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Screening of genes co-
associated with osteoporosis
and chronic HBV infection
based on bioinformatics
analysis and machine learning
Jia Yang1†, Weiguang Yang2†, Yue Hu3†, Linjian Tong1, Rui Liu1,
Lice Liu1, Bei Jiang3* and Zhiming Sun1*

1Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University,
Tianjin, China, 2Department of Cardiovascular Surgery, Tianjin Medical University General Hospital,
Tianjin, China, 3Clinical School of the Second People’s Hospital, Tianjin Medical University, Tianjin, China
Objective: To identify HBV-related genes (HRGs) implicated in osteoporosis (OP)

pathogenesis and develop a diagnostic model for early OP detection in chronic

HBV infection (CBI) patients.

Methods: Five public sequencing datasets were collected from the GEO

database. Gene differential expression and LASSO analyses identified genes

linked to OP and CBI. Machine learning algorithms (random forests, support

vector machines, and gradient boosting machines) further filtered these genes.

The best diagnostic model was chosen based on accuracy and Kappa values. A

nomogram model based on HRGs was constructed and assessed for reliability.

OP patients were divided into two chronic HBV-related clusters using non-

negative matrix factorization. Differential gene expression analysis, Gene

Ontology, and KEGG enrichment analyses explored the roles of these genes in

OP progression, using ssGSEA and GSVA. Differences in immune cell infiltration

between clusters and the correlation between HRGs and immune cells were

examined using ssGSEA and the Pearson method.

Results: Differential gene expression analysis of CBI and combined OP dataset

identified 822 and 776 differentially expressed genes, respectively, with 43 genes

intersecting. Following LASSO analysis and various machine learning recursive

feature elimination algorithms, 16 HRGs were identified. The support vector

machine emerged as the best predictive model based on accuracy and Kappa

values, with AUC values of 0.92, 0.83, 0.74, and 0.7 for the training set, validation

set, GSE7429, and GSE7158, respectively. The nomogram model exhibited AUC

values of 0.91, 0.79, and 0.68 in the training set, GSE7429, and GSE7158,

respectively. Non-negative matrix factorization divided OP patients into two

clusters, revealing statistically significant differences in 11 types of immune cell

infiltration between clusters. Finally, intersecting the HRGs obtained from LASSO

analysis with the HRGs identified three genes.

Conclusion: This study successfully identified HRGs and developed an efficient

diagnostic model based on HRGs, demonstrating high accuracy and strong
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predictive performance across multiple datasets. This research not only offers

new insights into the complex relationship between OP and CBI but also

establishes a foundation for the development of early diagnostic and

personalized treatment strategies for chronic HBV-related OP.
KEYWORDS

osteoporosis, HBV, bioinformatics, machine learning, disease typing, immune
cell infiltration
Introduction

Hepatitis B virus (HBV) infection is a significant global public

health issue, affecting millions of people’s health (1, 2). Chronic

HBV infection (CBI) can lead to chronic liver diseases, including

cirrhosis and hepatocellular carcinoma, severely impacting patients’

quality of life (3). Recent studies have found that CBI is not only

associated with liver-related diseases but may also increase the risk

of other comorbidities, including osteoporosis (OP) (4, 5). OP is a

bone disease characterized by low bone density and deterioration of

bone tissue structure, leading to fragile bones and an increased risk

of fractures (6, 7). This disease is common in middle-aged and

elderly people, especially postmenopausal women, but men and

younger individuals are also at risk (8, 9). The development of OP is

related to various factors, including genetics, diet, lifestyle, and the

impact of chronic diseases (10).

“Hepatic osteodystrophy” is a common complication of chronic

liver disease, characterized by increased bone resorption and

decreased bone formation, leading to metabolic bone disease (11,

12). It has been reported that the incidence of OP in chronic liver

disease ranges from 12% to 55%, with fracture risk reaching up to

40% (13). In patients with chronic hepatitis, OP is considered one of

the most significant complications (14). The connection between

CBI and OP is not yet fully understood, but research suggests that

HBV may impact bone health through direct and indirect

mechanisms. These mechanisms include the chronic

inflammatory response induced by the viral infection, low serum

levels of insulin-like growth factor I, the induction of tumor
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necrosis factor which inhibits bone formation, and the potential

effects of HBV-related drug treatments on bone density (15–18).

Bioinformatics is an interdisciplinary scientific field that

combines biology, computer science, and statistics (19). It utilizes

computational technology and mathematical methods to process

and analyze the massive amount of data produced in biological

research, revealing the nature and mechanisms of biological

phenomena (20). Bioinformatics is widely applied in areas such as

genomics, transcriptomics, proteomics, and metabolomics (21).

The rapid development of this discipline has been facilitated by

high-throughput technologies, such as gene chips, high-throughput

sequencing, and mass spectrometry analysis (22). These advanced

technologies generate a vast amount of biological data, which

require in-depth analysis with bioinformatics tools. Research

topics include data mining, sequence alignment, protein structure

prediction, and biological network analysis (23). These methods

help to unearth valuable information from the data, such as gene

function, metabolic pathways, and protein interactions, which are

crucial biological questions (24). Machine learning (ML), a branch

of computer science, provides machines with the ability to learn

autonomously. Machine learning algorithms are widely used in

bioinformatics for prediction, classification, and feature selection

tasks, and their application in the field of bioinformatics has become

an important force driving biological research and medical

development (25). By analyzing clinical data, medical images, and

transcriptome data, machine learning can help doctors diagnose

diseases more accurately, classify diseases, and identify disease-

specific gene expression patterns (26).

In this study, we collected four OP datasets and one HBV

dataset from the Gene Expression Omnibus (GEO) database.

Bioinformatics-based analysis and machine learning methods

were used to screen for common pathogenic genes of HBV and

OP, and predictive models were constructed. In addition, a column-

line graph prediction model was constructed, and the prediction

performance was evaluated using calibration curves, decision curve

analysis (DCA), and clinical impact curves. OP patients were

classified into cluster1 and cluster2 according to HBV-related

genes (HRGs), and the mechanisms by which HRGs affect the

occurrence and development of OP were further explored by

enrichment analysis and immune cell infiltration analysis. Three

core genes were finally identified, and samples from 10 patients with
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CBI and 10 patients with combined OP with CBI were collected

from Tianjin Second People ’s Hospital for molecular

biology experiments.
Methods

Data collection and processing

This study collected five datasets from the Gene Expression

Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/geo/)

(27). The GSE83148 dataset includes liver tissue samples from

122 CBI patients and 6 healthy controls. GSE56815, GSE56814,

GSE7429, and GSE7158 consist of peripheral blood mononuclear

cell samples from OP patients and controls. The “sva” and “limma”

packages in R software were used for data normalization and batch

effect elimination (28, 29). The information for each dataset was

shown in Table 1.
Gene differential expression analysis

The R package “limma” was used to perform gene differential

expression analysis on the combined datasets of GSE56815 and

GSE56814, and separately on GSE83148. The criteria for inclusion

of differentially expressed genes in the GSE83148 dataset were

P<0.05 and LogFC|>1. For the combined dataset, the criterion for

differentially expressed genes was P<0.05. Subsequently, an

intersection of differentially expressed genes between the two

datasets was taken.
Screening genes by least absolute
shrinkage selection operator analysis and
machine learning

The “glmnet” package was used for LASSO analysis to further

select genes within both the combined dataset and the GSE83148

dataset, choosing the lambda corresponding to the smallest Binomial

Deviance as the optimal value (30). Within the combined dataset, the

“caret” package was utilized to compare the effects of recursive feature
Frontiers in Immunology 03
elimination (RFE) between models such as Random Forest (RF),

Support Vector Machine (SVM), and Gradient Boosting Machine

(GBM), to determine the final HRGs. The combined dataset was

divided into a training set and an internal validation set in an 0.8:0.2

ratio, followed by the construction of an SVM model through ten-

fold cross-validation. The “caret” package automatically selects the

optimal model. The “DALEX” package was used to interpret the

SVM model and generate results for the distribution of residuals and

gene importance ranking (31). The “pROC” package was employed

to draw the ROC curve and calculate the Area Under the Curve

(AUC) to assess the accuracy of the predictive model (32). The

GSE7429 and GSE7158 datasets were used to validate the accuracy of

the model.
Construction and evaluation of the
nomogram model

A nomogram model was constructed for the combined dataset

using the Logistic regression method, and validated with the test

datasets GSE7429 and GSE7158. The R software packages “rms”

and “VRPM” were utilized to establish the nomogrammodel for OP

risk assessment. In the nomogram, each of the HRGs is assigned a

specific score; the individual scores of the 18 HRGs are summed to

derive a total score. The risk of OP can be inferred based on the total

score. The predictive capability of the nomogram model was

evaluated using ROC curves, calibration curves, Decision Curve

Analysis (DCA), and Clinical Impact Curves (33).
Identification and functional enrichment
analysis of HBV-related OP patient clusters

To explore the differences in HBV-related clusters among OP

patients, we clustered OP patients using the non-negative matrix

factorization (NMF) method (34). The clustering was executed using

the R package “NMF”, applying the “brunet” algorithm over 50

iterations. Gene Ontology (GO) analysis, a common method for

large-scale functional enrichment studies, encompasses biological

processes (BP), molecular functions (MF), and cellular components

(CC). The Kyoto Encyclopedia of Genes and Genomes (KEGG), a

database widely used for biological pathway analysis (35), alongside

the R package “clusterProfiler”, was employed for conducting and

visualizing GO and KEGG enrichment analyses. Gene Set Variation

Analysis (GSVA), facilitating gene set (pathway) level differential

analysis (36), was performed using the R packages “GSVA” and

“limma”. The R package “ggplot2” was utilized for visualization of

the analysis results. GO, KEGG, and GSVA enrichment analyses were

conducted to explore the differences in biological processes between

aging-related clusters. GO and KEGG enrichment analyses were

carried out using the Gene Set Enrichment Analysis (GSEA)

method. Differentially expressed genes between clusters with |

LogFC|>1 and P<0.05 were included in the analysis, and results

with P<0.05 in the enrichment analyses were considered statistically

significant. The GSVA enrichment analysis employed the single-

sample gene set enrichment analysis (ssGSEA) method, which
TABLE 1 Basic information of GEO datasets.

ID Sample source Number
of cases

Number
of controls

GSE83148 Liver 122 6

GSE56815 Peripheral blood
mononuclear cell

40 40

GSE56814 Peripheral blood
mononuclear cell

31 42

GSE7429 Peripheral blood
mononuclear cell

10 10

GSE7158 Peripheral blood
mononuclear cell

12 14
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calculates pathway scores based on gene expression matrices (37). In

the GSVA enrichment results, |t|>2 and P<0.05 were deemed

statistically significant.
Immune cell infiltration analysis

To identify differences in immune cell infiltration status among

different HBV-related clusters, this study downloaded the

commonly used immune cell-related gene set “LM22” from the

literature (38). Using the R package “GSVA” and the ssGSEA

algorithm, the immune cell infiltration scores of 71 OP samples

in the GSE56815 dataset were evaluated to distinguish between the

immune cell infiltration statuses of different clusters (39).

Additionally, the R package “psych” was utilized to calculate the

correlation between HRGs and 28 types of immune cells through

Pearson correlation analysis.
Patients’ samples collection and peripheral
blood mononuclear cell isolation

In this study, 10 mL of fresh peripheral blood specimens were

collected from 10 patients with CBI and 10 patients with CBI

combined with OP at Tianjin Second People’s Hospital. PBMCs

were prepared from peripheral blood specimens by density

gradient centrifugation using Ficoll cushion. The clinical

information of patients was shown in Table 2. The study was

approved by the Ethics Committee of Tianjin Second People’s

Hospital (No. [2018]15) and written informed consent was

obtained from all participants.
The validation of the expression of hub
genes between CBI and CBI combined
with osteoporosis groups

Total RNA extraction was adopted using the Trizol reagent

(Thermo Fisher Scientific, Darmstadt, Germany), followed by

reverse transcription with a Reverse Transcription Kit (Takara
Frontiers in Immunology 04
Code No.RR 037A) following the instruction of the manufacturer.

Real-time quantitative PCR (RT-qPCR) was performed by adopting a

TaqMan PCR Kit (ThermoFisher). All reactions were conducted in

duplicate, and the relative mRNA expression was calculated based on

the 2−DDCt approach. Primer sequences are listed as follows: USP10-F,

5′-ATTGAGTTTGGTGTCGATGAAGT3′; USP10-R, 5′-GGAGCC
ATAGCTTGCTTCTTTAG3′; ECM1-F, 5′-GCTTCACGGC

TACAGGACAG3′; ECM1-R, 5′-GAGGCTTCGGGATAGGGGT3′;
ERAL1-F, 5′-TCAATCGGTGTTAAGAGTCTGGC3; ERAL1-R, 5′-
TCCGTTGGAAGCCTAAGAGTG3′.
Statistical analysis

R version 4.2.3 and GraphPad Prism version 9.0.2 (GraphPad

Software Inc., San Diego, CA, USA) and SPSS 21.0 software

(Chicago, IL, USA) were used for statistical analysis. The

counting data were expressed as cases and percentages, and Chi-

square test was used for comparison between groups. The statistical

description of non-normal distribution data was expressed by

median and quartile, and Mann–Whitney U test was used for

comparison between groups. All tests were performed by two-

tailed and P value of <0.05 was statistically significant.
Results

Gene differential expression analysis and
screening of HRGs

The bioinformatics analysis strategy is illustrated in Figure 1.

The combined dataset of GSE56815 and GSE56814, including 71

OP patients and 82 healthy control samples, yielded 822

differentially expressed genes (DEGs) after gene differential

expression analysis (Figure 2A). The GSE83148 dataset resulted in

776 DEGs after gene expression differential analysis (Figure 2B). An

intersection of the two datasets revealed a total of 43 common

genes (Figure 2C).

To select HRGs, LASSO analysis was performed on the

combined dataset. Figure 2D illustrates the coefficient of each

gene varying with lambda. At lambda = 0.02887027, where the

Binomial Deviance was minimized, the number of HRGs was

determined to be 18 (Figure 2E). Subsequently, this study aimed

to further filter the HRGs using three machine learning methods:

RF-RFE, SVM-RFE, and GBM-RFE, evaluating the predictive

performance of each method through Accuracy and Kappa. The

results indicated that SVM-RFE outperformed RF-RFE and GBM-

RFE in both Accuracy and Kappa. Moreover, among the three

machine learning methods, when the number of HRGs was 18, the

SVM-RFE method exhibited the highest Accuracy and Kappa, at

0.78 and 0.56, respectively (Figures 3A, B). These 18 HRGs were

identified as USP10, ERAL1, ECM1, CTSD, BRD4, LCP2, PLAUR,

NCKAP1L, EGR2, GPR56, GSN, CDC42EP3, FPR3, ARL4C,

RCAN2, AIM2, GNMT, and SCD5. Figure 3C illustrates the

expression of HRGs in OP patients and healthy controls.
TABLE 2 Patient demographics.

Characteristics CBI (n=10) CBI combined
with OP (n=10)

P value

Age (years) 38.4 ± 4.8 63.2 ± 3.1 <0.001

Male sex 8 (80.0%) 7 (70.0%) 0.605

HBV DNA (Log10
IU/mL)

1.4 (1.2-1.7) 1.3 (1.1-1.4) 0.912

ALT(U/L) 17.9 ± 6.5 25.4 ± 11.9 0.123

AST(U/L) 27.4 ± 8.7 35.4 ± 12.1 0.105

GGT (U/L) 47.6 ± 9.3 45.5 ± 10.3 0.109
ALT, alanine aminotransferase; AST, aspartate aminotransferase; GGT, glutamyltransferase.
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FIGURE 2

Gene differential expression analysis and Lasso analysis. (A) OP dataset. (B) GSE83148. (C) Intersection of DEGs from both datasets. (D) Coefficients
of each gene as the penalty parameter lambda varies. Each line represents a gene. (E) Ten-fold cross-validation graph. The left dashed line
represents the lambda value when the binomial deviation is minimal.
FIGURE 1

Flowchart of this study.
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Construction and evaluation of predictive
models for OP of HRGs

Next, we divided the combined dataset into a training set and a

validation set in an 0.8:0.2 ratio and constructed an SVM model

based on the 18 identified HRGs. We then analyzed and interpreted

the distribution of residuals and the importance of features in the

SVM model and evaluated the model’s performance through ROC

curves. Figures 4A, B display the residual inverse cumulative

distribution curve and box plot, respectively. Figure 4C shows the

importance of HRGs in the SVMmodel, evaluated using Root Mean

Square Error (RMSE) loss, with GPR56 ranked as the most

important. Finally, we used the GSE7428 and GSE7158 datasets

to validate and test the effectiveness of our predictive model.

Figure 4D presents the AUC values of the ROC curve for the

SVM model. The AUC values in the training set, validation set,

GSE7429, and GSE7158 were 0.92, 0.83, 0.74, and 0.7, respectively.

The results indicate that the SVM model constructed based on

HRGs demonstrates good predictive ability and can be used to

predict the risk of OP.

To further evaluate the predictive performance of HRGs, we

constructed a nomogram model based on the 18 HRGs using the

combined dataset as the training set (Figure 5A). The ROC curve,

calibration curve, Decision Curve Analysis (DCA) curve, and

clinical impact curve were utilized to further assess the predictive

performance of the nomogram. The nomogram model

demonstrated an AUC of 0.91 in the training set, with AUCs of

0.79 and 0.68 in the GSE7429 and GSE7158 datasets, respectively
Frontiers in Immunology 06
(Figure 5B), indicating strong diagnostic value for OP. The

calibration curve shows that the predicted performance of the

constructed nomogram model aligns closely with the actual

outcomes (Figure 5C). Similarly, the DCA curve illustrates the net

benefit of the nomogram model across different risk thresholds,

showing that decisions based on the nomogram model yield a net

benefit compared to either intervening in all or none (Figure 5D).

The clinical impact curve displays the estimated number of

individuals identified as high risk by the model and the number

of true positives across varying risk thresholds, aiding in assessing

the model’s efficacy in identifying true cases (Figure 5E).
Identification and functional enrichment
analysis of CBI combined with OP
patient clusters

Based on the 18 HRGs, patients in the combined dataset with

OP were clustered using the Non-negative Matrix Factorization

(NMF) method. A total of 71 OP patients were divided into cluster1

(N=45) and cluster2 (N=26). Figures 6A, B display the distinction

between cluster1 and cluster2 through heatmaps. Subsequently, GO

and KEGG enrichment analyses were performed between cluster1

and cluster2. Figure 7A and Figure 7B show the top 10 results of

GSEA for GO and KEGG respectively, respectively. In the GSEA

results for GO, compared to cluster2, cluster1 showed upregulation

in response to type I interferon, tertiary granule, tube closure,

negative regulation of cytoskeleton organization, neural tube
FIGURE 3

Comparison of machine learning models and expression of HRGs in the OP (A) Change in the accuracy of machine learning recursive feature
elimination algorithms with the number of genes. (B) Change in the kappa of machine learning recursive feature elimination algorithms with the
number of genes. (C) Expression of HRGs in the OP dataset. *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001.
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closure, and cellular response to type I interferon, and

downregulation in recombinational repair, muscle organ

development, DNA recombination, and ATP-dependent activity

acting on DNA. In the GSEA results for KEGG, cluster1, in

comparison to cluster2, indicated upregulation in the

Adipocytokine signaling pathway, B cell receptor signaling

pathway, Diabetic cardiomyopathy, FcgR-mediated phagocytosis,

GnRH secretion, Influenza A, Neutrophil extracellular trap

formation, RIG-I-like receptor signaling pathway, Th1 and Th2

cell differentiation, Thyroid hormone signaling pathway. Similarly,

Figure 7C shows the top ten results for upregulated and

downregulated GO terms in GSVA for cluster1 relative to

cluster2. Figure 7D presents the results for upregulated and

downregulated KEGG pathways in GSVA, with 10 pathways

being upregulated and only 7 downregulated. In other words, the

upregulated results represent pathways primarily involved by

cluster1, while the downregulated results represent pathways

mainly involved by cluster2.
Immune cell infiltration analysis

We analyzed the differences in immune cell infiltration levels

between cluster1 and cluster2 (Figure 8A). The results indicated

that, compared to cluster2, cluster1 exhibited upregulated

infiltration of CD56dim natural killer cells, immature dendritic

cells, T follicular helper cells, type 1 T helper cells, and type 17 T
Frontiers in Immunology 07
helper cells, and downregulated infiltration of eosinophils, gamma

delta T cells, immature B cells, mast cells, and plasmacytoid

dendritic cells. Figure 8B shows the correlation between HRGs

and immune cells.
LASSO analysis for selecting HBV-
related genes

After analyzing the OP dataset, we performed LASSO analysis

on the GSE83148 dataset to further select HRGs Figure 9A

illustrates the change in gene coefficients with lambda during the

LASSO analysis. At lambda = 0.0002521665, where the Binomial

Deviance was minimized, 6 genes were identified (Figure 9B). An

intersection with HRGs yielded 3 genes: USP10, ERAL1, and ECM1.

Figures 9C, D show the expression of these three genes in the OP

and CBI datasets, respectively.
The validation of the expression pattern of
three hub genes

To further confirm the accuracy of the above integrated

bioinformatics analysis, we firstly examined the expression

pattern of the three hub genes in the recruited patients. The RT-

qPCR results confirmed expression pattern of three hub genes in

CBI and CBI combined with OP. Figure 10 shows the relative
FIGURE 4

Construction and evaluation of the SVM model. (A) Residual inverse cumulative distribution curve. The X-axis represents the residual value. The Y-axis
represents cumulative frequency. This means for any point on the graph, what frequency of samples have residuals greater than or equal to the value on the
X-axis. (B) Residual box plot. The X-axis represents the residual value. The red dot represents the root mean square of residuals. (C) Importance of HRGs.
The greater the RMSE loss, the more important the gene. (D) ROC curves of the SVM model in various datasets.
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expression levels of the hub genes we identified in patients from the

CBI group and the CBI combined with OP group. The relative

expression levels of ERAL1 and USP10 in the CBI combined with

OP group were significantly higher than those in the CBI group,

consistent with the machine learning results (Figures 10A, C).

Probably due to insufficient sample size, we did not observe

differences in another hub gene ECM1 between the two

groups (Figure 10B).
Frontiers in Immunology 08
Discussion

CBI is a global public health issue that not only significantly

affects the liver but is also associated with a variety of non-hepatic

complications, including OP (40, 41). OP is a systemic bone disease

caused by multiple factors, leading to decreased bone density and

quality, as well as the deterioration of bone microarchitecture (42).

An increasing body of research suggests that CBI can elevate the
FIGURE 6

Heatmap showing the distinction between cluster1 and cluster2. (A) The consensus matrix of NMF clustering. (B) The co-clustering coefficient of HRGs.
FIGURE 5

Construction and evaluation of the nomogram model. (A) Nomogram prediction model. The color legend on the right represents the score of each
gene, adding up each gene’s score to get the Score below and the Predicted risk of OP. (B) ROC curves of the nomogram model in various datasets.
(C) Calibration curve. The X-axis represents predicted probability, and the Y-axis represents actual outcomes. Apparent represents uncorrected
model predictions. Bias-corrected represents model predictions after bootstrapping correction. Ideal represents absolute ideal model predictions.
(D) DCA curve. The X-axis is the threshold probability for being judged as high-risk, and the Y-axis represents net benefit. All and None represent the
extreme cases of all interventions and no interventions. (E) Clinical impact curve. The dual X-axis represents the threshold probability of being
judged as high risk and the cost: benefit ratio. Number high risk represents the number of cases judged positive by the model, Number high risk with
event represents the number of true positives.
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risk of developing OP. Several studies have indicated that CBI may

lead to osteoporosis through several mechanisms. Firstly, vitamin D

deficiency, which is common in CBI patients, adversely affects bone

metabolism and results in decreased bone mineral density.

Additionally, long-term use of antiviral drugs, particularly

tenofovir disoproxil fumarate (TDF), has been associated with

bone mineral density reduction, likely due to its impact on renal

phosphate handling, leading to bone demineralization. As CBI

patients age, the presence of comorbidities such as diabetes,

hypertension, and cardiovascular diseases further exacerbates the

risk of osteoporosis by altering calcium metabolism and increasing

bone fragility. Chronic inflammation associated with CBI may also

contribute to bone loss by promoting the production of cytokines

that enhance bone resorption. Although the direct effects of HBV

on bone cells are still under investigation, these combined factors

indicate that CBI patients, especially those on long-term TDF

therapy and those with additional risk factors like age and

comorbidities, are at a significantly increased risk of developing

osteoporosis (43). Therefore, careful monitoring and individualized

treatment strategies are recommended to mitigate this risk.

Recently, the widespread adoption of microarray technologies and

sequencing methods has significantly advanced the investigation of

molecular mechanisms and landscapes of various diseases (44, 45).

With the advent of big data, there is a growing utilization of

comprehensive bioinformatics analysis and machine learning

tools. These methods are instrumental in discovering new genes

and potential diagnostic markers, as well as in unveiling the
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underlying mechanisms of diseases and identifying novel

therapeutic targets (46, 47). This opens new avenues for

understanding and treating diseases.

To our knowledge, this study is the first to explore the complex

interactions between CBI and OP through the synergistic

integration of bioinformatics analysis and machine learning

techniques. In this research, we utilized datasets from the GEO

database to identify HRGs by intersecting differentially expressed

genes, conducting LASSO analysis, and employing machine

learning recursive feature elimination. Notably, the HRGs selected

by the three methods—RF-RFE, SVM-RFE, and GBM-RFE were

consistent at 18, matching the LASSO analysis, indicating that

HRGs are robust enough for predicting OP risk. Furthermore, the

SVM model exhibited AUC values of 0.92, 0.83, 0.74, and 0.7 in the

training set, validation set, GSE7429, and GSE7158, respectively.

The nomogram model showed an AUC of 0.91 in the training set,

with AUCs of 0.79 and 0.68 in the GSE7429 and GSE7158 datasets,

respectively. Several OP prediction models based on biomarkers

have been developed. The SVM prediction model constructed by

Zhang Peng and others, based on m6A regulatory factors,

achieved an AUC of 0.848 (48). The SVM prediction model

constructed by Lai Jinzhi and colleagues, based on genes related

to the Wnt pathway, achieved an AUC of 0.762, and the nomogram

model also reached a high AUC of 0.7 (49). The prediction models

developed by Zheng Zhenlong and his team showed AUCs ranging

from 0.667 to 0.999 in the training set and from 0.603 to 0.662 in

the test set (50). These results all emphasize the effectiveness of
FIGURE 7

Results of GO and KEGG enrichment analysis. (A, B) GSEA results of GO and KEGG. The X-axis represents enrichment score. The Y-axis represents
pathway names. Count represents the number of genes. (C, D) GSVA results of GO and KEGG. The X-axis is the t-value. The Y-axis represents
pathway names.
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using machine learning to predict OP. Compared to other studies,

our research, whether through the SVM based on HRGs or the

nomogram model, demonstrates good predictive ability.

Patients with OP were divided into two distinct clusters using

NMF clustering. Functional enrichment analysis further elucidated

the different biological processes and pathways regulated in each

cluster. These analyses revealed potential complex molecular

mechanisms through identified upregulated and downregulated

pathways, which may underlie the clinical manifestations of OP

observed in patients with CBI. For instance, the differential

regulation of pathways such as the Thyroid hormone signaling

pathway, Th1 and Th2 cell differentiation, and the Adipocytokine

signaling pathway in the GSEA results for KEGG highlighted the
Frontiers in Immunology 10
multifaceted nature of the pathogenesis of OP in the context of CBI

(51–53). Additionally, pathways related to immune regulation,

including Neutrophil extracellular trap formation, RIG-I-like

receptor signaling pathway, Th1 and Th2 cell differentiation,

FcgR-mediated phagocytosis, Adipocytokine signaling pathway,

and B cell receptor signaling pathway, were upregulated in

cluster1. Therefore, we speculate that cluster1 may predominantly

influence the progression of OP through immune regulation.

Conversely, in the GSVA results for KEGG, cluster2 exhibited

upregulation in pathways such as primary bile acid biosynthesis,

glycosaminoglycan biosynthesis - keratan sulfate, folate

biosynthesis, and phenylalanine metabolism. Thus, we infer that

cluster2 mainly affects the progression of OP through the synthesis
FIGURE 8

Immune cell infiltration analysis. (A) Differences in 28 types of immune cell infiltration between clusters evaluated by the ssGSEA algorithm. *P < 0.05,
**P < 0.01, ***P < 0.001, ns represents P ≥ 0.05. (B) Pearson correlation assessing the relationship between HRGs and 28 types of immune cells.
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and metabolism of condition-specific substances. These findings

underscore the inherent heterogeneity of CBI combined with OP,

indicating that the pathogenesis of OP in the context of CBI is not

uniform but exhibits significant variation among individuals.

The analysis of immune cell infiltration has provided additional

insights into the role of the immune system in the pathophysiology

of chronic HBV-related OP. The differences in specific types of

immune cell infiltrations between the two clusters emphasize the

importance of the immune microenvironment in bone health and

disease. The complex interactions between immune cells and bone

cells, such as osteoblasts and osteoclasts, may influence bone density

and structure, leading to the development or exacerbation of OP

(54). Compared to cluster2, cluster1 exhibited increased infiltration

of CD56dim natural killer cells, immature dendritic cells, T follicular
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helper cells, Th1 cells, and Th17 cells, while showing decreased

infiltration of eosinophils, gdT cells, immature B cells, mast cells,

and plasmacytoid dendritic cells. These findings highlight the need

for targeted therapeutic strategies that address both the viral

infection and its immunological consequences to effectively

manage chronic HBV-related OP.

Finally, the intersection of HRGs identified three genes: USP10,

ERAL1, and ECM1. USP10 is an enzyme belonging to the ubiquitin-

specific proteases (USPs) family, playing a key role in the de-

ubiquitination process (55). De-ubiquitination refers to the removal

of ubiquitin from ubiquitinated proteins, a post-translational

modification that can signal protein degradation, alter protein

location, affect activity, and promote or inhibit protein-protein

interactions (56). The differentiation of mesenchymal stem cells into
FIGURE 9

Screening of HRGs and expression of HRGs in the dataset. (A) Coefficients of each gene as the penalty parameter lambda varies. (B) Ten-fold cross-
validation graph. (C) Expression of HRGs in the OP dataset. (D) Expression of HRGs in the HBV dataset. *P < 0.05, **P < 0.01, ****P < 0.0001.
FIGURE 10

Expression of the three hub genes in CBI and CBI combined OP was detected by RT-qPCR. (A) ERAL1. (B) ECM1. (C) USP10. ns represents P ≥ 0.05,
**P < 0.01.
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osteoblasts or the differentiation of monocytes into osteoclasts is

regulated by USPs (57, 58). USP10 may participate in regulating

bone metabolism processes through its specific de-ubiquitination

activity, affecting the development of OP. Yu Wei and others found

that estrogen can prevent cell aging and bone loss by regulating the

degradation of p53 dependent on Usp10 in bone cells and osteoblasts

(59). ERAL1 is an RNA chaperone located in mitochondria, mainly

involved in the maturation and stability of mitochondrial 12s rRNA

(60). ERAL1 is crucial for ensuring normal mitochondrial protein

synthesis since 12s rRNA is a component of the mitochondrial

ribosomal small subunit involved in protein synthesis within

mitochondria (61, 62). Numerous studies have shown that

mitochondrial dysfunction can lead to cellular disorder or

dysfunction, disrupting the balance of osteoblast and osteoclast

activity, thereby leading to the occurrence of OP (63, 64).

Additionally, ERAL1 can promote the RIG-I-like receptor signaling

pathway to inhibit viral infections (65). However, direct studies linking

ERAL1 to OP have not been found. ECM1 is a widely expressed

extracellular matrix protein that plays a role in various biological

processes, including cell proliferation, differentiation, migration, and

the organization and remodeling of the extracellular matrix (66–68).

ECM1 influences the structure and function of the extracellular matrix

through interactions with other extracellular matrix components such

as collagens, glycoproteins, and proteoglycans (69). ECM can regulate

the osteoblast lineage and osteoclast lineage, including their crosstalk,

thereby affecting the occurrence of OP (70). It has been reported that

Hepatocyte Growth Factor (HGF) and Epidermal Growth Factor

(EGF) are increased in patients with HBV infection, enhancing the

cell-protective intracellular signaling of ECM from the outside to the

inside (71).

However, our study has some limitations. The research relied on

datasets from publicly available data, with a limited number of

samples and without specific datasets for CBI combined with OP,

which may restrict the broad applicability of our findings.

Furthermore, although we collected PBMCs from clinical patients

and utilized qPCR to verify the expression levels of the hub genes for

validation, the next step should involve collecting real-world data and

detailed clinical information as supplements to verify the accuracy of

the prediction models constructed with HRGs. Future studies should

include additional experiments to explore the expression and

mechanisms of USP10, ERAL1, and ECM in the context of CBI

combined with OP. In clinical practice, particular attention should be

given to patients with CBI exhibiting abnormal expression of USP10,

ERAL1, and ECM, as this may indicate a higher risk of OP.
Conclusion

In conclusion, this study successfully identified HRGs using a

combination of bioinformatics analysis and machine learning.

Furthermore, the SVM and nomogram models built based on

HRGs demonstrated excellent predictive performance across

various OP datasets. The HRGs divided OP patients into two

HBV-related subgroups, which exhibited significant differences in

immune cell infiltration and biological pathways.
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