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Background: Cutaneous T-cell lymphoma (CTCL) is a heterogeneous group of

T-cell lymphomas characterized with the presence of clonal malignant T cells.

Mycosis fungoides (MF) is the most common type of CTCL. However, the

pathogenesis of MF and the role of the tumor microenvironment (TME)

remain unclear.

Methods: We performed single-cell RNA sequencing on tumor and adjacent

normal tissues and peripheral blood mononuclear cell (PBMC) from patients with

advanced MF and healthy control (HC). We compared skin lesions in different

stages within the same patient to overcome inter-individual variability.

Results: The malignant clones displayed dual phenotypes characterized with

tissue-resident memory T cells (TRMs) and central memory T cells (TCMs). We

supposed that the tumor cells transformed from TRM-dominant phenotype to

TCM-dominant phenotype during MF progressed from early-stage to advanced-

stage. The cancer-associated fibroblasts (CAFs) showed active role in TME. The

occurrence of inflammatory CAFs (iCAFs) may represent the advanced-stage MF.

There may be mutual positive feedback of the crosstalk between tumor cells and

CAFs during the MF development. Tumor cells promote CAF generation, and the

CAFs, in turn, improve the invasiveness and metastasis of the malignant T cells

through the IL-6/JAK2/STAT3/SOX4 or IL-6/HIF-1a/SOX4 pathway. SOX4 may

be a critical regulatory gene of this positive feedback loop. Target SOX4 may

disrupt the interactions between tumor cells and CAFs.
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Abbreviations: CTCL, cutaneous T-cell lymphoma; M

TME, tumor microenvironment; TRM, tissue-resident

central memory T cell; NF, normal fibroblast; CAF, canc

EMT, epithelial–mesenchymal transition.
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Conclusion: Our study revealed the origin and evolution trajectory of MF and

uncovered the intercellular interactions between malignant T cells and CAFs,

providing new insights into the novel treatment targets of MF.
KEYWORDS

mycosis fungoides (MF), cutaneous T cell lymphoma (CTCL), tissue resident memory T
cell (TRM), cancer-associated fibroblast (CAF), tumor microenvironment, SOX4
Introduction

Primary cutaneous T-cell lymphomas (CTCLs) are groups of

peripheral non-Hodgkin’s lymphomas. Mycosis fungoides (MF) is

the most common type of CTCL, accounting for approximately

53% of all cutaneous lymphomas (1). MF is characterized by a

unique clinical course and a relatively indolent biologic behavior in

the early stage. It progresses slowly over years or even decades,

presenting in the form of patches, plaques, and, then, tumors. The

disease could invade peripheral blood, lymph nodes, or viscera (1)

eventually. The general 5-year survival rate of MF is 70%–80%;

however, 5%–55% of patients undergo large-cell transformation

during the disease process. The prognosis of this part of patients is

poor, with an average survival period of 2 to 36 months (2). It

supposed that neoplastic T cells in MF derived from mature,

monoclonal, and skin-resident memory T cells (TRMs) (3).

However, recent studies suggest that malignant T cells are derived

from immature circulating precursor cells (4–6). The origins and

development trajectory of MF remain controversial.

More studies have been focused on elucidating the roles of

tumor microenvironment (TME) in the development and

progression of CTCL. Rindler et al. (7) explored the TME of

patients with advanced MF. Moreover, a molecular subtyping

scheme for malignant T cells was reported in previous study (8).

They also deciphered the complex crosstalk among immune cells

for each subtype within the TME. Du et al. reported a landscape of

immunosuppressive TME mediated by interactions between

malignant T cells and myeloid cells (9). However, the role of

other TME components in MF, such as fibroblasts, endothelial

cells, and B cells, has not been fully understood.

In order to study the role of cancer-associated fibroblasts

(CAFs) in TME during MF development, we performed single-

cell transcriptomic analysis on eight samples from two patients with

advanced MF and a matched healthy control (HC). Copy number

variations (CNVs) and pseudotime analysis were applied to define

malignant subclones and track the progression trajectory of

malignant T cells in MF.
F, mycosis fungoides;

memory T cell; TCM,

er-associated fibroblast;
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Our analysis revealed the origin and phenotypic changes of

malignant T cells during the evolution of MF. Four CAF subclusters

in MF and adjacent tissues revealed their changes of gene

expression at different stages of the disease. The complex

interaction between malignant T cells and fibroblasts illustrated

the role of tumor cells in TME remodeling and the influence of

CAFs on tumor progression.
Methods

Patient recruitment and sample processing

Patients were recruited from the Skin Lymphoma Clinic of

Hangzhou Third People’s Hospital, China (Table 1). All patients

included did not receive any topical or systemic therapies in the past

6 months prior to biospecimen collection. All diagnoses were

verified by at least two dermatopathologists according to World

Health Organization-European Organization for Research and

Treatment of Cancer (WHO-EORTC) classification criteria (10).

We took biopsies from both flat and palpable lesion at the same

time from two patients with MF. Additionally, the corresponding

adjacent non-lesional skin and PBMCs were collected in MF1. Each

freshly dissociated sample was transported to laboratory

immediately. These MF skin tissues together with the HC sample

were performed single-cell RNA sequencing (scRNA-seq). Data

were analyzed using the R package Seurat (11). All samples were

obtained after informed consent and approval from the Medical

Ethics Committee of Hangzhou Third hospital.
Preparation of single-cell suspensions

Each sample was subsequently minced on ice to less than 1-mm

cubic pieces, followed by enzymatic digestion. Samples were then

centrifuged at 300 relative centrifugal force (rcf) for 30 s at room

temperature and removed the supernatant without disturbing the

cell pellet. Next, 1× Phosphate Buffered Saline (PBS) (calcium and

magnesium free) containing 0.04% weight/volume Bovine Serum

Albumin (BSA) (400 µg/mL) was added and then centrifugation at

300 rcf for 5 min. The cell pellets were resuspended in 1 mL of red

blood cell lysis buffer and incubated for 10 min at 4°C. After red
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blood cell lysis, samples were resuspended in 1 mL of PBS

containing 0.04% BSA. Next, samples were filtered over

Scienceware Flowmi 40-µm cell strainers (VWR). After tumor

dissociation, cell concentration and cell viability were determined

by hemocytometer and Trypan Blue staining.
Single-cell RNA-seq data preprocessing

The Cell Ranger software pipeline (version 5.0.0) provided by

10× Genomics was used to demultiplex cellular barcodes, map reads

to the genome and transcriptome using the STAR aligner, and

down-sample reads as required to generate normalized aggregate

data across samples, producing a matrix of gene counts versus cells.

We processed the unique molecular identifier (UMI) count matrix

using the R package Seurat (11) (version 3.1.1). To remove low

quality cells and likely multiple captures, which is a major concern

in microdroplet-based experiments, we applied a criterion to filter

out cells with gene numbers less than 200, UMI less than 1,000, and

log10GenesPerUMI less than 0.7. We further discarded low-quality

cells where >20% of the counts belonged to mitochondrial genes

and >5% of the counts belonged to hemoglobin genes. Additionally,

we applied DoubletFinder package (12) (version 2.0.2) to identify

potential doublet. After applying these QC criteria, 42,480 single

cells were included in downstream analyses. Library size

normalization was performed with NormalizeData function in

Seurat (11) to obtain the normalized count. Specifically, the

global-scaling normalization method “LogNormalize” normalized

the gene expression measurements for each cell by the total

expression, multiplied by a scaling factor (10,000 by default), and

the results were log-transformed.

Top variable genes across single cells were identified using the

method described in Macosko et al. (13). The most variable genes

were selected using FindVariableGenes function (mean.function =

FastExpMean, dispersion.function = FastLogVMR) in Seurat (11).

To remove the batch effects in single-cell RNA-sequencing data, the

mutual nearest neighbors (MNNs) presented by Haghverdi et al.

were performed with the R package batchelor (14). Graph-based
Frontiers in Immunology 03
clustering was performed to cluster cells according to their gene

expression profile using the FindClusters function in Seurat (11).

Cells were visualized using a two-dimensional Uniform Manifold

Approximation and Projection (UMAP) algorithm with the

RunUMAP function in Seurat (11). We used the FindAllMarkers

function (test.use = presto) in Seurat (11) to identify marker genes

of each cluster. For a given cluster, FindAllMarkers identified

positive markers compared with all other cells. Then, we used the

R package SingleR (15) (version 1.4.1), a novel computational

method for unbiased cell-type recognition of scRNA-seq, with the

reference transcriptomic datasets “Human Primary Cell Atlas” (16)

to infer the cell of origin of each of the single cells independently

and identify cell types.
Copy number variation analysis

To estimate the initial CNVs for each region, we utilized the

inferCNV (17) R package. The CNV of total cell types was

calculated on the basis of the expression level derived from

single-cell sequencing data for each cell, with a cutoff of 0.1.

Genes were sorted according to their chromosomal location, and

a moving average of gene expression was computed with a window

size of 101 genes. The expression values were then centered to zero

by subtracting the mean. The T cells were considered as malignant

cells, whereas all other cells were considered normal cells. De-

noising techniques were applied to generate the final CNV profiles.
Differentially expressed gene analysis

Differentially expressed genes (DEGs) were analyzed using the

FindMarkers function (test.use = presto) in Seurat (11). P-value <

0.05 and |log2foldchange| > 0.58 were set as the threshold for

significantly differential expression. Gene Ontology (GO)

enrichment and Kyoto Encyclopedia of Genes and Genomes

(KEGG) pathway enrichment analysis of DEGs were respectively

performed using R based on the hypergeometric distribution.
TABLE 1 The basic information of the patients at time of sampling.

Patient Subject ID Stage Age Sex Disease stage

MF1 MF1_b1 Plaque 69 Male T4N1M0B0(IIIA)

MF1_b2 Adjacent non-lesional skin of MF1_b1

MF1_c1 Tumor

MF1_c2 Adjacent non-lesional skin of MF1_c1

PBMC1 –

MF2 MF2_a1 Patch 75 Male T4N1M0B0(IIIA)

MF2_c1 Tumor

HC HC Healthy control skin 62 Male –
MF, mycosis fungoides; PBMC, peripheral blood mononuclear cell; HC healthy control.
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Pseudotime analysis

To determine the developmental pseudotime, we utilized the

Monocle2 package (18). The raw count was first converted from

Seurat object into CellDataSet object with the importCDS function

in Monocle. The differentialGeneTest function of the Monocle2

package was used to select ordering genes (qval < 0.01), which were

likely to be informative in the ordering of cells along the pseudotime

trajectory. We performed dimensional reduction clustering analysis

using the reduceDimension function, followed by trajectory

inference using the orderCells function with default parameters.

Gene expression was plotted with the plot_genes_in_pseudotime

function to track changes over pseudotime.
Gene set variation analysis

To conduct the gene set variation analysis (GSVA), we utilized

the GSEABase package (version 1.44.0) to load the gene set file. The

gene set file was downloaded and processed from the KEGG

database (https://www.kegg.jp/). For assigning pathway activity

estimates to individual cells, we employed GSVA (19) with

standard settings, implemented in the GSVA package (version

1.30.0). The differences in pathway activities per cell were

calculated using the LIMMA package (version 3.38.3).
SCENIC analysis

The SCENIC analysis was conducted using the motifs database

for RcisTarget and GRNboost (SCENIC (20) version 1.1.2.2, which

corresponds to RcisTarget 1.2.1 and AUCell 1.4.1) with the default

parameters. In detail, we identified transcription factor (TF)–

binding motifs over-represented on a gene list with RcisTarget

package. The AUCell package was used to score the activity of each

group of regulons in each cell. The connection specificity index for

all regulons was calculated with the scFunctions (https://

github.com/FloWuenne/scFunctions/) package.
Cell–cell communication analysis

The CellPhoneDB (21) (v2.0) was performed to detect

biologically relevant ligand–receptor (LR) interactions from

single-cell transcriptomics (scRNA-seq) data. We defined a ligand

or a receptor as “expressed” in a particular cell type if 10% of the

cells of that type had non-zero read counts for the ligand/receptor

encoding gene. We evaluated the statistical significance of these

interactions by shuffling the cluster labels of all cells and repeating

the above steps, producing a null distribution for each LR pair in

pairwise comparisons between two cell types. After running 1,000

permutations, P-values were calculated with the normal

distribution curve generated from the permuted LR pair

interaction scores. To establish networks of cel l–cel l
Frontiers in Immunology 04
communication, we connected any two cell types where the

ligand was expressed in the former cell type and the receptor in

the latter. R packages Igraph and Circlize were used to visualize the

cell–cell communication networks.
Immunohistochemistry
and immunofluorescence

Paraffin-embedded tissue microarray was dewaxed and

rehydrated to retrieve the antigens. The sections were incubated

with primary antibodies at 4°C overnight. After washing with PBS,

the horse radish peroxidase–conjugated secondary antibody was

added and further incubated for 2 h. The diaminobenzidine

(Beyotime) kit was used to visualize antibody binding. After

washing, nuclei were stained with hematoxylin. Primary

antibodies used in immunohistochemistry (IHC) and

immunofluorescence (IF) are listed as follows: cluster of

differentiation 4 (CD4) (1:100, Abcam, ab133616, clone

EPR6855), CD8 (1:1,000, Proteintech, 66868-1-lg, clone 1G2B10),

SRY-related high-mobility-group box 4 (SOX4) (1:200, CUSABIO,

CSBPA022431LA01HU), Nuclear Receptor Subfamily 4 Group A

Member 1 (NR4A1) (1:200, Proteintech, 25851-1-AP), CD103

(1:100, Abcam, ab224202, EPR22590-27), Fibroblast Activation

Protein Alpha (FAP) (1:250, Abcam, ab207178, EPR20021), Twist

Family BHLH Transcription Factor 1 (TWIST1) (1:200,

Proteintech, 25465-1-AP), Matrix Metallopeptidase 2 (MMP2)

(1:200, Proteintech, 10373-2-AP), and Interleukin 6 (IL-6) (1:200,

Proteintech, 21865-1-AP).
Survival analysis

The Gene Expression Omnibus (GEO) gene expression

and survival data were downloaded from the National Center for

Biotechnology Information (NCBI) ‘s GEO (22) and are accessible

through GEO series accession number GSE168508 (https://

www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE168508). The

samples were grouped into high and low groups based on the

optimal cut point determined by R function surv_cutpoint. Kaplan–

Meier survival curves were plotted by survminer package.

Illustration tool: Figure 7 was created with BioRender.com

(https://biorender.com).
Results

Single-cell RNA sequencing revealed the
cell profile in MF

We collected and analyzed the scRNA-seq data of eight samples

from one HC and two patients with advanced-stage MF without

treatment, including one MF (MF1) and one patient with large cell

transformation (MF2) (Figure 1A; Table 1). The two patients were
frontiersin.org
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confirmed by histopathology examination (Figure 1B). MF1 was

followed up, and the skin lesions resolved partially after 6 months of

treatment (Figure 1A). We collected four skin lesions in different

stages and two adjacent tissues from patients with MF, together

with a peripheral blood mononuclear cell (PBMC) sample from

MF1 before treatment. Matched non-cancer skin sample was

collected form a HC. In total, 42,480 individual cells from eight

samples were passed quality control criteria (Supplementary

Table 1), which were unsupervisedly clustered into 17 major

clusters after scRNA-seq (Figure 2A). These clusters were

visualized by UMAP, with the MNNs employed to remove the

batch effects (Supplementary Figure 1A).

According to the specifically expressed genes in each cluster, 10

cell types were annotated (Figure 2B; Supplementary Figure 1B),

including B cells (653 cells), endothelial cells (4,101 cells), epithelial

cells (4,761 cells), fibroblasts (7,087 cells), mast cells (786 cells),

myeloid cells (1,305 cells), neutrophils (262 cells), smooth muscle

cells (1,378cells), normal T cells (13,729 cells), and malignant T cells

(6,375 cells). To further confirm the annotation of clustered cells,

the specifically expressed genes of each cell types were identified

(Figure 2D). We performed large-scale CNVs analysis to define the

malignant cells. Malignant T cells showed dramatically higher CNV

level compared with other cell types (Figure 2F). Although most of

the 10 cell types were found in all skin samples, the proportion of
Frontiers in Immunology 05
each cell type is largely varied among each sample (Figures 2C, E).

This heterogeneity especially reflected in the differential enrichment

of T cells between patients with MF and HC (Figure 2E).
Transcriptomic heterogeneity of malignant
T cells

T cells from each donor were re-clustered into16 distinct cell

clusters followed by visualization using UMAP (Supplementary

Figure 2A). Furthermore, to identified the malignancy of the

subpopulations, large-scale chromosomal CNVs inferred from

transcriptome sequencing were examined (Figures 3D, F).

Clusters C01, C03, C11, and C13 showed high level of CNVs,

which was also displayed in the UMAP plot (Supplementary

Figure 4A). We defined those clusters as malignant T cells

(C01_CD4-Malignant, C03_CD4-Malignant, C11_CD4-

Malignant, and C13_CD4-Malignant). For the rest clusters, the

expressions of genes associated with typical T-cell functions were

analyzed for annotation, such as C04_CD4-CCR7, C05_CD4-IL7R,

and C08_CD8-GZMK (Figures 3A, B).

The reactive T cells from each sample showed a high degree of

overlap, whereas the malignant T cells grouped into clear patient-

specific clusters, demonstrating the cellular heterogeneity of
FIGURE 1

Clinical and histopathological pictures of two patients with MF. (A) Clinical pictures of MF lesions biopsied for single-cell RNA sequencing. The
pictures of MF1 displaying the lesion in the same location before and after treatment. (B) Representative histopathological pictures of MF lesions
from two patients (biopsies for initial MF diagnosis).
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malignant T cells (Figure 3C). The percentage of malignant T cells

in the overall T-cell population varied significantly among samples,

even among those from the same patient (Supplementary

Figure 2B), adding to the complexity of inter-tumor heterogeneity

among MF lesions. The disease heterogeneity in the molecular level

has been indicated in gene expression among T-cell subtypes.

Compared with the reactive T cells, the expression of tumor-
Frontiers in Immunology 06
associated genes upregulated in malignant T-cell subsets,

including Killer cell immunoglobulin-like receptor 3DL2

(KIR3DL2), Thymocyte Selection Associated High Mobility

Group Box (TOX), Gametocyte Specific Factor 1 (GTSF1), CD40

Ligand (CD40LG) (Figure 3E; Supplementary Figure 3). The

distribution pattern of malignant and normal T cells displayed on

the UMAP plot (Figure 3G).
FIGURE 2

Single-cell transcriptional profiling of patients with MF and HC. (A) Workflow of sample collection, single-cell dissociation, cell sorting, and
computational analysis for scRNA-seq data. (B) UMAP visualization of 42,480 single cells from two patients with MF and one HC. (C) UMAP
visualization of 10 cell types sourced from each sample. (D) The heatmap displays the top five significantly differentially expressed (SDE) genes in
each cell type. (E) Stacked histogram showing the percentage of cells from various cell types in each sample. (F) Violin plots show CNV levels among
10 cell types.
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FIGURE 3

Transcriptional profiles of T-cell subpopulations in patients with MF and HC. (A) UMAP visualization of 16 T-cell subpopulations. (B) Heatmap for
gene expression levels of top five SDE genes of T-cell subtypes. (C) UMAP visualization of the T cells sourced from each sample. (D) The heatmap
displays large-scale CNVs of T cells. The red color represents high CNV level and blue represents low CNV level. (E) Expression levels of specific
markers for T-cell subtypes are plotted onto the UMAP plots. (F) Violin plots show CNV levels among 16 T-cell types. (G) Malignant and normal T
cells in the UMAP plot are marked by different colors, malignant T cells in red and normal T cells in blue. (H) Volcano plots of DEGs in malignant T
cells comparing MF1_b1 (plaque) and MF1_c1 (tumor) (log2 fold change > 1.5, p < 0.05). (I) Volcano plots of DEGs in malignant T cells comparing
MF2_a1 (patch) and MF2_c1 (tumor) (log2 fold change > 1.5, p < 0.05). (J) Venn diagram of significantly downregulated genes comparing gene
expression in the malignant clone of patch/plaque vs. tumor lesion.
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FIGURE 4

Gene regulatory networks in MF. Pseudotime trajectory analysis of CD4+ and CD8+ T cells. (A) Violin plots show the expression of exhausted T and
TCM cell markers in T-cell subtypes (C01–C06, C08, C10, C11, C13, and C16). (B) Violin plots show the expression of TRM cell markers in T-cell
subtypes (C01–C06, C08, C10, C11, C13, and C16). (C) Expression levels of specific markers for T-cell subtypes are plotted onto the UMAP plots. (D)
Immunohistochemical stain of CD103 (ITGAE) and NR4A1 in skin biopsies of patch stage MF lesion, tumor stage MF lesion, and LP lesion. Original
magnification was ×20. Scale bar, 100 mm. (E) GSVA analysis indicates enriched pathways of each subset of CD4+ T cell. (F) Density plot showing the
distribution of each CD4+ T-cell subpopulation along the pseudotime inferred by analysis with Monocle2. (G) Reactive T cells were selected as the
start cells, color key from dark to bright indicates cancer progression from the early to the late stage. (H) Trajectory plots with the expression of
respective malignant T-cell differentiation-associated genes: highest expression in red and lowest expression in gray. (I) Heatmap showing the
dynamic changes in gene expression along the pseudotime of CD4+ T cells. Color key from blue to red indicates relative expression levels from low
to high. (J) Immunofluorescence staining of CD103 (ITGAE) (red), NR4A1 (green) on paraffin-embedded tissue samples of tumor stage lesion from
MF2 patient. 4',6 - diamidino - 2 - phenylindole) (DAPI) (blue) was used to visualize cell nuclei. Scale bar, 50 mm.
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Change of cell phenotypic revealed the
origin of malignant cells

In this study, we compared patches or plaque with tumors

within the same patient to overcome inter-individual variability.

We profiled the transcriptional expression patterns of all T cells and

identified the DEGs in the malignant T cells in different stages of

two patients (Figures 3H, I). Eighteen DEGs consistently

upregulated in two patients with disease progression, including

Transcription Factor 7 (TCF7), Lymphocyte Activating 3 (LAG3),

Granzyme K (GZMK), Nuclear Receptor Subfamily 4 Group A

Member 2 (NR4A2), and SOX4 (Figure 3J). TCF7 and LAG3, which

upregulated in C01_CD4-Malignant and C11_CD4-Malignant

subclusters, are the markers of precursor exhausted T cells

(23) (Figure 4A).

NR4A2 (Nurr1) is associated with tissue retention of TRMs.

Similar to NR4A2, NR4A1 (Nur77) and AHR are the genes involved

in the development and function of TRM cells (24–26). NR4A1

showed high expression level in skin-derived malignant T cells

(Figures 4B, C). In addition, Galectin 3 (LGALS3) is a new marker

for human skin TRMs, which is also significantly upregulated in

C01, C10, C11, and C13 subclusters (Figure 4B). Moreover, these

clusters do not express KLRG1 (Figure 4B). The TRM cells originate

from KLRG1-precursor cells, which begin to mature when entering

into the tissues, and migrate into the epidermis via chemokine-

dependent mechanisms. These precursor cells eventually acquire

constitutive surface expression of CD69 and CD103 Integrin

Subunit Alpha E (ITGAE), which are recognized as key markers

of skin TRM cells (27).

HC and IF staining were performed to validate the expression of

TRM markers, including CD103 and NR4A1 (Figures 4D, J). The

results showed that both CD103 and NR4A1 were increased in the

dermis of tumor and patch lesion in advantage-stage MF compared

to lichen planus patients (Figure 4D). However, the circulating

neoplastic cells from the PBMCs of MF1 showed lower levels of skin

homing molecules genes (CCR4 and CCR10) and tissue-resident

associated genes (NR4A1 and CD103) (Supplementary Figure 2D),

compared with the skin-derived malignant T cells. Based on the

above results, the gene expression pattern of skin-derived malignant

T cells was similar to TRM. Furthermore, the CD4+ malignant T

cells (mainly in MF2) showed high expression of TCM markers

(CCR7 and SELL) (Figures 4A, C). GSVA analyses demonstrated

that Wnt, JAK−STAT, Notch and IL−17−signaling−pathway

upregulated in malignant CD4+ T cells (Figure 4E).

We performed trajectory analysis on CD4+ T cells to trace the

origin of malignant cells (Figures 4F–I). The pseudotime trajectory

started with the subclones containing the fewest numbers of CNVs

and ended with subclones displays more extensive CNVs

(Figure 4G; Supplementary Figure 4B). Consistent with the CNV

results, the expression of tumor-associated genes, including

KIR3DL2, TOX, TWIST1, and GTSF1, upregulated along the

CD4+ T-cell trajectory (Figure 4H; Supplementary Figure 4C). By

analyzing the variation of T-cell differentiation–associated genes

along the pseudotime trajectory (Figures 4H, I), we found the TF
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KLF2 and its downstream target gene S1PR1 were reduced from

benign to malignant CD4+ T cells (Figures 4H, I), which is a critical

step in tissue residence and differentiation of TRM. Besides, the

TCMmarker of CCR7 and SELL upregulated along the CD4+ T-cell

trajectory (Figure 4H). This is consistent with above results that the

CD4+ malignant T cells display dual TRM and TCM

cell phenotypes.
Transcriptional expression patterns of CAFs
in MF

CAFs play an essential role in carcinogenesis, and it suggested

that the CAFs in activated phenotypes can promote MF progression

in the early stage (28). To investigate the biological characteristics of

CAFs in MF, the fibroblasts isolated from each skin samples were

re-clustered into nine subclusters (Supplementary Figure 5A). We

employed the ACTA2 (alpha-smooth muscle actin 2) , FAP,

S100A4, and platelet-derived growth factor receptor-b (PDGFRb)
as a set of markers to identify CAFs (Figure 5C) (29). According to

these CAF-related makers (Figure 5C; Supplementary Figure 5D),

the nine fibroblast subclusters were defined as four CAF subtypes

(CAF-SLPI, CAF-CD70, CAF-COL4A4, and CAF-WNT2) and

three normal fibroblast (NF) subtypes (NF-APOE, NF-COCH,

and NF-COMP) (Figures 5A, B).

Typical fibroblast markers such as FAP, S100A4, and PDGFRb
were highly expressed in four CAF subclusters (Figure 5C). IHC

staining of CAF marker FAP showed that the FAP-positive cells from

tumor lesion were significantly increased and had a stronger staining

compared to the dermis of patch lesion in the same patients

(Figure 5G). CAFs can be recognized in all patients with MF but

were particularly enriched in para-cancerous tissues (Supplementary

Figure 5C). CAF-CD70 and CAF-SLPI were predominantly enriched

in para-cancerous tissues of plaque stage (MF1_b2), whereas CAF-

WNT2 and CAF-COL4A4 were mainly enriched in para-cancerous

tissues of tumor stage (MF1_c2) (Supplementary Figure 5C).

However, the distribution of NF subtypes overlapped in MF and

HC samples (Supplementary Figures 5B, C). This heterogeneity was

also observed in the pseudotime analysis of fibroblasts. The

differentiation trajectories started with NFs, whereas the CAFs

distributed over the two branches (state 1 and state 2) of the

trajectory (Figures 5D, E). The CAFs on two states upregulated the

extracellular matrix (ECM) signatures, including collagen molecules

(COL6A3), periostin (POSTN), Fibronectin 1 (FN1), Decorin

(DCN), Insulin Like Growth Factor Binding Protein 6 (IGFBP6),

Secretory Leukocyte Peptidase Inhibitor (SLPI) (Figure 5F), which

were associated with ECM and collagen fibril organization,

confirming their matrix CAF (mCAF) phenotype; whereas cells

differentiated along state 2, mainly from CAF-COL4A4 and CAF-

WNT2, showed upregulated expression of IL-6, IGF1, FBLN1, and

the complement genes (C3 and C7) (Figure 5F). These markers

representing an inflammatory CAF (iCAF) phenotype, which

indicates that the CAF-WNT2 and CAF-COL4A4 may engage in

immune modulation.
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The phenotypic heterogeneity indicates
the multiple sources of CAFs

As the main source of CAFs, NFs can be reprogrammed into

CAFs when they are stimulated by tumor cells or other TME
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components (30, 31). Several receptors involved in cell signal

transduction, such as transforming growth factor beta receptor 1/

2/3 (TGFBR1/2/3), fibroblast growth factor receptor 1 (FGFR1),

and PDGFRb , were upregulated in CAFs (Figure 5C;

Supplementary Figure 5E).
FIGURE 5

Transcriptional profiles of fibroblast subpopulations in patients with MF and HC. (A) UMAP visualization of seven fibroblast subpopulations. (B)
Heatmap for gene expression levels of top 10 SDE genes of fibroblast subtypes. (C) UMAP plots color-coded for the expression of marker genes for
CAF subtypes. (D) Density plot showing the distribution of each fibroblast subpopulation along the pseudotime inferred by analysis with Monocle2.
(E) NFs were selected as the start cells, color key from dark to bright indicates cancer progression from the early to the late stage. (F) Heatmap
showing the dynamic changes in gene expression along the pseudotime of fibroblasts. Color key from blue to red indicates relative expression levels
from low to high. (G) Immunohistochemical stain of SOX4, FAP, IL-6, TWIST1, and MMP2 in skin biopsies of patch stage MF lesion, tumor stage MF
lesion, and LP lesion. Original magnification was ×20. Scale bar, 100 mm. (H) Representative IF staining of FAP (red), SOX4 (green), and IL-6
(magenta) on paraffin-embedded tissue samples of tumor stage lesion from MF2 patient. DAPI (blue) was used to visualize cell nuclei. Scale bar, 50
mm. (I) GSVA analysis indicates enriched pathways of each subset of CD4+ T cell.
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Epithelial–mesenchymal transition (EMT) processing that is

induced by malignant cells is another important mechanism for

CAF formation. The EMT-related TFs (EMT-TFs), such as TWIST1

and ZEB1/2, were significantly upregulated both in malignant T cells

and CAF subclusters (Supplementary Figure 5E). These TFs regulate

the expression of EMT markers, such as E-cadherin, and ultimately

promote EMT. The IHC experiment results showed that the
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expression of TWIST1 and MMP2 was significantly increased in

tumor stage lesion of MF, indicating an increasing level of EMT and

CAF-related matrix remodeling (Figure 5G). In addition, the GSVA

assays indicated that the identified CAFs showed common activated

signatures relating to EMT process, such as mammalian target of

rapamycin, FOXO signals, ECM–receptor interaction and regulation

of actin cytoskeleton (Figure 5I).
FIGURE 6

Cell–cell communications between T cells and fibroblasts. (A) Expression levels of SOX4 and IL-6R for T-cell subtypes are plotted onto the UMAP
plots. (B) Violin plots show the expression of specific markers in T-cell subtypes (C01–C06, C08, C10, C11, C13, and C16). (C) Overall survival (OS)
and progression-free survival (PFS) of patients with MF stratified by SOX4 expression from a publicly available GEO MF cohort of 49 RNA-seq
samples via Kaplan–Meier survival analysis. (D, E) The interaction number of T cells and fibroblast subpopulations in plaque and tumor stage lesion of
MF1 patient. The thickness of the line represents the interaction number between the subpopulations estimated by CellPhoneDB. (F) Summary of
selected immune-associated ligand–receptor pairs between malignant T cells and CAFs in all samples using CellPhoneDB. The size of each dot
denotes the p-value. The color gradient denotes the degree of interaction. (G) The major interactions between malignant T cells (C01 and C11) and
CAF subtypes.
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These results indicated that CAFs have a high capacity for ECM

synthesis and remodeling by producing ECM-degrading proteases,

such as matrix metalloproteinases and urokinase-type plasminogen

activators. By producing multiple ECM proteins and regulatory

molecules, CAFs involved in forming the TME, which promotes

tumor initiation, angiogenesis, dissemination, and metastasis.
CAFs promote tumorigenesis and
proliferation through the interaction with
malignant T cells

CAFs were involved in the tumor progression and promoted the

aggressiveness of malignant T cells through several pathways. CAFs

produced amounts of growth factors, cytokines, and chemokines,

including TGFb, IL-6, and CC-chemokine ligand 2, which may

contribute to the immune evasion of malignant cel ls

(Supplementary Figure 5E). The elevated expression of IL-6

receptor (IL-6R) and SOX4 were found in the C01, C11 and C13

malignant T subtypes (Figures 6A, B). The expression and

localization of SOX4, NR4A1, FAP, and IL-6 in corresponding

MF skin lesions were confirmed by IHC and IF (Figures 5G, H).

SOX4 and IL-6 were highly expressed in the tumor stage lesion

(Figure 5G). The expression of FAP (red), SOX4 (green), and IL-6

(magenta) were also detected by IF imaging (Figure 5H). On the

other hand, the Hypoxia Inducible Factor 1 Subunit Alpha (HIF-a),
Cancer Susceptibility 15 (CASC15) also upregulated in malignant

clones (Figure 6B).

SOX4 may play a crucial role in the cells transform of NFs to

pro-tumorigenic CAFs through the TGF-b/SMAD and Wnt/b-
catenin pathway. Additionally, we also suggest that CAFs

contribute to the MF progression by pathways of IL-6/Janus

kinase 2 (JAK2)/signal transducer and activator of transcription 3

(STAT3)/SOX4/SOX4 and IL-6/HIF-1a/SOX4. Next, we examined

the prognostic significance of SOX4 in a publicly available GEOMF

cohort. Kaplan–Meier survival analysis showed that higher SOX4

expression was correlated with shorter overall survival (OS) and

progression-free survival (PFS) in this GEO MF cohorts

(Figure 6C), confirming that SOX4 was associated with adverse

patient outcomes.

CellphoneDB (21) was performed to investigate the LR

interactions between T cells and fibroblasts (Figures 6D–G).

Results showed the cell–cell communications between malignant

T cells and CAFs in samples of different stages (plaque and tumor)

from MF1 (Figures 6D, E). By further comparing the T-CAF

interaction in plaque and tumor stage of MF1, we found that the

activated subtype of CAFs varied at different stages of MF. In

samples of plaque stage (Figure 6D), the CAF-SLPI and CAF-CD70

demonstrate a higher level of activity, whereas, in tumor stage

(Figure 6E), the interaction was mainly detected between CAF-

COL4A4/CAF-WNT2 and malignant T cells.

We further identified the significant LR interactions between

C01_CD4–Malignant, C03_CD4–Malignant, C11_CD4–

Malignant, C13_CD4–Malignant, and CAFs, such as MDK–LRP1,

PDGFD–PDGFRB, CXCL12–CXCR4, TGFBR1–TGFBR3, IGF1–

IGF1R, FGF7–FGFR1, CXCL12–DPP4, and MIF–EGFR
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interactions (Figure 6F). CXCL12–CXCR4 and CXCL12–DPP4

were confirmed to involve in promoting MF progression (32, 33).

FGF7–FGFR1 was detected in the interaction between CAFs and

the main malignant T subtypes (Figure 6G). The FGF–FGFR

signaling pathway regulates crucial cellular processes and is

essential for mesenchymal–epithelial communication (34).
Discussion

Growing insight into transcriptomic and immunological

characteristics of MF provides a more comprehensive

understanding of this disease, whereas the origin and

evolutionary trajectories of malignant T cells remain controversial

and need further elucidation. It was believed that early-stage MF

and L-CTCL represented two points on a disease continuum. It was

proposed that MF originates from a skin-resident effector memory

T-cell subset, whereas Sézary syndrome originates from TCMs (3).

Previous studies have found that malignant T cells originated from

a monoclonal population derived from mature skin-homing T cells

and developed in a multi-step and parallel transformation model

(8). Our in-depth analysis of patients with advanced-stage MF

revealed the origin and phenotypic changes of malignant T cells

during the MF progression. We explored the intercellular

interactions between malignant T cells and CAFs, reflecting

mechanisms of CAF format ion and contr ibut ion to

disease progression.

To explore the origin of malignant T cells, we tracked the

phenotypic changes in T-cell populations during the development

and progression of MF.We found the skin TRM cells originate from

KLRG1-precursor cells, which are also the origin of the long-lived

TCM cell population (27). These precursor cells eventually acquire

constitutive surface expression of CD69 and CD103 (ITGAE),

which are recognized as key markers of skin TRM cells (27).

CD103 and CD69 are essential in tissue residence and

differentiation of TRM. As a ligand of E-cadherin, CD103 interact

with E-cadherin mediating the attachment between TRM and

epithelial cells. CD69-expressing TRM is absent in S1P1

expression, which precludes their ability to detect S1P gradients

and exit from peripheral tissues (35). This may explain the

epidermotropism of tumor cells in early MF. The CD4+

malignant T cells displayed dual TRM and TCM phenotypes. We

suppose these dual phenotype cells including TRM-dominant

phenotype and TCM-dominant phenotype cells. During the

disease progression, the malignant T cells transformed from

TRM-dominant phenotype to the TCM-dominant phenotype.

This may explain the reduction or absence of epidermotropism

with deeper dermal lymphocytic infiltration in advanced-stage MF.

In addition, we also explored the potential role of the CAFs in

promoting the phenotype and metabolic pattern differentiation in

tumor cells. CAFs are at the core of cross-communication among

various cells in the tumor stroma (36), which release growth factors,

cytokines, and chemokines, regulating the biology of tumor cells

and other stromal cells via intercellular communication. They also

build up and remodel the ECM structure, establishing an invasion-

permissive TME (37). NFs can exhibit varying levels of activity in
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cancer and have the ability to suppress the growth and proliferation

of tumor cells (38).

Our data revealed the transcriptional expression patterns of

fibroblasts in the TME of MF. Fibroblasts were re-clustered and

defined into seven subtypes, of which four subtypes were defined as

CAFs with high expression of FAP, S100A4, and PDGFRb
(Figures 5A, C). We exhibited the evolution trajectory of seven

fibroblast subtypes by the pseudotime analysis (Figures 5D, E),

which reflects a high inter-tumoral heterogeneity of CAFs in MF

and adjacent tissues. The CAFs in each subtype differentiated along

divergent trajectory. State 1 mainly consisted of cells from CAF-

SLPI and CAF-CD70, whereas state 2 mainly consisted of cells from

CAF-WNT2 and CAF-COL4A4 (Figures 5D, E). This heterogeneity

indicates that these subtypes may belong to distinct CAF

populations with different functions.

The formation of CAFs contributes to the development of MF

through a variety of mechanisms. CAF-SLPI and CAF-CD70
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upregulated in ECM signatures (COL6A3 and POSTN)

(Figure 5F), which were associated with ECM and collagen fibril

organization, confirming their mCAF phenotype. CAF-SLPI and

CAF-CD70 CAFs have a high capacity for ECM synthesis and

remodeling, which play a critical role in establishing an invasion-

permissive TME by producing multiple ECM proteins (such as

MMP2) and regulatory molecules. CAF-WNT2 and CAF-COL4A4

upregulated expression of IL-6, IGF1, FBLN1, C3, and C7

(Figure 5F), expressing an iCAFs phenotype, indicating that the

CAF-WNT2 and CAF-COL4A4 may engage in immune

modulation. IL-6 can increase the activity of HIF-1a in tumor

cells via STAT3 signaling, and HIF-1amay activate GLUT-1 via the

Phosphatidylinositol-3-kinase (PI3K) pathway (39–41), which

shifts glucose metabolism from oxidative phosphorylation to

anaerobic processes (the Warburg effect) (42–44). This enhances

the glucose uptake, causing “metabolic competition” between

malignant and reactive T cells, ultimately suppressing the
FIGURE 7

The interaction between malignant T cell and CAFs with SOX4-related mechanisms in the process. (A) Malignant T cells in MF induce the activation
and formation of CAFs, which, in turn, modulating cancer progression. (B) Activation of SOX4 expression in malignant T cells. IL-6 generated by
CAFs, activating the JAK2/STAT3 pathway in malignant T cells, positively regulated the transcription of SOX4, further activating the PI3K/Akt, Wnt/b-
catenin, Notch, and Hedgehog signaling pathway, hence promoting tumorigenesis. (C) Activation of SOX4 expression in CAFs. TGF-b generated by
malignant cells activates the TGF-b signaling in NFs or epithelial cells, leading to the phosphorylation of SMAD2/3, which promotes SOX4 expression
after translocating to the nucleus. By interacting with b-catenin and ERG, SOX4 induces the expression of EZH2, which might directly regulate
TWIST1 and modulating the EMT procession, reprograming other cells into CAFs. The SOX4–EZH2 axis also modifies the promoter region of tumor-
suppressor microRNAs (miRNAs), including miR-31, miR-212/132, and miR-129-2. By repressing the transcription of these miRNAs, SOX4 involved in
the inhibition of cell proliferation and migration.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1474564
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhao et al. 10.3389/fimmu.2024.1474564
antitumor response (45). Notably, the HIF-1a can also upregulate

the expression of SOX4 via an long non-coding RNA (lncRNA)

CASC15 (46), which accordance with our results that the malignant

subclones showed high levels of HIF-1a, CASC15, and SOX4

(Figure 6B). SOX4 regulates the EMT through the activation of

EMT-related pathways and multiple EMT TFs (47). Li et al.

identified a TGF-b–MTA1–SOX4–EZH2 signaling axis regulating

EMT in various cancers and proposed this signaling axis to be a

potential therapeutic target in cancer metastasis intervention (48).

The SOX4-positive malignant subtypes also upregulated in EZH2

expression (Figure 6B), which is consistent with the finding of Li

et al. Nasu et al. investigated the immunohistochemical staining

SOX4-positive cell score and proposed its diagnostic utility in

distinguishing between adult T-cell leukemia/lymphoma and

peripheral T-cell lymphoma (49).

IL-6 was reported to skew T-cell differentiation toward Th2 by

STAT3 signaling pathway, resulting in the suppression of anti-

tumor response (50). Notably, STAT3 has been implicated as a

malignant factor in CTCL due to its ability to inhibit apoptosis of

tumor cells (51). IL-6 could promote proliferation via JAK2/

STAT3/SOX4 pathway in oral squamous cell carcinoma cells (52).

There may be mutual positive feedback of the crosstalk between

tumor cells and CAFs during the MF development. The malignant

T cells promote the CAF formation through the SOX4-associated

EMT, such as TGF-b–MTA1–SOX4–EZH2 pathway. The CAFs, in

turn, improve the invasiveness and metastasis of the malignant T

cells through the IL-6/JAK2/STAT3/SOX4 or IL-6/HIF-1a/SOX4
pathway. Conclusively, SOX4 may be a critical regulatory gene of

this positive feedback loop, and targeting SOX4 may disrupt the

interactions between neoplastic clones and TME, reversing the

immunosuppressive TME (Figure 7).

Cellphone DB showed significant LR interactions between

fibroblasts and T cells, such as FGF7–FGFR1, MDK–LRP1, and

PDGFD–PDGFRB interactions (Figure 6G). The malignant T-cell

subtypes showed a strong intercellular interaction with CAFs in the

MDK–LRP1 axis (Figure 6G). We hypothesized that MDK secreted

by malignant T cells could interact with LRP1 on the surface of

CAFs to upregulate the proliferation of CAFs. The enriched MDK–

LRP1 signal may serve as a sign of CAF activation to stimulate

downstream pathways for promoting tumor invasion and, thus,

may be a potential early biomarker of MF progression.

FGF7–FGFR1 was detected in the interaction between CAFs

and most malignant T subtypes (Figure 6G). The FGF–FGFR

signaling pathway regulates crucial cellular processes and is

essential for mesenchymal–epithelial communication (34). CAFs

activate the FGF signaling and promote the proliferation, migration,

and invasion of cancer cells (53). Combination of FGF signaling and

TGF-b promotes CAF formation with migratory and proliferative

properties. It was also reported that CAF function was regulated by

FGF and TGF-b signaling (54). Further studies are necessary to

confirm the SOX4-associated pathogenesis and the intercellular

interactions between malignant T cells and CAFs in MF.

The study limitation of included the cohort of only two patients

with MF and matched HC. However, for each patient with MF, we

collected samples with different stages as well as the corresponding
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adjacent non-lesional skin, which is also meaningful in revealing the

evolutionary trajectory of tumor cells. In addition to survival

analyses in the GEO cohorts and IHC experiment, more

validation experiments are needed to further verify the findings.

In summary, this study revealed that the malignant T cells in

MF may originate from TRM precursor cells, with subclones

displaying dual TRM and TCM cell phenotypes. During the

disease progression, the malignant T cells transformed from

TRM-dominant phenotype to the TCM-dominant phenotype,

which associated with more aggressive biological behavior. Our

study also provided new insights into the intercellular interactions

between malignant T cells and CAFs. The activated LR pairs, such

as FGF7–FGFR1 and MDK–LRP1, involved in the proliferation of

CAFs and promotion of tumor invasion. We further illustrated the

SOX4-associated pathogenesis in MF. SOX4 serves as critical

regulatory genes of the positive feedback loops of the interaction

between malignant T cells and CAFs. This study provides a

comprehensive understanding on the molecular mechanism of

MF and advances the knowledge on novel targets for MF treatment.
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