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Biotechnology, Yonsei University, Seoul, Republic of Korea, 3Chemicals Research Division, National
Institute of Environmental Research, Incheon, Republic of Korea
As Bacille Calmette-Guérin (BCG) vaccine’s effectiveness is limited to only

children, the development of new tuberculosis (TB) vaccines is being studied

using several platforms, and a novel TB vaccine that overcomes this limitation is

required. In this study, we designed an effective multi-epitope vaccine against

Mycobacterium tuberculosis using immunoinformatic analysis. First, we selected

11 highly antigenic proteins based on previous research: Ag85A, Ag85B, Ag85C,

ESAT-6, MPT64, Rv2660c, TB10.4, HspX, GlfT2, Fas, and IniB. Among these

antigens, 10 linear B-cell epitopes, 9 helper T-cell epitopes, and 16 cytotoxic T-

cell epitopes were predicted to design themulti-epitope vaccine. To improve the

immunogenicity of the candidate vaccine, three different adjuvants, griselimycin,

human beta-defensin 3 (HBD3), and 50s ribosomal protein (50sRP), were

attached with linker sequences to the vaccine model. The immunogenic,

antigenic, allergenic, and physicochemical properties of the resulting designed

multi-epitope vaccines were predicted in silico. Moreover, 3D structural

modeling, refinement, and validation were used to select a model for further

evaluation. Molecular docking analysis revealed a consistent and significant

binding affinity of the candidate vaccine for toll-like receptors (TLRs), TLR-2,

-3, and -4. Immune simulation performed using C-ImmSim demonstrated that

three rounds of immunization with multi-epitope vaccines induced a high

production of cytokines and immunoglobulins related with both cellular and

humoral immune response. Moreover, we constructed vaccine candidate

composed of 50sRP and evaluated its immunogenicity in a mouse model.

Consequently, this in silico-engineered multi-epitope structure can elicit

adaptive immune responses and represents a promising novel candidate for TB

vaccine development.
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1 Introduction

Tuberculosis (TB), a highly contagious disease, is one of the

most prominent causes of death worldwide and was the leading

cause of death from a single infectious agent before the coronavirus

disease (COVID-19) pandemic. According to the World Health

Organization 2023 report, TB caused by Mycobacterium

tuberculosis was projected to infect approximately one-quarter of

the global population and kill approximately 1.5 million individuals

in 2022 (1).

Once M. tuberculosis bacteria are inhaled, bacilli are primarily

encountered in alveolar macrophages (AMs) located in the airway

and migrate to the lung interstitium through host IL-1b signaling

and the M. tuberculosis type VII secretion system, ESX-I (2). After

entering the lung interstitium, the bacilli infect additional

macrophages including monocyte-derived- or lung resident cells.

Circulating dendritic cells (DCs) migrate to the draining lymph

nodes, where they present antigen peptides bound to major

histocompatibility complex (MHC) molecules on their surface to

prime antigen-specific T cells. The MHC-antigen peptide complex

interacts with the T cell receptor (TCR) on the surface of T cells (3).

Upon binding of the TCR to the MHC-antigen peptide complex,

antigen recognition signals are transmitted into the T cell, initiating

its activation. Once activated, T cells differentiate into effector cells

that secrete a variety of cytokines. In the case ofM. tuberculosis, Th1

cells, which differentiated from CD4+ T cells, are the primary

immune responders. They secrete cytokines such as IFN-g, TNF-
a, and IL-2, which recruit monocytes and neutrophils, enhance

macrophage cytotoxicity, and induce the production of

inflammatory mediators and reactive oxygen and nitrogen

species, leading to the elimination of M. tuberculosis.

An effective TB vaccine relies on the generation of long-lived

memory T cells, necessitating the activation of B- and T-cells. A

multi-epitope vaccine, binding to MHCs, stimulates CTLs and HTLs

by engaging TLRs to activate key immune components (4–6). B-cell

epitopes are also vital in triggering memory immune responses

through antibody production. Identifying specific epitope regions is

crucial for predicting immune responses (7). Compared to a single

subunit vaccine, the multi-epitope vaccine has an advantage in

inducing immune response, especially considering the limited

efficacy of single-subunit TB vaccines in humans due to the

disease’s complex progression (6).

Vaccinating individuals against TB faces ongoing challenges

because Bacillus Calmette-Guérin (BCG), the only approved TB

vaccine, has limited efficacy in adults and adolescents (8, 9). To

overcome the limitations of BCG, novel TB vaccines have been

developed either as a booster to the current BCG vaccine or as

prime vaccines to replace it. The protection provided by BCG is

lacking in adults, which may be the result of waning immunity

during childhood, leading to a deficiency in immunological

memory (10). According to the report released by the WHO, 17

TB vaccine candidates are in the clinical trial stage (1). The most

promising vaccine, M72/AS01E which is comprised of Mtb32A

and Mtb39A combined with the AS01E adjuvant, showed good

protection in healthy adults (11, 12) and HIV-infected adults (13).

A Phase II b trial of M72/AS01E showed 54.0% protective
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efficacy without substantial safety concerns (14). Furthermore,

its effectiveness was 49.7% after three years of follow-up in final

analyses of the efficacy, safety, and immunogenicity (15).

However, the findings need to be confirmed over a longer

period and in a larger population with different age groups and

ethnicities. Therefore, studies for the development of more

effective TB vaccines are a continuous endeavor.

In the realm of development of a TB vaccine, subunit vaccines

utilizing specific antigens, such as M72/AS01E, H56:IC31, and ID93

+ GLA-SE, which are currently under investigation in various clinical

trials, offer the advantage of targeted and efficient development.

However, their potential protective range might be limited due to

the specificity of the selected antigens. In contrast, the multi-epitope

TB vaccine strategy, anchored on a diverse set of antigens, holds

promise for enhanced protection and broader efficacy. Bacterial pan-

genomics analysis is recently being utilized to identify core genomes

and potential vaccine targets in the development of multi-epitope-

based vaccine candidates (16, 17). A proteomic analysis approach was

also attempted, which utilized 242 virulent factors, 18 membrane

proteins, 10 repair proteins, and 8 secretory proteins as potential

candidates (18). For a comprehensive understanding of the approach

to select pivotal antigens for the TB vaccine, comparing this method

with other research endeavors that have evaluated M. tuberculosis

vaccine candidates using various techniques is expected to

be beneficial.

Additionally, ongoing research is harnessing various

bioinformatics strategies for the judicious selection of epitope

sequences. Investigations have been conducted to select effective

MHC epitope regions by analyzing alleles and haplotypes that cover

more than 95% of the world population (19), predict epitope sites in

the RD1 region to overcome the limitations of the BCG vaccine

(20), and use structural vaccinology tools to identify epitope sites

that exhibit stability and antigenic tendencies (21). Such diverse

approaches have advanced the design of antigen and epitope

sequences. However, M. tuberculosis possesses an extensive array

of over 4,000 antigens, and there remain unexplored areas with

regard to its mechanisms of immune evasion and infection within

the host.

To overcome the limitations of the BCG vaccine, next-generation

TB vaccine or BCG-booster vaccines have been studied and

developed using various platforms. Among them, peptide-based

vaccines have advantages compared with traditional subunit

vaccines. Although subunit vaccines are poor inducers of T-cell

responses, peptide-based vaccines induce a more robust immune

response with dominant epitope regions and reduce side effects

caused by eliminating unwanted material from full-length protein

(4, 22). Generally, peptide-based vaccines are designed by

identification with bioinformatic tools and validated by using

ELISpot in healthy and donor PBMCs (23). However, in the case

of TB, there are numerous unrevealed TB antigens and their

functions are largely unknown. Consequently, we have selected the

Ag85 complex, ESAT-6, MPT64, Rv2660c, TB10.4, and HspX, as

antigens from among the virulence factors of M. tuberculosis and

those acting as immunogens within the host, with their vaccine

efficacy validated through in vivo studies using animal models or

clinical trials (24–34). Also, we include the antigens GlfT2, Fas, and
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IniB, based on a previous antigen identification study (35).

Bettencourt et al. identified and studied antigens presented by

MHC class I and II molecules in infected macrophages (35). The

vaccine candidates, which were constructed with adenoviral vectors,

carried respective antigens and showed immunogenicity and

protective effectiveness as a BCG-booster vaccine. Furthermore, we

predicted and validated their possibilities of use with its adjuvants,

griselimycin, HBD3, and 50sRP, by using various bioinformatic tools.

We selected the most soluble and the lowest Gibbs free energy model,

which was best suited for TLR4 binding, and confirmed its

immunogenicity in BCG-primed mice through in vitro expression

and in vivo analysis.
2 Materials and methods

2.1 Antigen selection for
vaccine preparation

Antigens were selected based on those included in the ongoing

clinical trials and the results of another previous study (Table 1)

(24, 25, 35–40). Ag85A, Ag85B, ESAT-6, Rv2660c, TB10.4, and

HspX were constructed as subunit or virus vector vaccines and their

effectiveness has been verified in animal models. Some antigens

have progressed to the clinical trial phase in healthy adults and

patients with TB (24, 36–39). Ag85C and MPT64 were reported as

immunodominant antigens and are being investigated as vaccine

candidates in several studies (25, 40). Additionally, the GlfT2, Fas,

and IniB antigens were selected based on the results of another

previous study (35). These antigens were immunoprecipitated with

the MHC-I and MHC-II from human macrophage cells and their

effectiveness has been evaluated in an animal model. Amino acid
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sequences of all antigens are acquired from Mycobrowser

(https://mycobrowser.epfl.ch).
2.2 Predicting linear B-cell epitopes

Among the various tools for B-cell epitope prediction, including

BcePred (41) and BepiPred (42), ABCPred distinguishes itself by

employing Artificial Neural Networks (ANN) (43). While BcePred

relies on physicochemical properties and BepiPred utilizes a

combination of the hidden Markov model and propensity scale

method (41, 42), ABCPred harnesses the capabilities of ANN to

detect patterns without predefined rules and this approach allows

ABCPred to learn more complex interactions from the data

achieving an accuracy of 65.93% (43). The ABCpred server

(http://www.imtech.res.in/raghava/abcpred) was used to identify

linear B-cell epitopes. The prediction process involved using the

default threshold of 0.51, and a score > 0.87 was required for the 16-

mer epitopes. Among the 11 antigens, Ag85A was removed from

the analysis since Ag85A and Ag85B had identical amino acid

sequences. A higher score indicates a probability of being a B-cell

epitope. Therefore, we selected the final epitope sequence based on

the highest score.
2.3 Predicting helper T lymphocyte epitopes

HTL epitopes serve play a pivotal role in coordinating the

immune defense against intracellular pathogens such as M.

tuberculosis. They act as a crucial link between innate immune

recognition and the activation of cytotoxic responses, ensuring a

targeted and effective immune reaction. To predict HTL epitope
TABLE 1 Information on the selected antigens for multi-epitope vaccine construction.

Protein
or Gene

Accession
No.

Function or
characteristic

Antigenicity Allergenicity Clinical stages
(Candidate)

References

Ag85A P9WQP2 Major immunodominant antigen Antigen Non-allergen Phase 1 and 2a (AdHu5Ag85A,
ChAdOx1.85A+MVA85A)

(26–28)

Ag85B P9WQP1 Mycolyl transferase enzyme,
Adhesive to macrophage

Antigen Non-allergen Phase 2b (H56:IC31) (24, 36, 37)

Ag85C P9WQN9 Cell envelope biogenesis Antigen Non-allergen – (25)

ESAT-6 P9WNK7 Secretory antigen,
Virulence factor

Antigen Non-allergen Phase 2b (H56:IC31) (24, 29, 36, 37)

MPT64 P9WIN9 Inhibition of apoptosis Antigen Allergen – (30, 31, 40)

Rv2660c I6Y1F5 Latency-associated antigen Antigen Allergen Phase 2b (H56:IC31) (24, 32, 36, 37)

TB10.4 P9WNK3 Function unknown. May be involved
in virulence

Antigen Non-allergen Phase 1 (TB/FLU-05E) (33, 38, 39)

HspX P9WMK1 Regulation of M. tuberculosis in
vivo growth

Antigen Allergen Phase 1 (TB/FLU-05E) (34, 38, 39)

GlfT2 O53585 Formation of mycobacterial cell wall,
Biosynthesis of galactan chain

Antigen Non-allergen – (35, 125)

Fas P95029 Fatty acid synthase Antigen Non-allergen – (35)

IniB P9WJ97 Unknown Antigen Non-allergen – (35)
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sequence, the Immune Epitope Database (IEDB) MHC-II server

was utilized to identify human leukocyte antigen (HLA) class II

epitopes, also known as HTL epitopes (44, 45). The species/locus

was chosen as Human/HLA-DR, and a 7-allele HLA reference set

(HLA-DRB1*03:01, HLA-DRB1*07:01, HLA-DRB1*15:01, HLA-

DRB3*01:01, HLA-DRB3*02:02, HLA-DRB4*01:01, HLA-

DRB5*01:01) was selected for the HTL epitope prediction. The

server predicted the binding affinity of 15-mer peptides and

generated percentile scores for each peptide based on its predicted

binding affinity relative to a large set of random peptides. The

peptides were then categorized based on their percentile scores, with

those having higher scores considered to have stronger predicted

binding affinity to the HLA class II allele (HLA-DR). Finally, the

HTL epitopes were selected based on both their percentile scores

and predicted ability to induce the production of IFN-g, a cytokine
involved in the immune response.
2.4 Predicting IFN-g immune response-
inducing epitopes

To determine the capacity of the predicted HTL epitopes to

induce an IFN-g immune response, they were analyzed using the

IFNepitope server (http://crdd.osdd.net/raghava/ifnepitope/) (46).

The server calculates an IFN-g score for each peptide based on a

hybrid approach that combines a motif approach and support

vector machine (SVM) approach (46, 47). Through this hybrid

approach, positive-scoring epitopes were selected as IFN-g-
inducible epitopes based on their IFN-g scores. We selected the

epitope sequence with the highest IFN-g score to maximize its

potential for inducing IFN-g production, thereby anticipating a

stronger immune response.
2.5 Predicting cytotoxic T
lymphocyte epitopes

In immune response againstM. tuberculosis infection, cytotoxic

T lymphocyte attributes cytolytic action against pathogen by means

of cell-to-cell contact determines the apoptosis of the pathogen

infected macrophages (48, 49). Predictions of the 9-mer CTL

epitopes were conducted using the NetCTL 1.2 server (http://

www.cbs.dtu.dk/services/NetCTL) and based on A1 supertypes,

which are commonly found in humans (50). The analysis

included MHC-I binding affinity, C-terminal cleavage affinity, and

efficiency of antigen processing transport (51) and each parameter

was set 0.75, 0.15, and 0.05, respectively.
2.6 Designing multi-epitope vaccine
sequence candidates

Based on the analyses described, high-scoring B-cell, CTL, and

HTL epitopes were chosen to design a vaccine candidate with strong

antigenicity and immunogenicity, and low toxicity. The linear B-cell

and HTL epitopes were attached with GPGPG sequences, while
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the CTL epitopes were attached with AAY sequences. Griselimycin

(52, 53), human b-defensin 3 (HBD3) (54, 55), and 50s ribosomal

protein (50sRP) (56) were selected as adjuvants to enhance vaccine

immunogenicity and were added to both the N- and C-terminals via

EAAAK sequences (7, 52). This adjuvant sequence was sourced from

the UniProt database (http://www.uniprot.org/).
2.7 Predicting multi-epitope vaccine
sequence as inducers of pro- or anti-
inflammatory cytokines

The potential immunogenicity of the final sequence for the

induction of cytokines, IL-4, IL-6, and IL-10, was systematically

assessed. This assessment employed specialized web servers,

including IL4Preb, IL6Preb, and IL10Preb (57–60). For IL-4

induction, a hybrid analytical approach integrating SVM with

Motif was adopted. Peptides were designated as IL-4 inducers

based on a predetermined threshold exceeding 0.2. For

predictions for IL-6 and IL-10 secretion, an array of machine-

learning methodologies was explored. Notably, the Random Forest-

based model showed superior predictive accuracy for IL-6 secretion.

Peptides were discerned as inducers for IL-6 and IL-10 based on

threshold values exceeding 0.11 and -0.03, respectively (61, 62).
2.8 Predicting antigenicity and allergenicity

The antigenicity of each candidate multi-epitope vaccine attached

to its respective adjuvant was predicted using two online tools: VaxiJen

2.0 (http://www.ddg-pharmfac.net/vaxijen/VaxiJen/VaxiJen.html) (63)

and the ANTIGENpro server (http://scratch.proteomics.ics.uci.edu)

(64). VaxiJen 2.0 uses autocross covariance (ACC) transformation

of protein sequences to determine antigenicity (63), while

ANTIGENpro is a sequence-based, pathogen-independent tool

for predicting antigenicity (64). ToxinPred server (http://

crdd.osdd.net/raghava/toxinpred/) were employed to predict

toxicity of multi-epitope sequence. This server facilitates the

design of toxic peptides and the identification of toxin regions

within proteins (65). AllerTOP v2.0 (http://www.pharmfac.net/

allertop) and AllergenFP (http://ddg-pharmfac.net/AllergenFP/)

were employed to predict the allergenicity of each of the vaccine

candidates. AllerTOP v2.0 is a server that uses the physicochemical

properties of proteins to predict allergens and is the first alignment-

free tool of its kind. AllergenFP is an alignment-free method that

predicts allergenicity based on properties such as hydrophobicity,

size, relative abundance, helix formation, and b-strand forming

tendencies of the amino acids (66).
2.9 Predicting physicochemical properties
and solubility

The Expasy ProtParam server (https://web.expasy.org/

protparam) was used to predict various physicochemical

properties of the final multi-epitope vaccines. These properties
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include the grand average of hydropathicity (GRAVY), aliphatic

index, in vitro and in vivo half-lives, instability index, theoretical

isoelectric point (pI), and molecular weight. In addition, the

Protein-Sol server (http://protein-sol.manchester.ac.uk) was

utilized to predict the solubilities of the multi-epitope vaccine

candidates (67). The predicted solubility (QuerySol) was

represented as a scaled solubility value, where any value above

0.45 was considered to have higher solubility than the average value

(PopAvrSol) from the experimental dataset. Conversely, proteins

with lesser-scaled solubility values were considered to have lower

solubility (67).
2.10 Predicting secondary and
tertiary structure

To predict the secondary structures of the multi-epitope vaccines

designed with their respective genetic adjuvants, we used the

PSIPRED (Position-Specific Iterated PREDiction) protein structure

prediction server (http://bioinf.cs.ucl.ac.uk/psipred). The PSIPRED is

a highly accurate method for predicting secondary structure, with

an average Q3 score of 76.5%, suggesting that it is a reliable tool for

determining the secondary structures of the multi-epitope vaccine

candidates (68). Furthermore, the RaptorX Property web server

(http://raptorx.uchicago.edu/StructurePropertyPred/predict/) was

used to predict the secondary structure properties of the multi-

epitope vaccine in the absence of a template. This server is designed

to predict various structural properties of a protein using a deep-

learning model. Hence, it is a useful tool for predicting secondary

structure properties.

Then, the I-TASSER (Iterative Threading ASSEmbly

Refinement) server (https://zhanglab.ccmb.med.Umich.Edu/I-

TASSER/) was utilized to construct the tertiary models of the

multi-epitope vaccines. This server follows a sequence-to-

structure-to-function approach, which involves predicting and

identifying similar structural patterns from the Protein Data Bank

(PDB) to create a 3D model. To assess the accuracy of the generated

models, the server provides a template modeling (TM) score. A TM

score greater than 0.5 indicates a reliable topological model,

whereas a TM score less than 0.17 suggests a random similarity.

These TM score cut-off values are not dependent on the length of

the protein being modeled (69). Therefore, these TM score cut-offs

could be used to evaluate the accuracy of the tertiary models of the

multi-epitope vaccines generated by the I-TASSER server. The

confidence scores (C-scores) calculated by I-TASSER typically

range from -5 to 2, where a higher C-score indicates higher

accuracy (69).
2.11 Refinement of the tertiary structure

To further improve the accuracy of the generated tertiary model

of the multi-epitope vaccines, the GalaxyRefine server (http://

galaxy.seoklab.org/cgi-bin/submit.cgi?type=REFINE) was used to

refine the model. The GalaxyRefine method combines side-chain

repacking followed by molecular dynamics simulations to relax the
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overall structure (70). GalaxyRefine is effective in improving the

local structure quality, as demonstrated by the results of the

CASP10 assessment. The quality of the refined model was

evaluated based on several metrics, including GDT-HA, root-

mean-square deviation (RMSD), MolProbity, clash, and

Ramachandran plot scores. These metrics are commonly used to

assess the accuracy and quality of protein models and provide a

comprehensive evaluation of the refined model’s structural features.
2.12 Validation of the tertiary structure

Several web servers were used to assess and validate the

reliability of the refined tertiary structures. First, the ProSA web

server (https://prosa.services.came.sbg.ac.at/prosa.php) was used to

determine the overall quality score for the input structure. A

calculated score outside the range characteristic of native proteins

suggests the presence of errors in the structure. Next, the ERRAT

server (http://services.mbi.ucla.edu/ERRAT/) was utilized to

compare the non-bonded atom-atom interactions with those of

reliable high-resolution crystallographic structures, helping identify

any potential errors or inaccuracies in the model. Finally, the

RAMPAGE web server (http://mordred.bioc.cam.ac.uk/~rapper/

rampage.php) was used to generate a Ramachandran plot (71).

The RAMPAGE output includes the percentages of residues in the

allowed and disallowed regions, providing information about the

overall quality of the modeled structure. These validation steps

provide confidence in the accuracy and reliability of the final refined

tertiary model of the multi-epitope vaccine (72).
2.13 Predicting discontinuous B-
cell epitopes

To identify the discontinuous B-cell epitopes in the refined final

3-D structure models, we used the ElliPro server (http://

tools.iedb.org/ellipro). ElliPro employs a geometry-based

approach to analyze protein structure and predict B-cell epitopes

based on their spatial arrangement. The server provides an AUC

(Area Under the Curve) value of 0.732, which is considered the best

calculation out of all proteins (73). By using ElliPro, we were able to

predict the locations of the discontinuous B-cell epitopes in the

refined final model of the multi-epitope vaccine.
2.14 Molecular docking analysis of the final
vaccine with toll-like receptors

The designed multi-epitope vaccines were subjected to

molecular docking analysis with TLR2, TLR3, and TLR4 (PDB

ID:1ZIW, 3A7B, 4G8A) using the HADDOCK 2.4 web server

(http://bianca.science.uu.nl/haddock2.4), predicting the

appropriate immune response and interactions between the final

vaccine structures and these specific immune receptors (74). The

HADDOCK 2.4 web server employs an integrative approach that

combines biochemical and biophysical information with
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computational modeling to predict protein-protein interactions.

The server calculates the lowest energy score for the final docking

complex, which is indicative of the most stable complex (75). By

using HADDOCK 2.4, the binding affinity of the multi-epitope

vaccine to TLR2, TLR3, and TLR4 was predicted, a process that can

help in designing effective vaccines.
2.15 Normal mode analysis

To better understand the stability and dynamicity of the

interactions of the final vaccine structures with the TLR4

receptors, a normal mode analysis was performed. The iMODS

web server (http://imods.Chanconlab.org/) was used for this

purpose, as it allows for the analysis of protein flexibility and

conformational changes over time (76). The simulation results

were analyzed in terms of deformability, eigenvalue, b-factor,

variance, correlation matrix, and the elastic network model.
2.16 Codon optimization and
in silico cloning

The Java Codon Adaptation Tool (JCat) server (http://

www.prodoric.de/JCat) was employed to improve protein expression

efficiency via codon optimization (77). JCat is an adjustable tool that

tailors the codon usage of an input sequence to better suit specific

organisms, enhancing expression levels; in this study, it was used to

adjust codon usage for E. coli. Following optimization, the codon-

optimized sequence was cloned into the E. Coli pET30a (+) vector

using the Snapgene 7.0.2 tool (https://snapgen.com/).
2.17 Immune simulation

Finally, the C-ImmSim server (http://150.146.2.1/C-IMMSIM/

index.php) was used for in silico immune simulations to assess the

immunogenicity and immune response generated by the multi-

epitope vaccines. C-ImmSim is an agent-based model that utilizes

position-specific scoring matrices for peptide prediction derived

from machine-learning techniques (78). The default simulation

parameters were used, with time steps set at 1, 84, and 168. Each

time step represents 8 h, with the first injection given at time = 0,

followed by two more injections at twelve-week intervals (79). The

simulations aimed to characterize the immune interactions and

evaluate the efficacy of the multi-epitope vaccines.
2.18 Cloning the designed gene and
expression and purification of the
recombinant protein

To construct the in silico designed recombinant protein, the

nucleotide sequence of 50sRP, verified by in silico cloning, along

with the addition of a poly histidine-tag (6x his tag) at the

C-terminus was synthesized and cloned into a commercial pET-
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30a (+) expression vector (80). The recombinant expression vector

was transformed into E. Coli BL21 (ED3) cells. A single colony was

inoculated into the LB medium containing kanamycin. Expression

of the recombinant protein was induced by adding isopropyl-b-
thiogalactopyranoside (IPTG; 0.5mM) and assayed by using SDS-

PAGE and western blotting using an anti-His antibody (Genscript,

Piscataway, NJ, USA) at dilution of 1:1000. The expressed

recombinant protein was purified with an Ni-NTA column under

denaturing conditions following the manufacturer’s instructions

(81). The purified protein was dialyzed using a urea solution and

phosphate-buffered saline (pH 7.2) overnight at 4°C.
2.19 Animals, ethics statement
and immunization

Four to five-week-old female C57BL/6 mice were purchased

from Samtako (Seoul, Korea). Mice were kept under standard

environmental conditions with commercial food and tap water

(both ad libitum). Mice were acclimated at facility during 7 days.

After 1 week, five to six-week-old mice (n = 5) were vaccinated with

PBS or BCG Pasteur 1173P2 (2 × 105 CFUs/mouse) subcutaneously

(week 0). After 6 weeks, BCG-primed mice were boosted with

vaccine candidate; 50sRP-TB (5 mg/mouse) twice at an interval of 3

weeks (1st boost: 6 weeks, 2nd boost: 9 weeks). One week after the

final immunization (at 10 weeks), the mice (n = 5) were euthanized

via CO2 inhalation to analyze immunogenicity.
2.20 Preparation of M. bovis BCG

Mycobacterium bovis (M. bovis) BCG Pasteur 1173P2 were

provided by the Korea Disease Control and Prevention Agency

(KDCA) and cultured in Middlebrook’s 7H9 broth (Difco

Laboratories, Detroit, MI) supplemented with 10% Oleic Albumin

Dextrose Catalase (OADC) enrichment (Becton Dickinson, Sparks,

MD) and 0.2% glycerol at 37°C on a shaker at 200 rpm under

aerobic conditions for 14–20 d (82). To obtain single-cell

suspensions, mycobacterial cell culture media were centrifugated

at 10,000 × g for 20 min and washed thrice with PBS. The pellet was

resuspended in PBS supplemented with 0.05% tyloxapol (Sigma

Aldrich, Saint Louse, MO) to prevent clumping and passed through

40-, 20-, 10-, and finally, 8-mm filters (Millipore Corp., Burlington,

MA, USA). The final stock was stored in small aliquots at −80°C

until further use. Colony-forming units (CFUs) per milliliter of

stock were measured using a counting assay on 7H10 agar plates

(Difco Laboratories).
2.21 Preparation of single lymphocyte cells

Five mice from each group were sacrificed 1 week after the last

immunization. Lung and spleen were harvested aseptically from

euthanized mice and single cells extracted. To isolate lung

lymphocyte, tissue was incubated with 40U/ml DNase I (Roche,

Swiss) and 2mg/ml collagenase D (Roche) in a plain RPMI-1640
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medium (GenDEPOT, TX, USA) at 37°C for 1 h. Enzyme-treated

lung tissue and spleen were homogenized using a gentleMACS

mTissue Dissociator (Miltenyl Biotec, Germany), washed in RPMI-

1640 medium (GenDEPOT, TX, USA), and supplemented with

10% FBS. Spleen was rinsed in ammonium-chloride-potassium

buffer to remove erythrocytes. Lung lymphocytes were separated

using Lymphoprep (STEMCELL Technologies, Canada) with

density centrifugation and resuspended in RPMI containing 10%

fetal bovine serum (FBS, Gibco, MA, USA) and 1% penicillin/

streptavidin (P/S, Gibco).
2.22 Antigen specific enzyme-linked
immune spot

The ELISpot assay was performed using an IFN-g secretion

ELISpot kit. Briefly, a single-cell suspension (5 × 105 cells) was

stimulated with pooled multi-epitope peptides (100ng/mL each) for

36 h at 37°C in anti-IFN-g antibody-coated filter plates. Afterward,

biotinylated anti-IFN-g antibody, streptavidin-horseradish

peroxidase (HRP) conjugate, and 3-amino-9-ethylcarbazole were

added as substrates to develop secreted cell spots, which were

quantified using an Immunospot S6 analyzer (Cellular

Immunospot Limited). The results are presented as mean values

of triplicate wells for each group. All substrates and the ELISpot kits

were purchased from Becton Dickinson.
2.23 Enzyme-linked immune sorbent assay

For the measurement of immunoglobulin titers, 96-well flat

bottom Immuno Plates (Thermo Fisher Scientific, MA, USA) were

coated with pooled epitope peptides (100ng/mL each) diluted with

ELISA coating buffer (BioLegned, CA, USA) for 18 h at 4°C. The

plates were washed thrice with PBS containing 0.5% Tween 20 and

blocked with 5% skimmed milk (Difco Laboratories). After

washing, the mouse serum samples were diluted at 1:200 with

PBS containing 3% BSA and incubated for 2 h at 37°C.

Subsequently, a 1:2,000 dilution of goat anti-mouse IgG-HRP

(Thermo Fisher Scientific) was added and incubated for 1 h at

37°C. The substrate, tetramethylbenzidine (TMB; Thermo Fisher

Scientific), was added to each well, and the plates were incubated at

37°C for 15–30 min. Thereafter, a stop solution for TMB was added,

and the plates were read using a spectrophotometer (Spectramax

i3x, Molecular Devices, CA, USA) at 450 nm.
2.24 Statistical analyses

To determine statistical significance, one-way Analysis of

Variance (ANOVA) using Dunnett’s multiple comparison test

(comparing to PBS immunized mice only) was used for

evaluation of significant differences between more than two

vaccine groups. The differences with a p-value <0.05 were
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considered significant. Data expressed in graphs are presented as

mean ± standard deviation. All analyses were performed using

GraphPad Prism v10 (GraphPad Software, CA, USA).
3 Results

3.1 Linear B-cell epitope prediction

The functional sequences of the eleven proteins were subjected

to linear B-cell epitope prediction using the ABCpred server

(Table 2). The 16 mer peptides of the Ag85B, Ag85C, ESAT-6,

MPT64, Rv2660c, TB10.4, HspX, GlfT2, Fas, and IniB were selected

for the final vaccine based on their binding scores (> 0.51) and

highest predicted score (83).
3.2 T-cell epitope prediction

Inducing CTL- and HTL-mediated immune responses is a

critical step in vaccine design. Within eleven of the antigens,

several epitope regions with high binding affinity for the human

HLA-DR alleles (a 7-allele HLA reference set) were identified using

the IEDB MHC-II server, allowing the selection of promising

epitopes. As a result, nine peptide sequences distinguished by

their robust IFN-g induction potential and low percentile scores

were incorporated into the final vaccine candidates to induce an

HTL immune response (Table 3). Specifically, antigens Ag85C and

MPT64 were excluded from the final antigen list because Ag85C

had a similar amino acid sequence to that of Ag85B and MPT64

elicited an extremely low IFN-g immune response (IFN-g score:

0.2038). As lower percentile scores represent higher MHC-II

binding affinity (84), we choose the final epitope region of each

antigen showing the lowest percentile score. An SVM-based

approach was used to examine the positive versus negative IFN-g
responses to identify epitope regions that induce an IFN-g response.

The final 16 epitope regions of the 9 antigens were identified

using the NetCTL 1.2 web server based on their MHC-I binding

affinity, C-terminal cleavage affinity, and transport efficiency to

select those that induce a CTL response. Notably, ESAT-6 and

Ag85A were excluded from the final antigen list because ESAT-6

had an extremely low transport efficiency (-0.656) and Ag85A had a

similar amino acid sequence to Ag85B. Therefore, we selected

multiple sequences of Ag85B with higher affinity and efficiency

scores instead (Table 4). The final epitope sequences were

characterized based on the pro- or anti-inflammatory features.

Using several immune-informative tools, IL-4, IL-6, and IL-10

inducibility of respective epitope sequence was predicted

(Table 5). 6 B cell epitope, 5 HTL epitope, and 12 CTL epitope

were predicted as IL-4 inducer, and 8 B cell epitope, 1 HTL epitope,

16 CTL epitope were predicted as IL-6 inducer. Taken together, a

considerable proportion of the CTL epitope sequence was predicted

as IL-4 and IL-6 inducers which were pro-inflammatory cytokines

engaged in the regulation of M. tuberculosis (85–88). Only one,
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namely the HTL epitope of Rv3808c (GlfT2), was confirmed as an

inducer of IL-10, known as the anti-inflammatory cytokine in the

pathogenesis of Mycobacteria (Table 5).
3.3 Construction of the multi-
epitope vaccines

Selected based on their higher antigenic and immunogenic

properties as well as MHC class binding affinity, epitopes used for

the multi-epitope vaccine candidates included 10 linear B-cell

epitopes, 9 HTL epitopes, and 16 CTL epitopes. In addition, to

augment the effectiveness of the multi-epitope vaccines, one of three

adjuvants, including griselimycin (52, 53), HBD3 (54, 55), and

50sRP (56), were linked at the N- and C-terminals of the vaccine to

produce three different vaccine constructs. Moreover, EAAAK,
Frontiers in Immunology 08
GPGPG, and AAY linkers were added between the adjuvant, B-,

HTL, and CTL epitopes, respectively, to increase the accuracy of the

expression of each peptide (Figure 1).
3.4 Antigenic, allergenic, toxicity, and
physicochemical evaluation of the
designed vaccines

The antigenicity of each vaccine candidate represents their

ability to be recognized as antigens and their ability to advance

immune responses. The antigenicity of each multi-epitope vaccine

was predicted using VaxiJen 2.0, and those with a score >0.4 were

considered to be antigenic. The griselimycin-, HBD3-, and 50sRP-

TB vaccines showed scores of 0.7339, 0.7380, and 0.6375,

respectively. Additionally, antigenicity was confirmed using
TABLE 3 List of the helper T lymphocyte epitopes selected from the Immune Epitope Database (IEDB) MHC-Ⅱ server based on their high binding
affinity for major histocompatibility complex (MHC)-Ⅱ human leukocyte antigen (HLA)-DR alleles.

Serial
no.

Gene Protein Allele Start End Peptide
sequence

Percentile
score

Method Result IFN-g
score

1 Rv3804c Ag85A HLA-DRB3*02:02 240 254 VGKLIANNTRVWVYC 0.83 SVM Positive 0.70837188

2 Rv1886c Ag85B HLA-DRB3*02:02 239 253 KLVANNTRLWVYCGN 0.80 SVM Positive 0.57095517

3 Rv3875 ESAT-6 HLA-DRB3*02:02 65 79 LNNALQNLARTISEA 8.50 SVM Positive 0.81741208

4 Rv2660c Uncharacterized HLA-DRB1*03:01 28 42 VGVGVGTEQRNLSVV 17.00 SVM Positive 0.69000995

5 Rv0288 TB10.4 HLA-DRB3*02:02 1 15 MSQIMYNYPAMLGHA 0.54 SVM Positive 0.7187742

6 Rv2031c HspX HLA-DRB3*02:02 94 108 AYGSFVRTVSLPVGA 0.11 SVM Positive 1.320439

7 Rv3808c GlfT2 HLA-DRB1*15:01 3 17 ELAASLLSRVILPRP 8.20 SVM Positive 0.54497781

8 Rv2524c Fas HLA-DRB5*01:01 358 372 IRGLGIGIVPAATRG 2.10 SVM Positive 0.90807083

9 Rv0341 iniB HLA-DRB3*02:02 257 271 NAVLASNASGQAGLI 2.20 SVM Positive 0.4605373
fro
TABLE 2 Predictions of linear B-cell epitopes, the highest predicted score epitope was selected for the final multi-epitope tuberculosis
vaccine construct.

Serial no. Gene Protein Peptide sequence Start position Predicted score
(ABCpred)

1 Rv1886c Ag85B(FbpB) YSDWYSPACGKAGCQT 126 0.94

2 Rv0129c Ag85C(FbpC) NSMWGPSSDPAWKRND 230 0.9

3 Rv3875 ESAT-6(EsxA) KWDATATELNNALQNL 77 0.89

4 Rv1980c MPT64 AATSSTPREAPYELNI 96 0.92

5 Rv2660c Uncharacterized AAGASGGVTVGVGVGT 32 0.88

6 Rv0288 TB10.4 AWQGDTGITYQAWQAQ 62 0.93

7 Rv2031c HspX DEMKEGRYEVRAELPG 47 0.94

8 Rv3808c GlfT2 QVHRIRKSYPDAVVLP 502 0.95

9 Rv2524c Fas TGLIRWEDDPQPGWYD 2495 0.97

10 Rv0341 IniB TQPQHTPVEPPVHDKP 444 0.96
ntiersin.org

https://doi.org/10.3389/fimmu.2024.1474346
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


TABLE 4 List of the cytotoxic T lymphocyte (CTL) epitopes selected from NetCTL 1.2 server based on their high binding affinity with MHC-Ⅰ A1-supertype alleles and antigenicity as well as low/no allergenicity
and toxicity.

ding Rescale binding
affinity

C-terminal cleavage
affinity

Transport efficiency Prediction score

2.776 0.7522 2.944 3.036

2.5865 0.9356 2.934 2.8735

2.347 0.9514 2.938 2.6366

1.5722 0.9387 2.773 1.8516

1.1059 0.9344 2.175 1.3548

1.1362 0.8093 0.017 1.2584

1.3601 0.8827 2.997 1.6423

0.849 0.9583 2.964 1.1409

0.6525 0.531 2.645 0.8644

0.5111 0.9728 2.451 0.7796

2.7675 0.9712 2.929 3.0596

2.6579 0.6017 2.475 2.8719

2.1568 0.8393 2.825 2.4239

1.9629 0.8115 2.754 2.2223

1.3256 0.1874 -0.745 1.3164

0.9167 0.692 2.545 1.1477

Y
u
n
e
t
al.

10
.3
3
8
9
/fim

m
u
.2
0
2
4
.14

74
3
4
6

Fro
n
tie

rs
in

Im
m
u
n
o
lo
g
y

fro
n
tie

rsin
.o
rg

0
9

Serial no. Gene Protein Peptide sequence MHC bin
affinity

1
Rv1886c Ag85B

QSSFYSDWY 0.6538

2 NTPAFEWYY 0.6092

3
Rv0129c Ag85C

QSNGQNYTY 0.5528

4 GSALILAAY 0.3703

5 Rv1980c MPT64 DTDPLPVVF 0.2605

6 Rv2660c Uncharacterized GTEQRNLSV 0.2676

7
Rv0288 TB10.4

AMEDLVRAY 0.3203

8 WQGDTGITY 0.2

9
Rv2031c HspX

RSEFAYGSF 0.1537

10 DEDDIKATY 0.1204

11
Rv3808c GlfT2

WTAAPHAEY 0.6518

12 NTDCQQILF 0.626

13
Rv2524c Fas

FSPAEVMRY 0.508

14 LSGRWAQAY 0.4623

15
Rv0341 IniB

TTDVGAGLA 0.3122

16 LIDYILSLF 0.2159
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TABLE 5 In-silico characterization of multi-epitope sequence of TB vaccine model as pro- or anti-inflammatory.

thod-based
eing IL-6

SVM method-based score of
peptide being IL-10 inducerc

(Threshold -0.3)

0.16 IL-10 non-inducer 0.26860554

0.18 IL-10 non-inducer -0.4494465

0.26 IL-10 non-inducer -0.22631866

0.12 IL-10 non-inducer 0.23738934

0.1 IL-10 non-inducer -0.095451042

0.14 IL-10 non-inducer -1.1234132

0.2 IL-10 non-inducer 0.13524524

0.24 IL-10 non-inducer 0.082145961

0.05 IL-10 non-inducer 0.11818483

0.25 IL-10 non-inducer -0.079992129

0.06 IL-10 non-inducer 0.4094788

0.08 IL-10 non-inducer 0.14951792

0.03 IL-10 non-inducer 0.29902151

0.02 IL-10 non-inducer 0.13102067

0.02 IL-10 non-inducer -0.18040595

0.02 IL-10 non-inducer -0.03682633

0.25 IL-10 inducer 1.0525806

0.04 IL-10 non-inducer -0.24677607

0.06 IL-10 non-inducer -0.63953613

0.76 IL-10 non-inducer 0.30883378

0.81 IL-10 non-inducer -0.35864931

0.64 IL-10 non-inducer -0.12903001

0.82 IL-10 non-inducer 0.006059691

0.76 IL-10 non-inducer -0.15565183

0.83 IL-10 non-inducer -0.55210576
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Gene Sequence

Hybrid (SVM + Motif) method-
based score of peptide being IL-4
inducera

(Threshold 0.2)

Random forest m
score of peptide
inducerb

(Threshold 0.11)

B cell epitope

Rv1886c YSDWYSPACGKAGCQT IL-4 inducer 0.26 IL-6 inducer

Rv0129c NSMWGPSSDPAWKRND IL-4 inducer 0.30 IL-6 inducer

Rv3875 KWDATATELNNALQNL IL-4 inducer 0.74 IL-6 inducer

Rv1980c AATSSTPREAPYELNI IL-4 non-inducer -0.12 IL-6 inducer

Rv2660c AAGASGGVTVGVGVGT IL-4 inducer 0.22 IL-6 non-inducer

Rv0288 AWQGDTGITYQAWQAQ IL-4 inducer 0.28 IL-6 inducer

Rv2031c DEMKEGRYEVRAELPG IL-4 non-inducer -0.26 IL-6 inducer

Rv3808c QVHRIRKSYPDAVVLP IL-4 inducer 0.24 IL-6 inducer

Rv2524c TGLIRWEDDPQPGWYD IL-4 non-inducer 0.11 IL-6 non-inducer

Rv0341 TQPQHTPVEPPVHDKP IL-4 non-inducer 0.20 IL-6 inducer

HTL epitope

Rv3804c VGKLIANNTRVWVYC IL-4 inducer 0.45 IL-6 non-inducer

Rv1886c KLVANNTRLWVYCGN IL-4 non-inducer -0.02 IL-6 non-inducer

Rv3875 LNNALQNLARTISEA IL-4 inducer 0.74 IL-6 non-inducer

Rv2660c VGVGVGTEQRNLSVV IL-4 inducer 0.52 IL-6 non-inducer

Rv0288 MSQIMYNYPAMLGHA IL-4 inducer 0.21 IL-6 non-inducer

Rv2031c AYGSFVRTVSLPVGA IL-4 inducer 0.51 IL-6 non-inducer

Rv3808c ELAASLLSRVILPRP IL-4 non-inducer 0.14 IL-6 inducer

Rv2524c IRGLGIGIVPAATRG IL-4 non-inducer 0.13 IL-6 non-inducer

Rv0341 NAVLASNASGQAGLI IL-4 non-inducer -0.19 IL-6 non-inducer

CTL epitope

Rv1886c (1) QSSFYSDWY IL-4 inducer 0.26 IL-6 inducer

Rv1886c (2) NTPAFEWYY IL-4 inducer 0.44 IL-6 inducer

Rv0129c (1) QSNGQNYTY IL-4 non-inducer 0.10 IL-6 inducer

Rv0129c (2) GSALILAAY IL-4 non-inducer -0.10 IL-6 inducer

Rv1980c DTDPLPVVF IL-4 inducer 0.24 IL-6 inducer

Rv2660c GTEQRNLSV IL-4 inducer 0.33 IL-6 inducer
e
b

https://doi.org/10.3389/fimmu.2024.1474346
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


TABLE 5 Continued

ybrid (SVM + Motif) method-
ased score of peptide being IL-4
ducera

hreshold 0.2)

Random forest method-based
score of peptide being IL-6
inducerb

(Threshold 0.11)

SVM method-based score of
peptide being IL-10 inducerc

(Threshold -0.3)

-4 inducer 0.14 IL-6 inducer 0.85 IL-10 non-inducer 0.008026008

-4 inducer 0.28 IL-6 inducer 0.8 IL-10 non-inducer -1.1211936

-4 inducer 0.41 IL-6 inducer 0.8 IL-10 non-inducer -0.5152663

-4 inducer 0.28 IL-6 inducer 0.88 IL-10 non-inducer -0.82231135

-4 inducer 0.21 IL-6 inducer 0.6 IL-10 non-inducer -0.13767462

-4 non-inducer 0.19 IL-6 inducer 0.85 IL-10 non-inducer -0.33668965

-4 non-inducer 0.11 IL-6 inducer 0.9 IL-10 non-inducer -0.038967804

-4 inducer 0.26 IL-6 inducer 0.83 IL-10 non-inducer -0.65072028

-4 inducer 0.24 IL-6 inducer 0.7 IL-10 non-inducer -0.521025

-4 inducer 0.28 IL-6 inducer 0.88 IL-10 non-inducer 0.3457436

to analysis by using three kinds of bio-informatics tools to characterize their pro- or anti-inflammatory nature.

6 B cell, 5 HTL, and 12 CTL epitopes were predicted as IL-4 inducers. 8 B cell epitope, 1 HTL epitope, and all the CTL epitopes were predicted as IL-6 inducers. 7 B cell
s them with anti-inflammatory functions.
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Rv0288 (1) AMEDLVRAY IL

Rv0288 (2) WQGDTGITY IL

Rv2031c (1) RSEFAYGSF IL

Rv2031c (2) DEDDIKATY IL

Rv3808c (1) WTAAPHAEY IL

Rv3808c (2) NTDCQQILF IL

Rv2524c (1) FSPAEVMRY IL

Rv2524c (2) LSGRWAQAY IL

Rv0341 (1) TTDVGAGLA IL

Rv0341 (2) LIDYILSLF IL

All the peptide sequences of 16 B cell epitope, 9 HTL epitope, and 10 CTL epitope were subjecte
aPrediction of peptide as an IL-4 inducer or non-inducer using IL-4pred.
bPrediction of peptide as an IL-6 inducer or non-inducer using IL-6pred.
cPrediction of peptide as an IL-10 inducer or non-inducer using IL-10pred. Among the sequences
epitope, 6 HTL epitope, and 15 CTL epitope were predicted as inducing IL-10 which characterize
d

,
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ANTIGENpro, in which griselimycin-TB scored 0.791234, HBD3-

TB scored 0.815016, and 50sRP-TB scored 0.873047. Based on the

results from analysis using AllerTOP v2.0 and AllergenFP and

ToxinPred, the multi-epitope vaccines were estimated to be non-

allergenic and non-toxic (Supplementary Table S1).

The physicochemical properties of the multi-epitope vaccines

were evaluated using Expasy ProtParam. Molecular weight of

griselimycin-, HBD3, and 50sRP-adjuvanted vaccine candidates

which are named as griselimycin-TB, HBD3-TB, and 50sRP-TB

are 61kDa, 69kDa, and 85kDa in order. Supplementary Table S1

shows that the theoretical pI values of the griselimycin- and 50sRP-

TB models were 5.00 and 4.74, respectively, suggesting slight

acidity, whereas that of the HBD3-TB model appeared to be

slightly basic. The aliphatic index of the three vaccine models

ranged from 67 to 76, indicating the thermostability of the

vaccine constructs. The griselimycin-TB model has an estimated

half-life of 100 h in mammalian reticulocytes, >20 h in yeasts, and

>10 h in Escherichia coli. The estimated half-lives of the HBD3- and

50sRP-TB models are 30 h in mammalian reticulocytes, >20 h in

yeasts, and >10 h in E. coli. The GRAVY scores were -0.202, -0.318,

and -0.12 for the griselimycin-, HBD3-, and 50sRP-TB models,

respectively, with negative GRAVY scores indicating that the

structures are maintained under natural hydrophilic conditions

and that they interact with water molecules. In addition, the

instability indices of the griselimycin-, HBD3-, and 50sRP-TB

models were 32.99, 34.25, and 28.18, respectively, suggesting they

are stable, as an instability index >40 is considered unstable

(Supplementary Table S1). Moreover, the solubility scores for

griselimycin-, HBD3-, and 50sRP-TB were 0.302, 0.315, and

0.514, respectively (Supplementary Figures S1Ai–Ci). The whole

sequences of griselimycin-, HBD3-, and 50sRP-TB models were

estimated to have 33.3%, 30.4%, and 37.5% a-helix and 11.4%,

15.9%, and 13.0% b-strands (Supplementary Figures S1Aii–Cii).

Furthermore, a number of peptide-based vaccines and

therapeutics for infectious diseases have received approval, and

the strategic utilization of already sanctioned vaccines through

matching or similarity queries within the THPdb database could

lead to more auspicious outcomes (89). In this context, our research

was directed specifically toward the THPdb database with an
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emphasis on data pertinent to contagious maladies such as

tuberculosis. Unfortunately, we were unable to locate a specific

peptide; only the PPD (Tuberculin Purified Protein Derivative)

(ThPP ID as TH1194) could be retrieved. Additionally, we

confirmed the potential of our multi-epitope model as a TB

therapeutic strategy by validating the results using antiTBpdb

(https://webs.iiitd.edu.in/raghava/antitbpdb/index.html) (90).

Upon setting the E value in antiTBpdb at < 0.1, HTL and CTL

epitopes of Rv0288 (TB10.4) and HTL epitope of Rv2031c (HspX)

exhibited high similarities to the anti-tubercular peptides

(Supplementary Table S2, The E values were in the following

order: 4E-05, 0.037, 0.063). Therefore, there is potential for our

model to be considered a therapeutic option, possibly after

sequence modification.
3.5 Structural modeling, refinement, and
validation of the multi-epitope vaccines

The tertiary structure of each model was predicted using the I-

TASSER server based on TM value, C-score, and RMSD. Typically,

C-score values range from -5 to 2, with higher scores indicating a

greater level of confidence (69). A TM value >0.5 indicates an

accurate topology model, while a TM value <0.17 indicates random

similarity. RMSD indicates the conformational stability of the

protein complex (91). The five predicted models from the

griselimycin-TB construct had C-score values ranging from -3.63

to -1.57. The griselimycin-TB model had an estimated TM value of

0.52 ± 0.15 and RMSD of 11.4 ± 4.5Å. The five predicted models

from the HBD3-TB construct had C-score values ranging from

-3.53 to -1.33, an estimated TM value of 0.55 ± 1.5, and an RMSD of

11.1 ± 4.6Å. Finally, the five predicted models from the 50sRP-TB

construct had C-score values ranging from -4.3 to -1.47, an

estimated TM value of 0.53 ± 0.15, and an RMSD of 12.0 ± 4.4Å.

The highest C-score models from each vaccine were selected for

further refinement and validation (Figure 2A).

The GalaxyRefine web server was used to identify the initial

“crude” vaccine models. Model 1 from each construct, the one that

showed the highest C-score value and TM-score >0.5, was the most
FIGURE 1

Schematic representation of the final multi-epitope vaccine peptide. Blue, orange, and green depict the designed vaccine construct with B-cell, HTL,
and CTL epitopes. EAAAK linkers (black) were used to link the adjuvant with the N- and C-terminal sequences. B-cell and HTL epitopes were linked
with GPGPG linkers (yellow), and CTL epitopes were linked with AAY linkers (purple).
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reliable refined structure based on structural quality (Figure 2B). The

refined model was validated using Ramachandran plot analysis,

ERRAT, and the ProSA web server. In the Ramachandran plot

analysis, 50sRP-TB had both the highest and lowest disallowed

scores out of all three vaccine models (Figure 2C; Table 6). The

quality and potential errors of the refined models were verified using

the ProSA-web and ERRAT servers. A good model has a Z-score of

-6.07 predicted using the ProSA-web and an accepted range >50 in

ERRAT (92). Among these models, 50sRP-TB showed the most

promising results through Ramachandran plot analysis, as well as the

closest Z-score (griselimycin-TB: -1.4, HBD3-TB: -1.2, and 50sRP-TB:
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-2.9). Moreover, the overall quality factor predicted using the ERRAT

server also indicated a good model (griselimycin-TB: 41.2, HBD3-TB:

75.2, and 50sRP-TB: 68.7) (Figure 2D; Table 6).
3.6 Prediction of B-cell epitopes

Structural epitope prediction was performed using the Ellipro

tool from the IEDB server. For discontinuous peptide predictions,

an AUC score of 0.69 or higher was selected. A total of 59 residues

in griselimycin-TB, 48 in HBD3-TB, and 103 in 50sRP-TB were
FIGURE 2

Protein 3D modeling, refinement, and validation. (A) Final 3D model of each multi-epitope vaccine depicted using I-TASSER. (B) Refinement of each
construct was conducted using the GalaxyRefine web server. The tertiary structure was validated using the (C) Ramachandran plot and (D) ProSA
web server.
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identified within discontinuous B-cell epitopes, with respective

AUC scores of 0.787, 0.913, and 0.717 (Figure 3 and Table 7).
3.7 Molecular docking analysis and
dynamics simulations

To verify the immune response induced by interactions of the

vaccines with TLRs, molecular docking analysis and dynamic

simulations were performed using the HADDOCK server. TLRs

are proteins expressed in target immune cells that recognize

pathogen-associated molecular patterns to induce an innate

immune response (93). Notably, TLR4 plays a crucial role in M.

tuberculosis infection (94) and TLR4 agonist have been developed as

vaccine adjuvant candidate for TB to increase the efficacy of the

existing vaccine (95); therefore, the vaccine models were subjected

to molecular docking analysis with TLR4 in the normal mode.

Several parameters of the multi-epitope vaccine models and the

TLR4-MD2 (PDB: 3FXI)-docked complex were evaluated using

normal mode analysis (NMA) (Figure 4). The b-factor shows the

relationship between the NMA and PDB of the docked model and

represents the protein flexibility and mobility (96–98). The variance

and covariance matrix provides the correlation between amino acid

duplets and infers the most rigid models (99); a higher correlation

means the better complex. Red indicates correlated residues; white

indicates uncorrelated residues, and blue indicates anti-correlated

residues (100). The elastic network shows the connecting matrix

with rigid regions and classifies the atom pairs connected by a

spring (101). Among the vaccine models, the 50sRP-TB model was
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identified as it includes several hinge regions, suggestive of the most

deformative candidate. All models showed that the calculated b-

factor was minimized compared to the native b-factor of PDB,

implying minimization of the deformability of the structure. The

eigenvalue of our vaccine models, griselimycin-, and 50sRP-TB was,

respectively, 1.411600E-05, and 4.278009E-05, while that of TLR4

was 6.823114E-06 (Figures 4A, C). These findings show that docked

complexes are stable with low deformation characteristics and have

higher structural rigidity. For the griselimycin-, HBD3-, and 50sRP-

TB vaccine models, the binding free energies were -44.64kcal/mol,

-23.42kcal/mol, and -63.09kcal/mol, respectively.

Additionally, TLR2 and TLR3 play key roles in the innate

immune response against M. tuberculosis infection (102–104).

Based on docking analyses (Supplementary Figure S2),

griselimycin-TB exhibited the highest binding affinity with TLR3,

followed by TLR4 and TLR2. Similarly, HBD3-TB demonstrated

the highest affinity for TLR4, TLR3, and TLR2, in that order. For

50sRP-TB, the highest binding affinity was observed with TLR3,

followed by TLR2 and TLR4.
3.8 Codon optimization

The Java codon adaptation tool JCat was used with each of the

respective multi-epitope vaccine models to optimize the codons for

maximal expression in E. coli (strain K12). In codon-optimized

sequences of the designed vaccines (griselimycin-, HBD3-, 50sRP-

TB), the codon adaptation index values were 1.0, and the GC

content values were 58.76%, 57.27%, and 55.25%, respectively.
FIGURE 3

Representation of conformational or discontinuous B-cell epitopes of each designed multi-epitope vaccine. The conformational or discontinuous
B-cell epitopes were represented with yellow circles, and the rest of the protein was represented with grey bars.
TABLE 6 Summary of 3D tertiary structure validation of the multi-epitope TB vaccine with various adjuvants.

Model Ramachandran Web-based tools

Highly preferred Preferred Disallowed ProSA z-score ERRAT

Griselimycin-TB 71.0 19.5 9.5 -1.4 41.2

HBD3-TB 86.5 9.6 3.9 -1.2 75.2

50sRP-TB 89.3 7.3 3.4 -2.9 68.7
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FIGURE 4

Normal mode analysis of vaccine constructs and their molecular docking with immune receptor TLR4. Normal mode analysis (NMA) mobility,
deformability, eigenvalues, B factor, variance, co-variance map, and elastic network were evaluated in the vaccine constructs with the following
adjuvants: (A) griselimycin, (B) HBD3, and (C) 50sRP.
TABLE 7 Predicted B-cell epitope residues of designed multi-epitope vaccines.

Model Residues Number
of residues

Score

Griselimycin-TB A:S277, A:V278, A:V279, A:G280, A:P281, A:G282, A:P283, A:G284, A:M285, A:S286, A:Q287, A:I288, A:M289, A:
Y290, A:N291, A:Y292, A:P293, A:A294, A:M295, A:L296, A:G297, A:H298, A:A299, A:G300, A:P301, A:G302, A:
P303, A:G304, A:A305, A:Y306,
A:G307, A:S308, A:F309, A:V310, A:R311, A:T312, A:V313, A:S314, A:L315, A:P316, A:V317, A:G318, A:A319, A:
G320, A:P321, A:G322, A:P323, A:G324, A:E325, A:L326, A:A327, A:A328, A:S329, A:S332, A:R333, A:V334, A:I335,
A:L336, A:P337

59 0.787

HBD3-TB A:E607, A:A608, A:A609, A:A610, A:K611, A:G612, A:I613, A:I614, A:N615, A:T616, A:L617, A:Q618, A:K619, A:
Y620, A:Y621, A:C622, A:V624, A:R625, A:G626, A:G627, A:R628, A:C629, A:A630, A:V631, A:L632, A:S633, A:C634,
A:L635, A:P636, A:K637, A:E638, A:E639, A:Q640, A:I641, A:G642, A:K643, A:C644, A:S645, A:T646, A:R647, A:G648,
A:R649, A:K650, A:C651, A:C652, A:R653, A:K655, A:K656

48 0.913

50sRP-TB A:K268, A:S269, A:Y270, A:R287, A:W288, A:E289, A:D290, A:D291, A:P292, A:Q293, A:P294, A:G295, A:W296, A:
Y297, A:D298, A:G299, A:P300, A:G301, A:P302, A:G303, A:T304, A:Q305, A:P306, A:Q307, A:H308, A:T309, A:P310,
A:V311, A:E312, A:P313, A:P314, A:V315, A:H316, A:D317, A:K318, A:P319, A:G320, A:P321, A:G322, A:P323, A:
G324, A:V325, A:G326, A:K327, A:L328, A:I329, A:A330, A:N331, A:N332, A:T333, A:R334, A:V335, A:W336, A:
V337, A:Y338, A:C339, A:G340, A:P341, A:G342, A:P343, A:G344, A:R345, A:V347, A:G358, A:N359, A:G360, A:P361,
A:G362, A:P363, A:G364, A:S365, A:D366, A:P367, A:A368, A:Y369, A:P381, A:G382, A:P383, A:G384, A:V385, A:
G386, A:V387, A:G388, A:V389, A:G390, A:T391, A:E392, A:Q393, A:N395, A:Y410, A:Y412, A:P413, A:A414, A:
M415, A:L416, A:G417, A:H418, A:A419, A:G420, A:P421, A:G422, A:P423, A:G424

103 0.717
F
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Additionally, the adapted codon sequences were optimized with

sticky end restriction sites of NdeⅠ and HindIII at the N-terminus

and C-terminus to facilitate restriction and cloning and inserted

into the recombinant plasmid vector, pET-30a (+), using the

Snapgene tool to design and effective cloning strategy (Figure 5).
3.9 Immune simulations

In silico immune simulations were conducted using the C-

ImmSim immune server to predict the immunological profile of the

multi-epitope vaccines (Figures 6, 7). The griselimycin-, HBD3-,

and 50sRP-TB vaccine models elicited a significant increase in B cell

population, including memory B cells, following repeated

immunizations, indicating their capacity for isotype switching and

memory cell formation (Figure 6). In Figure 6, antibody levels (IgM

+IgG, IgG1+IgG2, IgM, and IgG) were found to increase during

secondary and tertiary immunizations, accompanied by a decrease

in antigen count. Furthermore, both CTL and HTL populations

increased following secondary and tertiary immunization

(Figure 7). Notably, a significant increase in IFN-g production

and a moderate increase in IL-2 were observed after the third

vaccination. These data underscore the potential of our vaccine

candidate to induce an effective immune response.
3.10 In vitro expression

To verify the expression of the vaccine model, we selected on

candidate based on solubility and TLR4 docking model analysis.

Predicting protein solubility is crucial for the selection of highly

effective candidate proteins, as it can help avoid protein aggregation,

which adversely affects biological activity and can lead to failures in the

recombinant protein pipeline (105). Consequently, 50sRP-TB, which

demonstrated the highest solubility score, was selected for expression in

E. coli. Moreover, the 50sRP-TB model exhibited the lowest Gibbs free

energy in the TLR4 docking model, suggesting its potential to induce

an active TLR4-mediated immune response. We validated in vitro
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expression and purification using SDS-PAGE and western blot. The

protein was best expressed in 16-h induction at 15°C in supernatant of

cell lysate and molecular weight inclusive of His-tag molecular weight

was approximately 80kDa (Supplementary Figure S3).

To verify the expression of the vaccine model, 50sRP-TB which

showed the highest solubility score, was selected and expressed in

E. coli. We validated in vitro expression and purification using SDS-

PAGE and western blot. The protein was best expressed in 16-h

induction at 15°C andmolecular weight inclusive of His-tag molecular

weight was approximately 80 kDa (Supplementary Figure S3).
3.11 Immunogenicity of vaccine candidate
designed by in silico analysis

To examine the effectiveness of artificially designed vaccine

product, we investigated immunogenicity of 50sRP-TB in BCG-

primed mouse. Mice were immunized subcutaneously with BCG

and boosted with two doses of 50sRP-TB (Figure 8A). Immunologic

analysis was performed with 50sRP-TB specific IFN-g secretion and

IgG, IgG1, and IgG2b measurement. Using ELISpot assay, multi-

epitope peptides specific IFN-g secreted cells were detected in lung

lymphocytes and splenocytes. The number of IFN-g spots in the

BCG/50sRP-TB immunized group was significantly higher than

those in the PBS or BCG only immunized groups, both in lung

lymphocytes and splenocytes (Figures 8B, C). In addition, 50sRP-TB

immunized mice generated higher titers of pooled multi-epitope

peptides-specific IgG(H+L) and IgG1 than the other groups

(Figures 8D, E). Remarkably, 50sRP-TB immunization elicited

IgG2b production, which is associated with Th1 response (Figure 8F).
4 Discussion

TB remains a life-threatening disease, despite the presence of

the approved BCG vaccine, as BCG shows limited protection

against TB in adolescents and adults. Therefore, new vaccine

candidates against TB are being studied and evaluated in clinical
FIGURE 5

In silico restriction cloning of multiple-epitope vaccines into the expression vector pET30a(+). The codon sequence of each multi-epitope vaccine,
(A) griselimycin-TB (7,020bp), (B) HBD3-TB (7,230bp), and (C) 50sRP-TB (7,740bp), was inserted in the multiple cloning site (MCS) of the pET30a(+)
expression vector using the Snapgene sequence alignment tool.
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trials. Recently, the severity of COVID-19-TB co-infection was

reported, along with its serious economic impact and hazard to

global public health (106). Specifically, TB patients co-infected with

SARS-CoV-2, showed severe symptoms caused by a “cytokine

storm”, particularly within the lungs, heart, and liver (106–108).

To prevent simultaneous infection with TB and COVID-19 studies

on the development of vaccines against co-infection in several

groups are ongoing (109).

The inherent complexities of tuberculosis present significant

challenges to vaccine development. In the present study, we aimed
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to overcome such obstacles by designing a novel adjuvanted, epitope-

based vaccine, grounded on antigens that have demonstrated efficacy

in in vivo and clinical studies, with the goal of enhancing

immunogenicity. Therefore, in this study, we have selected antigens

with their vaccine efficacy validated through in vivo studies using

animal models or clinical trials the virulence factor ofM. tuberculosis

with (24–34, 110). Also, we include the antigens GlfT2, Fas, and IniB,

based on a previous antigen identification study (35). We predicted

B- and T-cell epitopes using these selected antigens and designed

peptide-based vaccines. Peptide-based vaccines have the advantage of
FIGURE 6

In silico C-ImmSim simulation of generated immune responses. Immunoglobulin production induced by multi-epitope vaccines with each
respective adjuvant: (A) griselimycin, (B) HBD3, and (C) 50sRP. (i) The evolution of the B-cell populations and (ii) the production of various
immunoglobulins in response to vaccination administered three times at twelve-week intervals.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1474346
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Yun et al. 10.3389/fimmu.2024.1474346
improved immunogenicity due to their characteristic, aggregated

immunodominant epitopes, and reduced side effects (22). The

epitope sequences under consideration were distinctly demarcated

by their potential to modulate inflammatory responses, either

amplifying or mitigating the cascade. By leveraging a

comprehensive set of immunoinformatics methodologies, the

modulation capacity of each epitope sequence was determined for

cytokines, IL-4, IL-6, and IL-10. From this analysis, it was inferred

that six B-cell epitopes, five HTL epitopes, and twelve CTL epitopes

could potentially serve as inducers of IL-4 secretion. In juxtaposition,

eight B-cell epitopes, one singular HTL epitope, and sixteen CTL

epitopes were projected to function as inducers of IL-6 secretion.

Taken together, a notable fraction of the CTL epitope sequences

appeared to be predisposed as inducers for both IL-4 and IL-6,

cytokines intrinsically associated with the regulatory mechanisms

underlying M. tuberculosis infection. Notably, only the HTL epitope

derived from Rv3808c (GlfT2) was validated as an inducer for IL-10,
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a cytokine representative of the anti-inflammatory prowess in

mycobacterial disease dynamics.

In this study, vaccine candidates were linked epitope sequences

with AAY and GPGPG linkers to express respective antigens with

reduced junctional immunogenicity (111). In mammalian cells, the

AAY (Ala-Ala-Tyr) linker acts as the cleavage site and multi-

epitope vaccines assembled with the AAY linker showed

enhanced epitope presentation and structure stability (112). The

Glycine-rich linker, GPGPG, was designed as a universal spacer and

is known to induce the HTL immune response (113, 114). An

EAAAK linker incorporated between epitopes and adjuvants

improves the bioactivity of the fused proteins and increases the

expression level and stability of the vaccine construct (115).

Several bioinformatics tools were employed to assess

physicochemical properties, antigenicity, allergenicity, and solubility

for epitope-based vaccine design. Expasy ProtParam computes various

physicochemical characteristics derived from a protein sequence
FIGURE 7

C-ImmSim simulation of the cytokine levels and antibody production. Predicted changes in (i) HTL population, (ii) CTL population, and (iii) cytokine
levels in response to multi-epitope vaccines with respective adjuvants: (A) griselimycin, (B) HBD3, and (C) 50sRP.
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without additional information. This tool calculates both pI and MW

and forecasts amino acid composition, atomic composition, extinction

coefficient, estimated half-life, and instability index, among other

parameters (116). According to the GRAVY score, which assesses

maintenance ability in hydrophilic or hydrophobic environments, all

three models displayed negative GRAVY values, suggesting a higher

structural stability in a hydrophilic environment. This aspect can be

correlated with solubility, critical in determining in vitro protein

expression. To enhance immunogenicity, we designed and forecasted

vaccine properties involving adjuvants such as griselimycin, HBD3, and

50sRP. As an adjuvant sequence was added into the N- and C-terminus

of the epitope sequence, its protein solubility was predicted to be higher

than that of the original sequence (although data are not included, the

solubility of the original sequence was 0.292).

Furthermore, all models were considered both stable and

thermostable. The prediction of secondary and tertiary structures of

the target proteins is essential in vaccine development to induce an
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immune response (117). The 3D structure of our multi-epitope

models showed desirable stability after all refining processes and

appropriate characteristics based on the results of the Ramachandran

plots. Furthermore, based on the Ramachandran plots, which showed

that the residues were present in the favorable regions (118), the

50sRP-TB model was the most acceptable.

TLRs is expressed in monocyte, immature DC and macrophage

cells (119) and binds to several antigens derived from M.

tuberculosis of pathogen itself, resulting development of TLRs

targeted vaccine candidates and adjuvants (120). In this study,

TLR binding affinity and dynamic simulation of each model were

used to predict their immune response induction capacity. The

conformational changes in the TLR molecule upon binding the

vaccine suggested that the complex can process downstream signal

cascades (99). To evaluate conformational changes of vaccine

candidate and TLR complex, protein flexibility was examined by

the NMA study through various analyzed results. A greater part of
FIGURE 8

Immunogenicity of 50sRP-TB as a BCG-booster vaccine. (A) Schematic of the immunization schedule and subsequent evaluation. Mice (n = 5) were
immunized by BCG 6 weeks before subunit vaccination. Subcutaneous immunization of 50sRP-TB was conducted and immunological analysis was
assessed one week after the last immunization. Mice were immunized and euthanized as described in the methods section. Single cells stimulated with
50sRP-TB was detected interferon-g (IFN-g) secretion using an ELISpot assay in (B) lung lymphocyte and (C) splenocyte. (D) Antigen-specific total IgG,
(E) IgG1, and (F) titer in serum was measured using ELISA. Data show the mean ± standard deviation from triplicate wells in each group; *p < 0.05, **p <
0.01, ***p < 0.001, and ****p < 0.0001 obtained using unpaired t-test.
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the complex individual chains showed higher rigid regions in all

models. Binding affinities of the TLR4-MD2 complex-, TLR2-, and

TLR3-vaccine-docked complexes were predicted. The binding

affinity of the vaccines to the TLR4-MD2 complex, particularly

the 50sRP-TB model, suggests significant induction of innate and

adaptive immunity. Additionally, vaccine binding affinity with

TLR2 and TLR3, which play a crucial role in M. tuberculosis

protection following infection, demonstrated that all models elicit

a good immune response.

In the context of TB vaccine research, it is imperative to underscore

the dual necessity of prevention and therapeutic intervention. Notably,

there exists a clinical phenomenon where patients who have ostensibly

recovered from TB witness a reactivation or relapse of latent TB. Given

this clinical challenge, the emphasis on developing therapeutic vaccines

has garnered significant attention. Stemming from this perspective,

certain vaccine candidates, derived from foundational research, have

showcased both prophylactic and therapeutic potential, subsequently

progressing to the clinical evaluation phase, and prominent among

these are ID93/GLA-SE, H56:IC31, and VPM1002 (121).

The findings of the present study suggest that vaccine designed

with multiple epitopes of TB are potential candidates, as one of the

candidates, 50sRP-TB, exhibited soluble characteristic in E. coli and

immunogenic properties in a mouse. Although there are no distinct

immune correlates of protection, CD4+ T cell response, especially

IFN-g, is one of the important indicators in TB vaccine (122). Based

on immunogenicity evaluation, 50sRP-TB elicited IFN-g secreted T

cell response and IgG2b production which is engaged in Th1

response in BCG-primed mice. This result implies that 50sRP-TB

is a promising T cell response-inducible vaccine. Moreover, we

anticipate protective effectiveness of 50sRP-TB in a M. tuberculosis

challenged mouse in the further study.

Although our candidates showed good protein characteristic and

immunogenicity, our study had a limitation. Since the vaccine

candidate was designed using human MHC epitopes, its

effectiveness needs to be evaluated with a humanized mouse model.

G.W. et al. reported the reliable immunogenicity and protective

efficacy of MP3RP, designed in silico in the lungs and spleen of a

humanized mouse model to overcome the limitation posed by

differences in human and mouse MHC allele (123). However, they

also have several drawbacks when evaluating vaccine efficacy. Due to

the distinction in antigen presentation between murine MHC (H-2)

and human MHC (HLA), an MHC-humanized mouse model has

been recently adopted in research to evaluate MHC-restricted

epitope-based vaccines (110, 123, 124). Based on these studies,

going forward, for the development of a preventive and therapeutic

vaccine for TB, the development of a preventive and therapeutic

vaccine for TB, this proposed vaccine will be validated for its efficacy

in in vivo studies in a suitable mouse model.
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