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Macrophage-myofibroblast transformation (MMT) transforms macrophages into

myofibroblasts in a specific inflammation or injury microenvironment. MMT is an

essential biological process in fibrosis-related diseases involving the lung, heart,

kidney, liver, skeletal muscle, and other organs and tissues. This process consists

of interacting with various cells and molecules and activating different signal

transduction pathways. This review deeply discussed the molecular mechanism

of MMT, clarified crucial signal pathways, multiple cytokines, and growth factors,

and formed a complex regulatory network. Significantly, the critical role of

transforming growth factor-b (TGF-b) and its downstream signaling pathways

in this process were clarified. Furthermore, we discussed the significance of MMT

in physiological and pathological conditions, such as pulmonary fibrosis and

cardiac fibrosis. This review provides a new perspective for understanding the

interaction between macrophages and myofibroblasts and new strategies and

targets for the prevention and treatment of MMT in fibrotic diseases.
KEYWORDS

macrophages, myofibroblasts, macrophage-to-myofibroblast transformation (MMT),
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1 Introduction

Macrophage-myofibroblast transformation (MMT) describes how macrophages from

circulating monocytes originating in the bone marrow transform into myofibroblasts and

contribute to fibrosis (1, 2). The term was coined by Nikolic-Paterson et al. In 2014 (3).

MMT is a newly discovered mechanism that occurs in damaged tissues undergoing fibrosis;

the study of MMT relies on the detection of intermediate cells that co-express macrophage

markers, such as CD68, and myofibroblast markers, such as a-smooth muscle actin (SMA)
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(4, 5). Hematopoietic stem cells (HSC) can differentiate into

monocytes in the bone marrow. Blood monocytes entering the

injured tissue can differentiate into an M2 pro-fibrotic phenotype,

either directly or via an M1 pro-inflammatory phenotype. TGF-b/
Smad3 signaling drives macrophage transition into collagen-

producing a-SMA myofibroblasts via MMT (6) (Figure 1).

MMT is considered one of the essential mechanisms for the

origin of myofibroblasts in solid organs (7–11). Experimental

models of fibrosis, including lung fibrosis, renal fibrosis following

transplantation or ureteric obstruction, and post-myocardial

infarction fibrosis, have demonstrated MMT as an additional

source of myofibroblasts (2, 3, 6, 12, 13). Wang et al. (1) also

observed the occurrence of MMT, which contributes to interstitial

fibrosis in case of human chronic active renal allograft injury. This

was identified through the co-expression of macrophage markers

(CD68 or F4/80) and myofibroblast markers (a-SMA). Similarly,

Little et al. (14) demonstrated the presence of MMT in the

subretinal fibrotic lesions, which ultimately led to subretinal

fibrosis. Increasing evidence supports the role of macrophages in

promoting fibrosis through their transformation into

myofibroblasts, a process known as the MMT (15). Several

signaling pathways, including TGF-b1/Smad, Notch, and Wnt

signaling pathways, including are involved in MMT (3). It is

worth noting that several studies have specifically highlighted the

promotion of MMT by the TGF-b1/Smad2/b-catenin signaling

pathway (3, 16–19).

This review provides an update on current advancements in

MMT and summarizes recent evidence and mechanisms of MMT
Frontiers in Immunology 02
in fibrosis. Furthermore, we discussed the significance of MMT in

physiological and pathological conditions. Under physiological

conditions, MMT may participate in tissue repair and wound

healing, which helps restore the structure and function of tissues.

Under pathological conditions, excessive transformation may lead

to the occurrence and development of fibrotic diseases, such as

pulmonary fibrosis (PF) and cardiac fibrosis. Understanding this

phenomenon and its underlying signal pathway would be beneficial

in finding therapeutic targets for fibrosis disease.
2 Overview of macrophage

Macrophages were first described by Elie Metchnikoff in 1893

when he observed phagocytes attacking and engulfing microbes in

starfish challenged by a rose thorn (20). Another significant

milestone came in 1924 when Aschoff defined macrophages as a

part of the reticulo-endothelial system (21). However, in 1968, Van

Furth et al. (22) proposed the mononuclear phagocyte system,

challenging the previous definition. According to this system, all

macrophages were believed to originate from the terminal

differentiation of circulating monocytes. This theory was further

supported by other researchers around the world at that time (23–

25). However, more recent studies have identified a dual origin of

tissue macrophages. It has been found that macrophages can

differentiate from circulating monocytes derived from bone

marrow stem cells, as well as primitive macrophages derived from

the embryonic yolk sac and fetal liver (26, 27). The mononuclear
FIGURE 1

MMT in tissue fibrosis.
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phagocyte system consists of three parts, including monocytes,

macrophages, and dendritic cells, with macrophages playing a

crucial role within this system (28).

Macrophages are strategically located throughout body tissues,

ingesting and processing foreign bodies, dead cells, and debris while

recruiting additional macrophages in response to inflammatory

signals. These cells are highly heterogeneous cells and have the

ability to rapidly change their function in response to local

microenvironment signals (29). Macrophages are categorized into

subsets based on their anatomical location and functional

phenotype (30). Some examples of specialized tissue-resident

macrophages include osteoclasts (bone), alveolar macrophages

(lung), histiocytes (interstitial connective tissue), and Kupffer cells

(liver). It is important to note that there is considerable overlap in

the expression of surface markers between different subsets of

macrophages (31).

Rather than being discrete and stable subsets, macrophages

represent a spectrum of activated phenotypes (32). Classically

activated macrophages, also known as M1 macrophages, are

involved in host defense against various bacteria, protozoa, and

viruses, and they also play a role in anti-tumor immunity. On the

other hand, alternatively activated macrophages, or M2

macrophages, possess anti-inflammatory properties and

contribute to wound healing. There are also “regulatory”

macrophages that can secrete high levels of interleukin-10 (IL-10)

upon binding to Fc receptors gamma (33, 34). Macrophages found

in the lung (both interstitial and alveoli), peritoneum, liver (Kupffer

cells), and brain (microglia) are generally considered to be distinct

lineage of macrophages with unique functions (35, 36).
2.1 The classification and phenotype
of macrophages

Monocytes are regarded as precursor cells of the mononuclear

phagocytic system, with macrophages being one of the key

members of this cellular system. Within the macrophage

population, there exist various subpopulations of macrophages,

each with its characteristics and functions.

2.1.1 Classification of organizational sources
The specialization of macrophages in particularmicroenvironments

explains their heterogeneity. Macrophages take different names

according to their tissue location, such as osteoclasts (bone), alveolar

macrophages (lung), microglial cells (central nervous system),

histiocytes (connective tissue), Kupffer cells (liver), and LC (skin).

These populations have such highly different transcriptional profiles

that they could be considered as many different and unique classes of

macrophages (37).

2.1.2 General functional classification
Macrophages can be defined and classified based on their

functions, such as phagocytosis and immunity, as well as specific

markers like F4/80 and CD68 (38). This classification divides

them into:
Frontiers in Immunology 03
2.1.2.1 Classically activated macrophages

Classically activated macrophages, or M1 macrophages, are

induced in vitro by interferon (IFN)-g and lipopolysaccharide

(LPS). They drive a pro-inflammatory response and aid in the

elimination of infection. Mainly through the secretion of pro-

inflammatory cytokines (such as IL-1, IL-6, TNF-a, etc.) and

chemokines, they promote the occurrence and development of

inflammatory reactions. They can devour and eliminate foreign

pathogens, activate the immune response of T cells, and regulate

and promote the Th1 immune response.

2.1.2.2 Selectively activated macrophages

Selectively activated macrophages, known as M2 macrophages,

play a role in controlling the immune response and tissue

remodeling (39). M2 macrophages encompass a variety of

phenotypes that further subdivided into M2a (exposure to IL-4 or

IL-13), M2b (induced by immune complexes in combination with

IL-1b or LPS), M2c cells (after exposure to IL-10, TGF-b or

glucocorticoids) and M2d cells (IL-6, angiogenic adenosineA2A)

(40, 41). M2 macrophages inhibit inflammatory reactions and

promote tissue repair and wound healing mainly by secreting

anti-inflammatory cytokines (such as IL-10) and growth factors

(such as vascular endothelial growth factor (VEGF) and TGF-b).
They also regulate the Th2 immune response, which is beneficial for

disease recovery in the late stage of inflammation.

Stimulated by GM-CSF, IFN-g, and LPS, M0 macrophages

polarize into M1 macrophages. Alternatively, M-CSF, IL-4, IL-13,

and immune complexes (IC) stimulation cause the polarization of

M0 macrophages to M2 macrophages. Various cytokines further

induce M2 macrophages to differentiate into M2a, M2b, M2c, and

M2d phenotypes. M1 macrophages are usually associated with

inflammation and represent a prototypic subset of pro-

inflammatory macrophages (39). In contrast, M2 macrophages

are polarized by Th2 cytokines IL-4 and IL-13, among other

factors. They are characterized by high levels of anti-

inflammatory cytokines and pro-fibrotic factors (39, 42),

contributing to matrix deposition and tissue remodeling (43). M2

macrophages are the primary source of TGF-b1, which is widely

recognized as a critical cytokine associated with fibrosis (39, 44, 45).

M2 macrophages have been found to affect pathological fibrosis

(46) and play a role in the process of fibrosis, such as in PF (47–50),

renal fibrosis (51, 52), ischemic cardiac fibrosis (53, 54), and

neovascularization (55).

Therefore, on one end of the extreme, M1 pro-inflammatory

cells facilitate the eradication of infections, albeit with the potential

to inflict damage. On the other extreme, M2 anti-inflammatory cells

have a repair phenotype that promotes a regression phase of the

injury response (51). In response to various signals, macrophages

may undergo classical M1 activation (stimulated by TLR ligands

and IFN-g) or alternative M2 activation (stimulated by IL-4/IL-13).

These states reflect Th1-Th2 polarization in T cells (56, 57). The M1

phenotype is characterized by high levels of pro-inflammatory

cytokine expression, high production of reactive nitrogen and

oxygen intermediates, promotion of the Th1 response, and potent

bactericidal and tumoricidal activity (58). M1 macrophages are also
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believed to be involved in various chronic inflammatory and

autoimmune diseases (59). M2 macrophages are considered to be

involved in the control of parasites, promoting tissue remodeling

and tumor progression, and have immunomodulatory functions.

They exhibit effective phagocytic activity and high expression of

scavenging molecules, among others (60).

2.1.3 Function classification of
homeostatic activities

Mosser and Edwards proposed a classification of macrophages

based on three primary functions that these cells perform to

maintain homeostasis in the body: host defense (classically

activated), wound healing, and immune regulation (32).

2.1.3.1 Host defense macrophages

The role of classically activated macrophages in host defense

against intracellular pathogens has been well documented. Classically

activated macrophages, as mentioned earlier, are crucial for host

defense. However, their activation needs to be tightly regulated due to

the potential for cytokines and mediators they produce to cause host-

tissue damage. For instance, classically activated macrophages

produce IL-1, IL-6, and IL-23, which have been associated with the

development and expansion of TH17 cells (61). These cells produce

IL-17, a cytokine involved in recruiting polymorphonuclear

leukocytes (PMNs) to tissues, potentially contributing to

inflammatory autoimmune pathologies. On the other hand,

macrophages can inhibit inflammation by clearing apoptotic PMNs

during inflammation, partly due to the production of TGF-b (62–64).

2.1.3.2 Wound-healing macrophages

Macrophages play a vital role in wound repair (11, 65).

Alternatively, activated macrophages have anti-inflammatory

functions and are involved in regulating wound healing. They

contribute to dampening inflammation, clearing cell debris, and

coordinating tissue repair, making them essential for the wound

healing process (66). Wound-healing macrophages can develop in

response to innate or adaptive signals. IL-4, released during tissue

damage, is one of the initial innate signals that rapidly convert

resident macrophages into a population of cells programmed to

promote wound healing (67). IL-4 stimulates arginase activity in

macrophages, allowing them to convert arginine to ornithine, a

precursor of polyamines and collagen that contributes to

extracellular matrix (ECM) production (68). When the

inflammatory stimulus or pathogen is eliminated, M1 cell

activation diminishes. Alarmins and Th2-type cytokines drive the

immune response toward a wound-healing response characterized

by the accumulation of M2 macrophages. These M2 macrophages

promote wound healing and fibrosis by producing matrix

metalloproteinases (MMPs), including MMP12, tissue inhibitor of

metalloproteinases 1 (TIMP1), growth factors (including platelet-

derived growth factor (PDGF)) and cytokines (such as TGF-b1) (29).

2.1.3.3 Regulatory macrophage

Regulatory macrophages have a key role in regulating the

inflammatory immune response to limit tissue damage. Their
Frontiers in Immunology 04
primary physiological function is to dampen inflammatory

immune responses and prevent the immunopathology associated

with prolonged activation of classically activated macrophages (66).

They are characterized by the production of high levels of IL-10

(69). Regulatory macrophages can secrete large amounts of this

cytokine in response to Fc receptor g -binding (34, 70). They

represent a relatively broad category of macrophages that play a

crucial role in inhibiting inflammatory immune responses and

preventing the immunopathology associated with prolonged

activation of classically activated macrophage (71). They are

distinct from classically activated macrophages and differ from

macrophages treated with Th2 cytokines, such as IL-4 or IL-13,

known as alternatively activated macrophages (72).

2.1.4 Other classifications
Apart from M1 and M2 macrophages, there are additional

subpopulations of macrophages, including tumor-associated

macrophages (TAMs), CD169 macrophages, and T cell receptor-

positive (TCR) macrophages (73).

2.1.4.1 TAM

Macrophages display plasticity, with their phenotype determined

by their location and the physiological or pathological context.

Classically activated macrophages (M1) and alternatively activated

macrophages (M2) represent two ends of the macrophage phenotype

spectrum (74). TAMs closely resemble M2 macrophages and are

associated with the inhibition of anti-tumor immunity (75). Myeloid-

derived suppressor cells (MDSC) are often associated with TAM and

may serve as their precursors (32, 76). TAMs promote tumorigenesis,

tumor growth, invasion, metastasis, and affect tumor metabolism

through various mechanisms (77). Recent study indicated that TAMs

have protumoral functions, indicating that they play a direct or

indirect role in promoting tumor progression (78).

2.1.4.2 CD169 macrophages

As a specific subpopulation of macrophages, CD169

macrophages have been recently studied in malignant tumors (79).

Current research suggests that CD169 macrophages have inhibitory

effect on tumors. CD169/Siglec1/sialoadhesin, a sialic acid-binding

immunoglobulin-like lectin, is primarily expressed in metallophilic

macrophages in the marginal zone of the spleen and macrophages in

the subcapsular sinus and medulla of lymph nodes. In addition to

their role in anti-infectious immunity, recent study has

demonstrated the involvement of CD169 macrophages in tumor

immunity and their association with a favorable prognosis (79).

2.1.4.3 T cell receptor

The T cell receptor (TCR) is a molecule essential for antigen

recognition and forms a complex with CD3 (80). Previous studies

have reported the presence of TCR macrophages in both human

and murine populations. TCR-ab has been observed in peripheral

blood monocytes and in vitro in activated monocyte-derived

macrophages. TCR macrophages can release CCL2 and exhibit a

high phagocytosis capacity (81). Recently, Fuchs et al. (82) reported

that TCR-ab macrophages are present in murine and human
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atherosclerotic lesions, indicating their potential as a novel

molecular target for diagnosing and treating diseases where

cholesterol plays a central role in the pathophysiology.
2.2 Macrophage function

Macrophages have highly diverse roles in maintaining the

body’s integrity, including direct participation in pathogen

elimination and tissue repair during aseptic inflammatory

conditions. Their functions vary across different tissues, playing

crucial roles in tissue development, immune response to pathogens,

surveillance and monitoring of tissue changes, and maintenance of

tissue homeostasis.
2.2.1 Phagocytosis and elimination of
pathogenic microorganisms

Macrophages are specialized phagocytes that, often with a long

lifespan, are present in all organs to maintain tissue integrity, remove

debris, and respond rapidly to initiate repair in the event of innate

immunity after injury or infection (30, 83). Plasticity and functional

polarization are the hallmarks of the mononuclear phagocyte system

(41). Their phagocytic activity is crucial for fibrogenesis, with the type

of engulfed dead cells influencing fibrosis progression (84).

Macrophages also act as heterologous phagocytes, detecting

pathogen-related molecular patterns and injury-related molecular

patterns through pattern recognition receptors (85, 86). TAMs

demonstrate bidirectional transformation between anti-

inflammatory and immunosuppressive phenotypes (57, 87).

Furthermore, macrophages play a vital role in wound repair (65).

2.2.2 Antigen presentation, immunomodulation,
and anti-inflammatory function

Macrophages have the capacity to take up and present antigens,

bridging innate and adaptive immunity (88). They can act as

antigen-presenting cells (APCs) and influence adaptive immune

responses (89). Monocytes that enter the tissue during

inflammation can carry antigens to lymph nodes and present

them to naive T-cells (90). Regulatory macrophages have been

shown to efficiently present antigens and induce antigen-specific T-

cell responses dominated by the production of Th2 cytokines (89).

Macrophages also play a crucial role in cellular immunity by

secreting cytokines and chemokines, regulating the activities of

other immune cells, and balancing the body’s immune response.

They can secrete both pro-inflammatory cytokines, such as IL-1 and

IL-6, to promote inflammatory reactions, and anti-inflammatory

cytokines, such as IL-10, to inhibit excessive inflammation.

2.2.3 Regulation function regulating fibrosis
Macrophages are considered to be the critical cell types in the

development of fibrotic diseases (17). Recent studies have also

revealed that their role as regulators of fibrosis. Like myofibroblasts,

these cells are derived from resident tissue populations such as

Kupffer cells or bone marrow migrants (91–95). Current studies

have shown that the pathogenesis of fibrosis is tightly regulated by
Frontiers in Immunology 05
different populations of macrophages, which exert unique functional

activities in the initiation, maintenance, and regression stages of

fibrosis (96, 97). Activated hepatic stellate cells (HSCs) attract and

stimulate macrophages, which produce profibrotic mediators like

TGF-b1 and PDGF, directly activating fibroblasts (94, 98). Several

studies have identified macrophages as a major source of TGF-b1 and
PDGF in fibrosis (71, 99). While macrophages contribute to fibrosis

progression, they may also mediate its regression (11). Given the

multifunctional capacity and heterogeneous phenotype of

macrophages, it is not surprising that they can enhance and limit

fibrosis (100). M2 macrophages may be a promising potential target

for future anti-fibrosis therapies.
3 Overview of myofibroblast

3.1 Source and characteristics
of myofibroblasts

In 1971, Gabbiani and his colleagues discovered and

characterized myofibroblasts, which are fibroblasts modified to

exhibit active contraction in rat wound granulation tissue. This

was the first time it had been shown that myofibroblasts promote

dermal wound contraction (101). Myofibroblasts are a subset of

activated fibroblasts that express molecular markers such as a-SMA

and the fibronectin (FN) splice variant extracellular domain (ED)-A

FN (102). Hyperactive myofibroblasts, marked by the expression of

a-SMA, are primarily responsible for the production of pathogenic

collagen tissue fibrosis (7, 103). One of the defining features of

myofibroblasts is the development of in vivo stress fibers and

contractile force (104). They exhibit morphological and structural

characteristics similar to smooth muscle cells, including a flat and

irregular morphology, developed cell-ECM interactions, and

intercellular space junctions (105). The activation of

myofibroblasts is crucial for physiological and pathological tissue

repair. Myofibroblasts are the main ECM secretory cells in wound

healing and fibrosis and are mainly responsible for the contractility

of scar tissue when it matures (106). Myofibroblasts combine the

ECM synthesis characteristics of fibroblasts with the cytoskeletal

characteristics of contractile smooth muscle cells, regulating

connective tissue remodeling (107).

Defining characteristics of myofibroblasts include abundant

rough endoplasmic reticulum, moderately developed peripheral

myofilaments with focal density, fibronectin, and a-SMA

immunostaining (108) . In wound granulat ion tissue,

myofibroblasts coexist with prominent endoplasmic reticulum

and contractile microfilaments (109). The transformation of

myofibroblasts is triggered by integrating neurohumoral, cytokine,

growth factor, and mechanical signals from the extracellular

environment (110). Myofibroblast differentiation is a critical event

for wound healing, tissue repair, and chronic fibrosis (104, 107,

111). At least three local events are required for the differentiation of

a-SMA-positive myofibroblasts: accumulation of biologically active

TGF-b1, the presence of specialized ECM proteins like ED-A splice

variants of fibronectin, and high extracellular stress are caused by

the mechanical properties of ECM and cellular remodeling activity
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1474688
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Li et al. 10.3389/fimmu.2024.1474688
(104). The mechanical resistance of the ECM, combined with the

action of fibrotic TGF-b1, is the primary stimulus for the

differentiation and persistence of myofibroblasts (104).
3.2 Distribution of myofibroblasts

Myofibroblasts can originate from various sources, including

epithelial-mesenchymal transition (EMT) (7), endothelial-

mesenchymal transition (112, 113), resident fibroblast or pericyte

proliferation (114), and the newly discovered phenomenon of

MMT (115). Experimental evidence demonstrates that about 50%

of myofibroblast accumulation comes from local proliferation of

resident tissue fibroblasts, while approximately 35% comes from

bone marrow-derived cells (116). Bone marrow transplantation

studies have demonstrated the ability of bone marrow-derived

cells to populate distal tissue sites (115, 117, 118).
3.3 The hazards of myofibroblasts

Myofibroblasts pose hazards in various ways. They are the

primary cells responsible for collagen production in tissue

fibrosis, and their contraction and ECM remodeling activity play

a crucial role in fibrotic diseases (119–121). The fate of

myofibroblasts in injured tissues, regardless of their origin, may

ultimately determine whether healing occurs normally or progress

to end-stage fibrosis (107). Persistent myofibroblast activity leads to

progressive tissue fibrosis and distortion of the typical tissue

architecture, resulting in organ failure and, ultimately, death (89).

While the high contractile force generated by myofibroblasts is

beneficial for physiological tissue remodeling, excessive force can be

detrimental to tissue function, as seen in hypertrophic scars, fibrotic

diseases, and stromal reactions to tumors (111).

Myofibroblasts are also critical components of the matrix

reaction around hepatocellular carcinoma, contributing to the

extracellular matrix component (122, 123). Activated hepatic

stellate cells, portal vein fibroblasts, and bone marrow-derived

myofibroblasts have been identified as central collagen-producing

cells in the damaged liver (91). They play significant roles in renal

fibrosis and are implicated in its pathogenesis (124). Additionally,

myofibroblasts contribute to chronic cardiac fibrosis (110).

Experimental and clinical observations suggest that myofibroblasts

produce pro-invasive signals that may be associated with cancer

progression and pain (125). Myofibroblasts present in the matrix

reaction of epithelial tumors may contribute to the progression of

cancer invasion (126, 127).
4 The contribution of MMT to the
pathogenesis of PF

4.1 Introduction of PF

PF is a chronic and progressive irreversible pulmonary

interstitial disease that poses a significant public threat health
Frontiers in Immunology 06
(128). It is a characteristic feature of a large class of interstitial

lung diseases (ILD) (129, 130). Symptoms of PF typically include

shortness of breath, unproductive cough, weight loss, and fatigue

due to hypoxia (131). It is characterized by thickened fibrotic

alveolar walls leading to impaired gas transfer, restricted

ventilatory patterns, and, as a result, respiratory failure (132, 133).

Pre-existing inflammation is a key factor in PF development.

Acute lung injury (ALI) and its more severe manifestation, acute

respiratory distress syndrome (ARDS), are specific forms of lung

inflammation characterized by diffuse alteration of the alveoli, non-

cardiogenic lung edema, and local and systemic inflammation (134–

137). Inflammatory cascades contribute to the pathogenesis of ALI,

resulting in increased permeability of lung capillary vessels and

diffuse alveolar damage (138–140). The pathomorphological

changes in the lungs during ALI/ARDS include neutrophilic

inflammatory infiltration, diffuse alveolar damage, alveolar and

interstitial edema, hyalin membrane formation in the exudative

phase, and ECM deposition in the proliferative phase (139, 141, 142).

PF is a heterogeneous disease characterized by a distinct pattern

of tissue pathology and comprises a large number of chronic

respiratory pathologies accompanied by connective tissue growth in

various lung compartments, among which interstitial lung disease

(ILD) and idiopathic PF (IPF) are the most severe and irreversible

ones with progressive fibrosing of the lung parenchyma (130, 143–

145). IPF, specifically, is a significant type of pulmonary fibrosis,

predominantly affecting the elderly, with high mortality and poor

prognosis (146). It can cause dyspnea, cough, impaired lung function,

and death (147–149). The prevalence of IPF is around 10 cases per

100,000 population, while ILDs have a prevalence of 19.4 cases per

100,000 population (150, 151). In 2014, two drugs, pirfenidone and

nintedanib, were approved by the FDA for the treatment of PF (152).

However, effective therapeutic options for PF are still lacking, and

current treatments only delay disease progression without providing

a complete cure. Moreover, these drugs have undesirable side effects,

such as gastric and intestinal bleeding and severe diarrhea. Lung

transplantation is the last resort for patients, offering some extension

of lifespan, but it is not accessible to most individuals. Therefore,

studying the molecular mechanisms underlying the transition from

acute lung inflammation to PF and identifying new molecular

markers and promising therapeutic targets for preventing PF

development remain important objectives.
4.2 Role of macrophages in
pulmonary fibrosis

Macrophages, as innate immune cells with antibacterial and

phagocytic activity, play a significant role in PF. They are the most

abundant immune cell population, accounting for about 70% (153).

They are widely distributed in the lung and alveolar tissue and are

involved in almost all the physiological and pathological processes of

the lung (154). They are the host lung defense, indispensable

paramount sentry (155, 156), and also play a vital role in the

pathogenesis of PF. Macrophage infiltration is observed in PF (157).

Macrophages are involved in all stages of lung injury and repair and

can both promote and inhibit fibrosis. They play an essential role in
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the removal of lung pathogens clearance and maintaining homeostasis

(157, 158). The pathogenic role of macrophages in PF has been

investigated in multiple studies, involving reactive oxygen species

generation (159–161), stimulation of proteinase-activated receptors

(162, 163), and secretion of pro-fibrotic cytokines (164, 165).

There are three main types of pulmonary macrophages: alveolar

macrophages (AM), interstitial macrophages (IM), and bronchial

macrophages (BM), with AM accounting for more than 90% (166).

Different subtypes of macrophages play distinct roles in lung injury,

repair, and fibrosis (167). Single-cell sequencing of lung tissue from

patients with PF have confirmed that alveolar macrophages play an

essential role in PF (168–170). Alveolar macrophages are the first

cells to come into contact with external pathogens and irritants,

initiating and later resolving lung immune responses. Additionally,

macrophages have other organ-specific functions, such as surfactant

utilization and absorption of apoptosing and destroying cells (171–

174). Monocyte-derived macrophages are key drivers of PF and

supplement alveolar macrophages that are lost immediately upon

injury (175, 176).

The effect of macrophages on PF is mainly related to their

polarization, which occurs during the repeated damage and

abnormal repair of alveolar epithelial cells (177, 178). Epithelial

apoptosis is a critical component of fibrotic disease in many organs,

including the lung (179, 180). Down-regulating the pro-fibrosis

activity of alveolar macrophages or depleting this group of cells can

effectively treat experimental PF (181–183). Macrophages can

polarize into either a pro-inflammatory M1 phenotype or an

alternatively activated M2 phenotype, depending on the

microenvironment in which they reside (184). In response to lung

injury, macrophages undergo a transition into pro-inflammatory

M1 phenotypes and begin to secrete pro-inflammatory cytokines

(TNF-a, IL-6, IL-1) and chemokines (IL-8, CCL7, CCL2), which

leads to the increased chemotaxis and progressive enrichment of

alveolar spaces by monocytes and neutrophils (185), which

aggravate the pulmonary inflammatory response. On the other

hand, M2 polarization releases various cytokines, such as TGF-b1
and IL-10, promoting the generation of myofibroblasts and the

deposition of extracellular matrix, ultimately leading to PF.

During tissue damage and early inflammation stages, the

activation of M1 macrophages promotes inflammation through

extracellular matrix-degrading MMP and pro-inflammatory

cytokines. An active cytokine environment, including Th1

cytokines, IL2, IFN-g, and TNF-a, drives M1 macrophage

activation. In contrast, other types of interstitial lung diseases

(ILDs), including PF, often have a higher proportion of anti-

inflammatory M2 macrophages (186) (Figure 2).

In the progression of PF, M1, and M2, macrophages are recruited

to the site of the lung tissue injury site to regulate the fibrotic process

after basementmembrane destruction. M1macrophages play a crucial

role in matrix degradation by directly and indirectly producing MMP

and various anti-fibrotic cytokines, essential for ECM remodeling and

help reduce the pathological fibrous proliferation observed in late ALI

(187). In contrast, M2macrophages promote fibrous proliferation and

ECM deposition in lung tissue (188, 189). Therefore, the degree of PF

depends on the balance betweenM1 andM2macrophages in the local

microenvironment of lung tissue injury. Studies have shown that
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macrophages, predominantly M2 macrophages, contribute to the

pathogenesis of PF (155, 190). M2 macrophages are the primary

source of TGF-b1 and platelet-derived growth factors that induce

fibroblast differentiation into myofibroblasts, initiating PF (191).

Macrophage subsets may regulate fibrosis by differentiating into

myofibroblasts, acting as sources of cytokines and growth factors

with fibrotic properties, and secreting proteases involved in matrix

remodeling (192). Therefore, the number and phenotype of

macrophages are considered essential for the pathological process of

PF (193, 194). While macrophages are essential for lung defense, they

can also lead to tissue damage (195). Different subtypes of

macrophages play distinct roles in lung injury, repair, and

fibrosis (196).
4.3 Role of myofibroblasts in PF

The main morphological characteristics of PF, such as ECM

deposition and remodeling of lung architecture, are consequences

of a disbalance between two physiological processes in the lungs: (1)

proliferation/apoptosis of fibroblasts and myofibroblasts; (2)

synthesis/degradation of ECM components (197). These processes

are closely interconnected, and the disruption of fibroblast and

myofibroblast functioning is the primary driver behind the

imbalance of ECM homeostasis and the development of PF. The

fibroblastic phenotype present in that diseased lung primarily by the

production of several soluble factors, such as TGF-b, PDGF, VEGF,
and thrombospondin 1, which can differentiate resident fibroblast

into myofibroblasts (170, 181, 195). Regardless of the source of lung

fibroblasts, myofibroblasts, which resemble smooth muscle cells in

terms of their contractile ability and expression of a-SMA, are

considered the key cells in PF development.

Myofibroblasts are the primary effectors responsible for the

excessive production of collagen and other extracellular matrix

proteins in fibrotic lungs (104, 198). These contractile fibroblasts

express a-SMA and abnormally proliferate in PF. They play a

significant role in the occurrence and progression of PF by

synthesizing and secreting large amounts of ECM components,

such as collagen (I, III, IV, V, and VI), fibronectin, and laminin

(199–201), making them critical in regulating the progression of PF.

Myofibroblasts have also been found to secrete or release various

proteins, lipids, and nucleic acid molecules that contribute to the

pathological characteristics of other cell types in fibrotic lungs (129).

The accumulation of myofibroblasts is considered a marker of

PF (202). Current research indicates that myofibroblasts involved in

PF originate from several sources, including the proliferation and

differentiation of resident fibroblasts, the recruitment of circulating

fibroblasts to injury sites in organs, endothelial-mesenchymal

transformation, and epithelial-mesenchymal transformation (203–

205). The synthesis of pathogenic collagen by myofibroblasts, as the

main effector of tissue fibrosis, and the process of MMT are essential

regardless of the etiology of fibrosis (3, 206–208). Myofibroblast

transdifferentiation is a marker of the fibrotic response. Evidence

suggests that macrophages are involved in regulating fibrotic

responses, with pulmonary myofibroblasts being the primary

target for the development of new therapies for IPF (104, 198).
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4.4 MMT related signaling pathways in the
development of PF

As described earlier, fibrosis is defined by the excessive

accumulation of fibrous connective tissue in and around inflamed

or damaged tissue, which can lead to permanent scarring, organ

malfunction, and, ultimately, death, as seen in end-stage liver

disease, kidney disease, IPF, and heart failure (91, 209). The

development of PF involves genes and molecular pathways that

primarily participate in pre- and postnatal lung development (210,

211). The key pathophysiological events of IPF include repetitive

alveolar epithelial cell injury, the presence or absence of local

inflammation, impaired epithelial-mesenchymal crosstalk, and

subsequent fibroblast-to-myofibroblast activation (212–214).

These mechanisms are mediated by abnormally activated

signaling molecules that drive the process of fibrosis, such as

TGF-b, Wnt/b-catenin, hedgehog, Notch, and fibroblast growth

factor signaling pathways, with the TGF-b signaling pathway being

the most critical (215, 216). While most of these pathways are

inactive in the adult organism, they become active during tissue

regeneration, and the chronic pathological activation of these

signaling pathways is associated with injury restoration processes

in all organs, including the lungs (210, 217, 218). Furthermore, a

recent study demonstrated that nintedanib, one of the FDA-

approved anti-fibrotic drugs, modulates TGF-b, VEGF, and Wnt/

b-catenin signaling pathways, further supporting the central role of

these pathways in PF development (219) (Figure 3).
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4.4.1 TGF-b pathway
4.4.1.1 TGF-b biology

TGF-b is a member of a large polypeptide family, modulating

several biological processes, including proliferation, differentiation,

and cell apoptosis in internal organs (219). Initially isolated from

platelets, TGF-b is a multifunctional cytokine that plays a crucial

role in regulating fibrosis both at physiological and pathological

levels (220, 221). The TGF-b signaling pathway is activated during

the development of fibrosis in different tissues and regardless of the

underlying cause. It leads to increased de novo synthesis of TGF-b
by multiple cell types, including macrophages, platelets, and T-cells,

as well as increased release from the extracellular matrix (222–225).

Among the three identified members of the TGF-b family in

mammals (TGF-b1, TGF-b2, and TGF-b3), TGF-b1 is the

predominant form expressed in the immune system, and it is the

most abundant subtype in most tissues, including the skin. TGF-b1
is a pro-fibrotic cytokine and a key initiator of organ inflammation

and fibrosis (226–228). It can induce the differentiation of epithelial

or endothelial cells into myofibroblasts in vitro (229–231).

4.4.1.2 TGF-b/Smad pathway

The TGF-b/Smad pathway is the primary signaling cascade

through which the TGF-b signal is transduced into various cellular

responses. Smad proteins, a family of cytoplasmic signal

transduction proteins, mediate the signals from activated TGF-b
receptors and interact with TGF-b responsive promoters. Smad2

and Smad3 are the key mediators of signals from activated TGF-b
FIGURE 2

The M0 can be polarized into M1 and M2 by different stimuli. The M1 plays an inflammatory role by releasing ROS, IL-1, IL-6 and IL-12, whereas M2
has the potential to promote fibrosis by releasing TGF-b, IL-4, IL-10 and PDGF in PF.
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receptors, and they form complexes with other transcription factors

to bind to DNA and regulate gene expression (232). Classical TGF-

b1 signal transduction operates through TGF-b receptors and

Smad2/3/4 transcription factors (230). In the tissue fibrosis

models, the protective effects observed in Smad3 gene knockout

mice indicate that TGF-b/Smad3 signaling is pro-fibrotic, while

conditional Smad2 deficiency promotes fibrosis, indicating the

opposite effects of Smad2 and Smad3 (233–235). It has been

demonstrated that Smad3 is a key signaling pathway for fibrosis

both in vivo and in vitro (131, 236, 237). The key role of Smad3 in

the development of fibrosis has also been reported in many disease

models, including bleomycin-induced PF (234). The TGF-b
signaling cascade involves the binding of TGF-b to its receptors

(TGF-bRII and TGF-bRI), leading to the activation of Smad2 and

Smad3, their translocation into the nucleus, and the transcription of

target genes (238).

4.4.1.3 Pathogenic effect of TGF-b in fibrosis

Macrophages are the primary source of the main effector

molecule TGF-b in fibrosis. TGF-b is the primary effector

molecule in fibrosis, promoting the proliferation of fibroblasts and

collagen synthesis by producing growth factors, thereby promoting

fibrosis (239). It accelerates the progression of PF by recruiting and

activating monocytes and fibroblasts and inducing ECM production

at the site of injury (240). Macrophages are one of the most

important regulators of the fibrotic response, secreting cytokines,

growth factors, and ECM-regulating proteins (43). They promote
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PF by releasing pro-fibrotic mediators (such as TGF-b),
chemokines, and matrix metalloproteinases. TGF-b stimulates

lung fibroblasts, circulating fibroblasts, and small airway epithelial

cells to transdifferentiate into myofibroblasts (199).

TGF-b promotes fibrosis through various mechanisms,

including the induction of myofibroblasts, increased synthesis of

ECM components, and inhibition of collagen degradation (241). It

plays a central role in the pathogenesis of PF by promoting the

activation, proliferation, and differentiation of epithelial cells and

collagen-producing myofibroblasts (242). TGF-b signaling is one of

the most potent inducers of fibroblast activation, stimulating the

synthesis of ECM components and inhibiting their degradation by

matrix metalloproteinases (243, 244). It also regulates the

differentiation of fibroblasts into myofibroblasts (245). TGF-b1,
b2, and b3 are all involved in embryonic lung development, the

maintenance of organ homeostasis, and responses to tissue damage.

Increasing evidence suggests that the TGF-b pathway is activated in

chronic lung diseases, including IPF (246). IPF and interstitial PF

are particularly serious lung diseases, with TGF-b signaling pathway
playing a significant role in fibrosis (247, 248).

4.4.2 Wnt/b- catenin signaling pathway
The Wnt gene family consists of 19 secreted glycoproteins and

is involved in the regulation of mammalian embryonic development

and tissue regeneration, making up the Wnt signaling pathway

(249). Classical Wnt signal transduction inhibits the

phosphorylation of b -catenin in the cytoplasm and subsequent
FIGURE 3

Overview of particular signaling pathways regulating pulmonary fibrosis development.
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translocation into the nucleus and activation of the transcription

factor TCF/LEF (250). The Wnt signaling pathway plays a vital role

in the development and maintenance of multiple organ systems,

including the brain, intestine, hematopoietic system, skin, and lung

(251–253). Increasing evidence shows that the Wnt family of

secreted glycoproteins and their associated signaling pathways are

involved in the development and play an active role in wound repair

and regeneration events, including PF, cancer, heart valve

formation, and aortic valve calcification (217, 254–257).

Classical Wnt signal transduction regulates the expression of

multiple gene families, including MMPs and angiogenic growth

factors, which play a role in PF development (258, 259). Activation

of the classical Wnt pathway is a common feature observed in

fibrotic disorders, occurring in systemic fibrotic conditions like SSc

and isolated organ fibrosis in the lung, kidney, or liver (19, 260–

265). The data suggest that inhibition of the classical Wnt pathway

may be an effective way to target TGF-b signaling in fibrotic

diseases (266). Several Wnt genes, including Wnt2, Wnt5a,

Wnt7b, Wnt11, and Wnt13, are expressed in developing and

adult lungs (251). In the adult lung, the Wnt pathway maintains

balance by regulating stem and precursor cells in both healthy

conditions and during the response to injury (267).

Wnt/b-catenin signal transduction induces an anti-apoptotic

and pro-fibrotic phenotype in lung fibroblasts, leading to fibroblast

proliferation and differentiation into myofibroblasts, exacerbating

lung tissue fibrosis (268). Activation of AEC II by Wnt/b-catenin
increases the production of IL-1b, stimulating inflammatory and

pro-fibrotic responses (269). Atypical activation of Wnt also

stimulates fibroblast proliferation and increases the synthesis of

ECM components (270). In adult lungs, the Wnt pathway

maintains homeostasis by regulating stem and precursor cells,

both in healthy conditions and during response to injury (267,

271). Additionally, Wnt signaling is involved in epithelial cell

proliferation, EMT, myofibroblast differentiation, and collagen

synthesis (217). In the epithelial cells of the lungs, Wnt stimulates

the production of surfactant and AEC II into AEC I differentiation

(272). In contrast, in lung fibroblasts, Wnt increases proliferation

and fibronectin expression and inhibits apoptosis (270). Recent

studies have also demonstrated the activation of Wnt signaling in

IPF, suggesting that this pathway plays a role in the pathogenesis of

human PF (19, 217). Inhibition of Wnt/b-catenin signaling leads to

the neutralizing of bleomycin-induced PF (273). The Wnt pathway

takes part in PF pathogenesis through multiple mechanisms,

including: (1) Wnt/b-catenin signaling pathway induces the anti-

apoptotic and pro-fibrotic phenotype in lung fibroblasts, leading to

fibroblast proliferation and their differentiation into myofibroblasts,

exacerbating lung tissue fibrosis (268). (2) Activation of AEC II by

Wnt/b-catenin increases IL-1b production, stimulating

inflammatory and pro-fibrotic responses (269). (3) Atypical

activation of Wnt also stimulates fibroblast proliferation and

increases the synthesis of ECM components (270).

Additionally, cooperative signaling pathways of Wnt/b-catenin
and TGF-b play an essential role in the development of PF: TGF-b
was shown to induce EMT synergistically with Wnt/b-catenin
(274). These findings suggest that targeting the interplay between

TGF-b and Wnt/b-catenin may be a promising therapeutic
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approach for PF. By inhibiting or modulating the cross-talks

between these pathways, it may be possible to intervene in the

pathogenesis of PF and potentially mitigate its progression.

4.4.3 Notch signaling pathway
The Notch signaling pathway is composed of four members in

mammalian cells (275). With the exception of Notch4, all genes

have been shown to regulate myofibroblast differentiation (276–

279). Notch1 and Notch3 are known to stimulate lung fibroblasts

(280). Moreover, Notch2 inhibit TGF-b induced a-SMA and

collagen I gene expression by down-regulating Notch3 in

myoblasts in hepatic stellate cells (278, 281), while in alveolar

epithelial cells, Notch1 induces phosphorylation of Smad3 and

activates a-SMA gene transcription in a manner dependent on

SRF binding sites and TGF-b control elements (282). Other

experiments have also shown that Notch1 inhibits fibroblast

proliferation dependent on Wnt11-dependent WISP-1 expression

(283). Notch signal transduction in fibrosis (including scleroderma

(284)), may be due to the activation of this signaling pathway for

myofibroblast differentiation, including through EMT)and

endothelial-mesenchymal transformation.

The Notch signaling pathway is highly conserved and plays a

crucial role in embryonic development and the homeostasis of

various organs, including the lungs (285). It functions through

paracrine signaling and one-way transmembrane receptors,

regulating cell development during organogenesis. In adult lungs,

along with other signaling pathways, the Notch pathway regulates

stem cell functions and wound healing (285, 286). Enhanced Notch

signaling has been observed during the development of PF (287),

and the suppression of JAG1, Notch1, NICD, and Hes-1 has been

shown to mitigate bleomycin-induced PF (288).
4.5 Effects of MMT on PF

MMT has been shown to contribute to interstitial fibrosis in

patients with chronic renal allograft injury, a mouse model of

unilateral ureteral obstruction (UUO), and progressive chronic

kidney disease (1). Macrophages expressing CD68+ and a-SMA+

markers play a significant role in collagen production, particularly

collagen I, and are associated with lung injury and interstitial

fibrosis (12, 196, 289). MMT cells with M2 phenotype have been

found to contribute to PF in animal models, including the lungs of

rats with unilateral ureteral obstruction (UUO) (1, 196, 289).

Eplerenone reduced the accumulation of MMT cells in the lung.

In UUO rat lung fibrosis, UUO-induced lung injury, and fibrosis,

MMT cells were found to account for the myofibroblast group,

confirming that MMT plays a role in PF. These MMT cells in the

lung exhibited an apparent M2 phenotype, indicating that the MMT

process may be an important pathway leading to PF (12).

MMT plays a crucial role in the progression of chronic

inflammation to pathological fibrosis, and the severity of interstitial

fibrosis is closely related to the number of MMT cells (1, 51, 196, 289).

MMT contributes to an increase in the population of myofibroblasts in

the lungs, which have a strong proliferative capacity and further

promote the proliferation of fibroblasts. Myofibroblasts, a subset of
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activated fibroblasts, are primarily responsible for organ deformation

by inducing the deposition of fibrous collagen during tissue fibrosis

(290). Upon transdifferentiation, myofibroblasts secrete various

components of the extracellular matrix, including collagen, leading to

excessive deposition of extracellular matrix in the lungs, a key

pathological characteristic of PF. This excessive deposition disrupts

the normal alveolar structure, resulting in alveolar collapse and reduced

lung function.

The pro-fibrotic cytokine TGF-b1 is an essential initiator of

organ inflammation and fibrosis by activating the downstream

Smad signaling cascade, especially the Smad3 signaling cascade (6).

Smad3 is a crucial transcription factor for classical TGF-b1 signal

transduction (234, 291). The inhibition of MMT by targeting

cytokines such as TGF-b1 or blocking the Smad3 signal pathway

can slow down the process of PF. Moreover, the non-receptor

tyrosine kinase Src, which can be activated by TGF-b1, has been

closely associated with tissue fibrosis. Inhibition of Src has been

shown to block MMT in animal models and reduce the severity of PF

induced by bleomycin (292–294). However, further research is

needed to fully understand the role of MMT in Src-mediated PF

and explore the potential of Src-targeted therapy for blocking MMT

and treating PF.

In summary, MMT plays an essential role in the process of PF,

which accelerates the process of PF by promoting the

transdifferentiation of macrophages into myofibroblasts. Inhibiting

the MMT process represents a potential therapeutic target for anti-

fibrotic treatment. Future studies should focus on elucidating the

regulatory mechanisms of MMT and its specific role in PF to provide

novel insights and treatment strategies for PF. A comprehensive

treatment approach considering various factors, including

inflammation control, inhibition of the fibrotic process, and

improvement of lung function, is essential for effectively

managing PF.
4.6 Effects of MMT on lung cancer

Lung cancer is the leading cause of death worldwide. For

decades, it has remained the second most common cancer and

the leading cause of cancer deaths, accounting for about 11.4% of

new cancer cases and 18% of cancer deaths globally in 2020.

Cancer‐associated fibroblasts (CAFs) are essential in tumor

microenvironment (TME) driven cancer progression. CAFs are

the most prominent stromal components (295). CAFs, a subtype

of myofibroblasts, contribute to the malignancy and advancement

of cancer (296). Cancer cells possess heterogeneity, versatility, and

adaptability, resulting in primary and secondary drug resistance

(297). The degree of macrophage-myofibroblast transition (MMT)

has been found to be closely associated with the prognosis of certain

cancers (297). MMT is an essential source of CAFs in non-small cell

lung cancer (NSCLC). The hematopoietic transcription factor

Runx1 has been identified as a critical regulator of MMT in

cancer patients. Inhibition of Runx1, macrophage-specific and

systemic, effectively blocks MMT-driven tumor formation in vivo,

making it a potential therapeutic target for eliminating pro-tumor

CAFs in patients with NSCLC (298).
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Myofibroblasts can secrete various growth factors and

cytokines, such as TGF-b and PDGF, which can stimulate the

proliferation and migration of tumor cells and promote the progress

of cancer. The TGF-b/Smad3 signal pathway is a critical regulatory

factor promoting tumor microenvironment (299–301). It is

essential to initiate MMT in chronic inflammatory diseases,

including cancer. The MMT process and tumor growth in lung

cancer are tightly regulated by Smad3 (302). TGF-b/Smad3 signal

transduction is a key regulatory factor in the tumorigenic

microenvironment. Recent evidence indicates that TGF-b can

trigger the M1/M2 polarization of TAMs by activating Smad2/3

and PI3K/AKT pathways, thus enhancing the transcription of

tumorigenic effectors such as IL-10, VEGFA, and CXCR4 (303).

However, targeting Smad3 also inhibits T cell anti-cancer

immunity, highlighting the complexity of potential therapeutic

strategies (5, 207, 293, 304).

MMT is a critical pathophysiological process within the tumor

microenvironment, leading to the generation of myofibroblasts that

secrete inflammatory factors and fibrosis-related proteins in tumor

tissues, promoting inflammation and fibrosis changes in the tumor

microenvironment (305). Co-expression of TAM markers (CD68)

and CAF markers (a-SMA) has been observed in lung, renal, and

prostate cancers, indicating the presence of MMT in these types of

cancer (1, 2, 196, 301). An interesting phenomenon in MMT is the

further differentiation of TAMs into CAFs. Silencing Smad3

specifically in macrophages effectively inhibits MMT and

consequently impedes CAF-mediated cancer progression. These

findings highlight the significance of macrophage Smad3 in

regulating CAFs through MMT, providing a specific therapeutic

target for cancer immunotherapy (5). Given the critical role of

MMT in cancer progression, inhibiting MMT may become a new

target for cancer treatment. By blocking the process of MMT, the

support of the tumor microenvironment can be weakened, the

proliferation and migration of cancer cells can be inhibited, and the

prognosis of cancer can be improved. Therefore, it is significant to

study the mechanism and intervention strategy of MMT for

developing new cancer treatment methods and improving

cancer prognosis.
5 Summary and prospect

Organ fibrosis is a common pathway by which various chronic

diseases progress to an end-stage state. The conversion of MMT is a

process where bone marrow-derived macrophages differentiate into

myofibroblasts, promoting organ fibrosis during injury. This paper

reviews the origin, distribution, and characteristics of macrophages

and myofibroblasts in organ fibrosis, along with their pathological

effects on diseases caused by organ fibrosis. The purpose is to

further understand MMT and its signaling pathway and to

determine a new target for organ fibrosis treatment.

Current research on MMT primarily focuses on renal fibrosis,

with limited studies on fibrotic diseases in other organs. The

mechanisms and influencing factors of the conversion of MMT

still require deeper exploration. Under specific conditions, MMT

provides new ideas and possibilities for treating kidney, lung, and
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liver diseases. Future studies need to focus on the crucial role of the

TGF-b/Smad3 signaling pathway in the progression of MMT and

organ fibrosis. Targeting the TGF-b/Smad3 signaling pathway for

MMT treatment is expected to become a viable strategy for the

prevention and treatment of progressive fibrosis.

The discovery of the MMT process also provides a new

direction for studying the possible mechanisms by which

macrophages promote fibrosis and offers a basis for intervening

in myofibroblast activity through multiple pathways. MMT not

only serves as a new therapeutic target for the prevention of fibrotic

diseases but also acts as a key checkpoint for the development of

chronic inflammation into pathogenic fibrosis. Understanding and

elucidating the phenomenon of MMT and its potential signaling

pathways will aid in identifying therapeutic targets for fibrosis.
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