunohistochemical analysis of the mouse tissues

showed that the percentage of Ki67 positive cells in the tumor tissues of

the Si-1 group mice was also significantly reduced, suggesting that Si-1

treatment effectively inhibits tumor growth and cell proliferation

(Figures 12E, F). In summary, these results highlight the potential of

TUBA1C as a therapeutic target in glioma treatment strategies.
Discussion

Treatment for gliomas has remained unchanged since 2005,

involving surgical resection, radiation and concurrent and adjuvant
FIGURE 6

Spatial transcriptomics of glioma reveals cellular localization and cell communication. (A) Spatial Transcriptomics-based UMAP clustering of sample 1
(top) and sample 2 (below). (B) Spatial localization of individual clusters in the sample 1 (top) and sample 2 (below). (C) The spatial distribution of
different cell-types in the spatial transcriptomics reference calculated by RCTD in the sample 1 (top) and sample 2 (below). (D) MIF signaling pathway
from CellChat results.
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TMZ (49). Adjuvant TMZ marginally increased survival time for

adults with gliomas; however, this agent has caused systemic

toxicities and decreased the quality of life for patients (49, 50).

Moreover, many tumors exhibit primary or acquired resistance to

temozolomide (51). The anti-angiogenic antibody bevacizumab,

which neutralizes VEGF, was approved for recurrent gliomas and
Frontiers in Immunology 12
increased PFS in patients (52). However, subsequent trials showed

no improvement in OS for newly diagnosed patients (53). While

bevacizumab normalized the tumor blood vessels and reduced

symptoms such as oedema, it does not extend lifespan (54).

Gliomas are widely infiltrative and resistant to standard therapies,

remaining non-curative. Therefore, new therapeutic options are
FIGURE 7

An artificial intelligence network was utilized to develop and validate a consensus GSC signature (GSCS). (A) A total of 429 prediction models were
developed using a 10-fold cross-validation framework, and the C-index of each model was computed across all datasets. (B–G). Kaplan-Meier
curves and ROC curves of OS according to the GSCS in the (B) TCGA, (C) GSE16011, (D) GSE108474, (E) E-MTAB-3892, (F) CGG1, and (G) CGGA2.
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FIGURE 8

(A) The C-index of the GSCS and other models developed in the (B) TCGA, (C) GSE16011, (D) GSE108474, (E) E-MTAB-3892, (F) CGCA1, and
(G) CGCA2.
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urgently needed. In this work, based on integrated analysis of

scRNA, bulk RNA sequencing, ST and machine learning

algorithms, we identified and characterized GSC and developed a

GSCS based on maker genes from the GSC as a predictive model for

glioma patient outcomes.

We identified a glioma cell type, GSCs, that demonstrate a

predominant presence in the G2M and S phases of the cell cycle.

Furthermore, we observed a strong enrichment of E2F1, E2F2,

E2F7, and BRCA1 regulons in GSCs. These four TFs are implicated

in proliferation and DNA repair, indicating the high proliferative

potential of this subcluster. Previous studies have shown that these

TFs regulate stemness (55, 56). Additionally, GSCs were enriched

with genes previously linked to poor glioma outcomes, such as

CENPF (57), TOP2A (58), NUSAP1 (59), PTTG1 (60), UBE2C

(61), and UBE2S (62). Unlike previous studies that focused on

individual glioma genes, we employed a single-cell decomposition
Frontiers in Immunology 14
approach to reveal the association of the GSC type proportion and

reduced survival. Moreover, the GSCs encompass not only

encompasses known glioma genes, but also novel targets, such as

HMGN2, TUBB4B, and ARL6IP1, that warrant further

investigation. In summary, our research confirms the role of

previously known genes in glioma GSCs while also identifying

novel targets and TF regulators that can enhance our

understanding of this complex disease. With further investigation,

these discoveries could pave the way for developing more effective

therapeutic strategies for glioma patients.

We aimed to enhance our understanding of the factors affecting

survival in glioma patients, given their poor prognosis. Our findings

suggest that GSCs could serve as useful biomarker for guiding

treatment and predicting outcomes. Current prognostic tools for

glioma primarily rely on factors such as WHO grade, IDH

mutations, 1p/19q codeletion, MGMT promoter methylation, TERT
FIGURE 9

Pan-cancer of GSCS. (A) GSCS score for 33 cancers in the TCGA database. (B) Kaplan-Meier curves of OS according to the GSCS in the
TCGA database.
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promoter mutations and EGFR amplification (63). Cell type markers

can aid in comprehend cancer biology and supplement existing clinical

practices. The marker genes associated with GSCs may pave the way

for new expression-based prognostic technologies. As RNA sequencing

technology has matured and clinical laboratories can now detect gene

expression patterns with prognostic value (64). We developed an
Frontiers in Immunology 15
integrative pipeline to construct a GSCS using the expression profiles

of GSCs marker genes. We validated this signature in six independent

cohorts and confirmed that the best model is a combination of

VSOLassoBag and RSF. The algorithm combinations eliminated low-

value features, optimized the model, and enhanced its generalization

ability (65). The GSCS performed well in predicting outcomes across all
FIGURE 10

Biological peculiarities of the GSCS in the TCGA cohort. (A) MsigDB-based gene set variation analysis (GSVA) delineated the biological attributes of
two risk groups. (B) t-Distributed Stochastic Neighbor Embedding (t-SNE) plots of kyoto encyclopedia of genes and genomes (KEGG) and reactome
terms delineated the differences in pathway activity in the two risk groups. (C) Metascape-based enrichment analysis of differentially expressed
genes between two risk groups. (D) Gene set enrichment analysis (GSEA) of KEGG terms for the GSCS. ***p < 0.001.
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six cohorts, as shown by ROC and C-index analyses, indicating its

potential clinical utility. To maximize the clinical utility of the GSCS,

future research should focus on integrating this biomarker into routine

diagnostic workflows. Investigating its application in personalized

treatment plans could enhance therapeutic decision-making,
Frontiers in Immunology 16
particularly for patients with varying glioma subtypes. Additionally,

exploring the GSCS in conjunction with existing prognostic factors

may lead to more refined risk stratification models. Longitudinal

studies assessing the signature’s predictive power in response to

specific therapies will be crucial. Furthermore, expanding the
FIGURE 11

Silencing of TUBA1C Inhibits the Malignant Biological Behavior of Glioma Cells. (A) Schematic representation of the targeted siRNA-mediated
knockdown of TUBA1C in LN299 and U87 glioma cell lines. (B, C) CCK-8 assay results showing a significant decrease in OD values of glioma
cells following TUBA1C knockdown, indicating reduced cell viability. The results are presented as the mean ± SD of three independent experiments.
(D–F) Transwell migration and invasion assays demonstrating a significant reduction in the migration and invasion abilities of glioma cells after
TUBA1C knockdown. Quantitative analysis showed a significant decrease in the number of migrated and invaded cells. (G, H) Clonogenic assays
confirming that the proliferation capacity of glioma cells is weakened upon TUBA1C knockdown. The number of colonies formed was significantly
reduced compared to the control group. (I, J). Wound healing assays showing quantitative data that TUBA1C knockdown significantly slows the
wound healing process, indicating a marked inhibition of cell migration capability. Wound closure percentage was significantly lower in TUBA1C
knockdown cells. **p < 0.01; ***p < 0.001.
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signature’s validation across diverse populations and treatment settings

will strengthen its relevance and applicability in clinical practice,

ultimately improving patient outcomes.

Based on the RSF algorithm, TUBA1C was identified as the

most significant gene in GSCS. TUBA1C is an isoform of a-tubulin
that has been shown to play a critical role in the cell cycle and

immune microenvironment of lung adenocarcinoma (LUAD).

Elevated TUBA1C expression correlates with poor outcomes and

with tumor-infiltrating immune cells (TIICs) in LUAD (66).

Additionally, TUBA1C is upregulated in hepatocellular carcinoma

(HCC) and pancreatic ductal adenocarcinoma (PDAC), where it

predicts poor prognosis and enhances cell proliferation and

migration (67, 68). Furthermore, a prior study indicated that

TUBA1C was statistically associated with the expression of RP11-

480I12.5 in breast cancer (BRCA) and demonstrated prognostic

significance (69). TUBA1C has also been shown to promote aerobic

glycolysis and cell growth via upregulation of YAP expression,

thereby contributing to BRCA development. Our findings further

revealed that TUBA1C knockdown significantly inhibited the

malignant biological behaviors of glioma cells, demonstrating that

TUBA1C is a promising target for the treatment of glioma.

This study has advanced our understanding of GSCs and their

clinical relevance; however, we acknowledge several limitations. First, the
Frontiers in Immunology 17
cohorts exhibited had heterogeneity due to different in sequencing or

microarray platforms. We harmonized the data using standard normal

transformation, which was only partially effective. Second, we relied on

retrospective samples, necessitating future validation in a prospective,

large cohort. Third, we should conduct more in-depth and detailed

molecular biology studies in both in vivo and in vitro experiments to

uncover the molecular mechanisms of tumor recurrence and identify

new therapeutic targets.
Conclusion

This study provides a comprehensive characterization of GSCs

through integrated analysis of single-cell RNA sequencing, spatial

transcriptomics, and machine learning approaches. We identified a

distinct GSC population with high proliferative potential and developed

a novel 26-gene GSCS that exhibits robust prognostic value across

multiple cohorts. The signature demonstrated pan-cancer prognostic

ability and an association with critical tumorigenic pathways. We

validated the functional significance of TUBA1C, a key component of

our signature, through in vitro and in vivo experiments. Silencing

TUBA1C significantly inhibited glioma cell proliferation, migration,

and invasion, as well as tumor growth in xenograft models. This study
FIGURE 12

Knockdown of TUBA1C Inhibits Subcutaneous Tumor Growth In Vivo. (A) Representative images of tumors from mice, showing the tumor size
comparison between the NC group and the Si-1 group. Scale bar: 1 cm. (B) Comparison of tumor weights between NC and Si-1 groups of mice. (C)
Body weight changes during the experiment, showing no significant difference between the two groups. (D) Tumor volume growth curves, showing
that the tumor volume in Si-1 group mice was significantly smaller than that in the NC group. (E) Ki67 immunohistochemistry images showing Ki67
positive cells in tumors from NC and Si-1 groups. (F) Comparison of the percentage of Ki67 positive cells per field. ****p < 0.0001.
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enhances our understanding of glioma biology and provides a clinically

relevant prognostic tool and potential therapeutic targets.
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SUPPLEMENTARY FIGURE 1

(A) Determination of the number of trees by minimizing error. (B) Variable
importance of the top 26 genes determined using the random survival forest

(RSF) algorithm.

SUPPLEMENTARY FIGURE 2

Relative TUBA1CmRNA expression levels in xenograft tumors from si-NC and
si-LN299 groups. qPCR analysis revealed that TUBA1C expression was

significantly reduced in the si-LN299 group compared to the si-NC group.
***p < 0.001.
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