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promotes premature senescence
in age- and trauma-
related osteoarthritis
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Background: The complement system is locally activated after joint injuries and

leads to the deposition of the terminal complement complex (TCC). Sublytic TCC

deposition is associated with phenotypical alterations of human articular

chondrocytes (hAC) and enhanced release of inflammatory cytokines. Chronic

inflammation is a known driver of chondrosenescence in osteoarthritis (OA).

Therefore, we investigated whether TCC deposition contributes to stress-

induced premature senescence (SIPS) during aging in vivo and after ex vivo

cartilage injury.

Methods: Femoral condyles of male 13-week-old and 72-week-old CD59-ko

(higher TCC deposition), C6-deficient (insufficient TCC formation), and C57BL/6

(WT) mice were collected to assess age-related OA. Furthermore,

macroscopically intact human and porcine cartilage explants were traumatized

and cultured with/without 30% human serum (HS) to activate the complement

system. Explants were additionally treated with clusterin (CLU, TCC inhibitor), N-

acetylcysteine (NAC, antioxidant), Sarilumab (IL-6 receptor inhibitor), STAT3-IN-1

(STAT3 inhibitor), or IL-1 receptor antagonist (IL-1RA) in order to investigate the

consequences of TCC deposition. Gene and protein expression of senescence-

associated markers such as CDKN1A and CDKN2A was determined.

Results: In the murine aging model, CD59-ko mice developed after 72 weeks

more severe OA compared to C6-deficient and WT mice. mRNA analysis

revealed that the expression of Cdkn1a, Cdkn2a, Tp53, Il1b, and Il6 was

significantly increased in the cartilage of CD59-ko mice. In human cartilage,

trauma and subsequent stimulation with HS increased mRNA levels of CDKN1A,

CDKN2A, and IL6, while inhibition of TCC formation by CLU reduced the

expression. Antioxidative therapy with NAC had no anti-senescent effect. In

porcine tissue, HS exposure and trauma had additive effects on the number of

CDKN2A-positive cells, while Sarilumab, STAT-IN-1, and IL-1RA reduced

CDKN2A expression by trend.
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Conclusion: Our results demonstrate that complement activation and

consequent TCC deposition is associated with chondrosenescence in age-

related and trauma-induced OA. We provided evidence that the SIPS-like

phenotype is more likely induced by TCC-mediated cytokine release rather

than oxidative stress. Overall, targeting TCC formation could be a future

approach to attenuate OA progression.
KEYWORDS

osteoarthritis, complement system, terminal complement complex, senescence,
interleukin-6
1 Introduction

The musculoskeletal disease osteoarthritis (OA) is the primary

cause of chronic pain and disability in the elderly worldwide. OA

can be found in all synovial joints, but it is more pronounced in

weight-bearing joints such as the knee and hip. Pathological

changes in the knee joint are not limited to articular cartilage, as

OA affects the whole joint, thus synovial inflammation, osteophyte

formation, subchondral bone sclerosis, and degenerated ligaments

are further hallmarks of OA (1, 2). The etiology of OA is considered

multi-factorial with an interplay of systemic and local factors (e.g.,

aging, female gender, genetic predisposition, and overweight) (3).

Local risk factors also include preceding traumatic injuries such as a

torn meniscus or ligament, intra-articular fractures, and cartilage

lesions (4). Pathomechanisms of primary OA and post-traumatic

OA (PTOA) have been studied for decades, however, none of the

current available treatments can reliably prevent OA progression

(5, 6). Previous studies indicated that both the complement system

and cellular senescence are involved in OA pathogenesis and

specific targeting could be a future approach in OA therapy.

The complement system is an important part of the innate

immune system and previous studies have indicated that it is

crucially involved during OA and PTOA progression (7–11).

Compared to healthy individuals, elevated levels of complement

activation products, including C3a, C5b-9, C4d, and C3bBbP, were

found in synovial fluid derived from OA patients and after an acute

knee injury (12, 13). Besides the local expression by chondrocytes

and synovial cells (10), intraarticular levels of complement

components can also be influenced by bleedings due to knee

injuries (11). Complement activation during OA progression is

thought to be promoted by various micro-environmental changes

(e.g., enhanced protease activity and accumulation of ROS) as well

as damage-associated molecular patterns (DAMPs). The latter

comprises cell- and matrix-derived components released during

necrotic cell death and cartilage degradation (e.g., breakdown

products of collagen type II) (2, 10, 14, 15). Activation of the

complement system occurs in a cascade fashion which results in

the generation of the anaphylatoxins C3a and C5a and formation of

the terminal complement complex (TCC; also referred to as C5b-9).
02
The TCC consists of C5b, C6, C7, C8, and multiple C9 molecules

forming a pore in the cell membrane, thus inducing lysis and death

of the target cells. However, sublytic TCC deposition is often

observed in nucleated cells and associated with the secretion of

proinflammatory cytokines (16) and mitochondrial dysfunction

resulting in elevated reactive oxygen species (ROS) levels (17). In

case of human articular chondrocytes (hAC), phenotypical

alterations have been described as a consequence of TCC

deposition (18). In contrast, functional loss of TCC due to C5- or

C6-deficiency attenuated OA progression in injury-induced murine

and rabbit OA models (8, 12). To circumvent TCC attack, cells

including hAC express the membrane bound complement

regulatory protein CD59, which prevents C9 polymerization

(19, 20). Accordingly, CD59-deficiency resulted in enhanced

cartilage degeneration in a murine PTOA model (12). Up to the

present time, the exact role of the complement system and in

particular TCC deposition during OA progression has not yet been

fully unraveled.

Cellular senescence is described as a permanent cell cycle arrest

characterized by the upregulation of cell cycle regulators such as p53

[encoded by tumor-suppressor protein 53 (TP53)], p16 [encoded by

cyclin-dependent kinase inhibitor 2A (CDKN2A)], and p21

[encoded by (CDKN1A)] (21). Accumulation of senescent

chondrocytes has been observed in articular cartilage of aged

individuals and after joint injuries (22, 23). Furthermore, healthy

mice were found to develop an OA-like phenotype after

intraarticular injection of senescent fibroblasts into the knee joint

(24). Selective elimination of senescent chondrocytes, in turn, was

reported to reduce the risk of PTOA (23). The detrimental effect of

senescent cells on surrounding tissues is most likely due to the

senescence-associated secretory phenotype (SASP), which creates a

pro-degenerative microenvironment (2, 24). The SASP secretome of

hAC contains proinflammatory cytokines (e.g., IL-6, IL-8, and IL-

1b) and proteases (e.g., MMP13) (25, 26). Inefficient clearance of

senescent cells and subsequent persistence of cytokine release can

promote senescence in neighboring cells in a paracrine manner,

resulting in the accumulation of dysfunctional chondrocytes and

cartilage degeneration (27, 28). Besides cytokines, enhanced levels

of ROS are known to harm cells and thus cause so-called stress-
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induced premature senescence (SIPS) (29). Current therapeutic

approaches against chondrosenescence target mainly senescence

itself by removal of senescent cells or by suppressing their

detrimental phenotype (30). Considering the hypocellularity of

articular cartilage, identification and targeting of SIPS inducers

might be more promising.

We propose that sublytic TCC deposition induces

chondrosenescence either via subsequent inflammation or oxidative

stress. Both are known inducers of senescence and are associated with

sublytic TCC deposition (16, 17, 27–29). This hypothesis was

investigated in an age-related in vivo and an ex vivo cartilage

trauma model, respectively. We showed that complement

activation and consequent TCC deposition was associated with a

SIPS-like phenotype in chondrocytes. Inhibition of TCC formation

resulted in a reduced expression of senescent associated genes.

However, antioxidative therapy had no effect, while inhibition of

IL-6 or IL-1b, in turn, reduced the expression of CDKN2A by trend.
2 Materials and methods

2.1 Animal care and mouse samples

Two different mouse models were used in this study. C6-deficient

(C6-def) mice derived from mice with natural C6 mutations which

were backcrossed from a C3H/He background (31) to a C57BL/6

background (32). Targeted deletions of exon 2 of the Cd59a gene

resulted in the generation of the second mouse strain, CD59-

knockout (CD59-ko) mice (33). Additionally, C57BL/6 wildtype

(WT) mice were included. Animal experiments were carried out

according to the European Union Directive 2010/63/EU and the

international regulations for the care and use of laboratory animals

(Animal Research: Reporting of In Vivo Experiments (ARRIVE)

guidelines) were applied. The animal experiment was approved by

the responsible local ethical committee (Animal Research Center of

the Ulm University, Ulm, Germany; grant numbers, o.135-7 and

o.135-12). Mice received standard mouse feed (ssniff R/M-H, V1535-

300; Ssniff, Soest, Germany) and water ad libitum. Housing was

performed in groups of up to five mice per cage with a 14-hour light,

10-hour dark rhythm. Since OA is more pronounced regarding

cartilage degeneration in male mice (34–36) and that female mice

have lower serum concentrations of some complement proteins, such

as C6 and C9 (37), onlymalemice were used. AsWang et al. observed

in mice after 72 weeks mild OA, mice were sacrificed and weight

(Supplementary Table 1) at an age of either 13 weeks or 72 weeks

(12). The condyles of the left hind leg were used for gene expression

analysis. The right hind leg was used for histology and for this

purpose fixated in formalin and subsequently decalcified with 20%

EDTA (Sigma-Aldrich, Darmstadt, Germany) for 2 weeks.
2.2 Human samples

Samples were obtained from donors undergoing surgical knee

replacement. Patients gave their written informed consent according to

the terms of the Ethics Committee of the University of Ulm following the
Frontiers in Immunology 03
instructions of the Declaration of Helsinki (ethical approval number 353/

18). Macroscopically intact cartilage tissue (Osteoarthritis Research

Society International (OARSI) grade ≤ 1) (38) derived from human

femoral condyles was used either for isolation of hAC, extraction of full-

thickness cartilage explants, or immediately stored in 4% formalin for

histology. Additionally, highly degenerated cartilage tissue (OARSI grade

≥ 3) was collected and processed for histology. Exemplary images of

macroscopically intact cartilage tissue (OARSI grade ≤ 1) and highly

degenerated cartilage tissue (OARSI grade ≥ 3) are provided in Riegger

et al., 2023 and Ruths et al., 2024 (7, 39).
2.3 Isolation and cultivation of human
articular chondrocytes

To isolate hAC, macroscopically intact cartilage was cut into

small pieces. Tissue was digested with 0.2% pronase (Sigma-

Aldrich) for 45 min and afterwards with 0.025% collagenase

(Sigma-Aldrich) overnight at 37°C. Undigested pieces were

removed by means of a 40 µm cell strainer. Cells were cultured in

basal medium [1:1 DMEM (Live Technologies, Paisley, UK) and

Ham´s F12 (PAN Biotech, Aidenbach, Germany), 10% fetal bovine

serum (PAN Biotech), 1 g/L glucose, 0.5% L-glutamine (PAN

Biotech), 0.5% penicillin/streptomycin (PAN Biotech), 10 mg/mL

2-Phospho-L-ascorbic acid trisodium salt (Sigma-Aldrich)] and

split at a confluency of 80% and were used in passage 1 or 2.

Cultivation was performed at 37°C, 5% CO2, and 95% humidity.
2.4 Preparation, cultivation and
traumatization of human cartilage explants

Full-thickness cartilage explants (Ø 6 mm) were extracted from

macroscopically intact cartilage. After isolation, explants were

cultured at least 24 h in serum free medium [SFM: DMEM, 1 g/L

glucose, 1% pyruvate (Sigma-Aldrich), 1% non-essential amino acids

(Bio-Sell, Feucht, Germany), 0.5% L-glutamine, 0.5% penicillin/

streptomycin, 10 mg/mL 2-Phospho-L-ascorbic acid trisodium salt,

0.1% Insulin-Transferrin-Selenium (Live Technologies)]. During

running experiments, explants were stimulated for 4 days with 30%

pooled human serum (HS; Innovative Research, Peary Court, USA),

20 mg/mL cartilage homogenate (HG), 2 mM N-acetyl cysteine

(NAC; Sigma-Aldrich), and/or 30 mg/mL clusterin (CLU; R&D

Systems, Wiesbaden, Germany).

Depending on the experimental set-up, cartilage explants were

traumatized with a single impact (0.59 J) with an established drop-

tower model prior to stimulation (40, 41). This allows to study

trauma-induced alterations of cartilage tissue and hAC.
2.5 Preparation, cultivation and
traumatization of porcine samples

Right hind legs of 6-month-old pigs were obtained from a local

butcher. Cartilage explants (Ø 6 mm) were extracted from the medial

femoral condyle and cultured in SFMhigh containing 4.5 g/L glucose.
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Porcine cartilage explants were traumatized with a reduced impact

energy of 0.47 J and stimulated with 30% HS or 30% heat inactivated

(Hi) HS in SFMhigh. As we were interested in consequences of sublytic

TCC deposition and HS was used for the porcine tissue, the incubation

time was reduced and no HG was added. After 24 h, medium was

replaced with fresh SFMhigh supplemented with either 5 mg/mL

Sarilumab (IL-6 receptor inhibitor; Selleck Chemicals, Houston,

USA), 5 mM STAT3-IN-1 (STAT3 inhibitor; Selleck Chemicals) or

50 ng/mL IL-1RA (IL-1 receptor antagonist; PeproTech, Cranbury,

USA). At day 4, a Live/Dead staining was performed. Remaining

cartilage pieces were stored in 4% formalin for histological analysis.
2.6 Live/dead viability/cytotoxicity assay

A Live/Dead Viability/Cytotoxicity kit (Live Technologies) was

used to investigate the percentage of living cells in cartilage explants.

As previously described (40), a tissue section (0.5 mm thickness)

was cut out of the unfixed explants and incubated for 40 min in a

staining solution (1 µM calcein, 2 µM ethidium homodimer-1).

Microscopical analysis was performed using a z-stack model

(AxioVision software) and an Axioskop 2 mot plus microscope

(Carl Zeiss, Oberkochen, Germany).
2.7 siRNA-mediated silencing of CD59

CD59 expression was knocked down in hAC by means of silencer

select pre-designed siRNA (s2696, Live Technologies). Scrambled

siRNA (Live Technologies) was used as negative control (siNC). The

first knockdown was carried out in suspension. hAC were digested

with a solution containing 1 mg/mL collagenase, 1 mg/mL protease,

and 4 U/mL hyaluronidase (Sigma-Aldrich) for 1 h at 37°C. Next,

hAC were seeded at a density of 24,000 cells/cm2 in 1 mL Opti-MEM

(Fisher Scientific, Schwerte, Germany) and the transfection mix

[Opti-MEM containing 1.5% Lipofectamine 3000 (Fisher Scientific)

and 1% siRNA (10 mM)] was added. After an incubation of 4 h in the

cell incubator, Opti-MEM was removed and basal medium was

added. After 72 h, cells were trypsinized and seeded at a density of

21,000 cells/cm2. On the next day, the second knockdown was carried

out with adherent cells. 3 days after the second transfection, cells were

used for gene expression analysis and CD59-immunofluorescence

(IF) to confirm the knockdown on mRNA and protein level.

Additionally, hAC were incubated for 2 h with 30% HS, followed

by a TCC-IF to confirm the knockdown on a functional level.
2.8 CD59- and TCC-IF

For the CD59-IF, cells were at first washed once with PBS and

then protein block (Dako, Hamburg, Germany) was added for 60

min at 37°C. Next, a PE-labeled anti-human CD59 antibody

(1:1200, B304708, Biozym, Hessisch Oldendorf, Germany) was

incubated for 2 h. Unbound antibodies were removed by washing

with PBS and cells were fixated with formalin (15 min). Nuclei were

stained with Dapi (0.25 mg/mL, 10 min, Sigma-Aldrich).
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In case of TCC-IF, the primary antibody (1:4000, ab55811,

abcam, Cambridge, UK) was added for 2 h. Afterwards, a

biotinylated goat anti-polyvalent solution (Dako) was incubated

for 30 min, followed by the addition of an iFluor 568-straptavidin

conjugate (1:100, ABD-16960, AAT Bioquest, Pleasanton, USA) for

20 min. Nuclei were stained with Dapi.

CD59 (red), TCC (red), and nuclei (blue) were visualized with

an Axioskop 2 mot plus microscope (Zeiss, Oberkochen, Germany).

The corrected total cell fluorescence (CTCF) was determined with

ImageJ 2.9.0.
2.9 Gene expression analysis

Total RNA was extracted from cryopreserved cartilage explants

or condyles of left hind legs from mice. A microdismembrater S (B.

Braun Biotech, Melsungen, Germany) was used to disintegrate the

tissue and RNA was isolated by means of the RNeasy Lipid Tissue

Mini Kit (Qiagen, Hilden, USA). To isolate RNA of cultured cells,

the RNeasy Mini Kit (Qiagen) was applied. All kits were carried out

following the manufacturer’s instructions, including the Omniscript

RT Kit (Qiagen) which was used for reverse transcription.

Quantitative real-time polymerase chain reaction (StepOnePlus

Real-Time PCR System, Applied Biosystems) was used together

with TaqMan Gene Expression Mastermix (Applied Biosystems)

and Assays (Supplementary Table 2) to analyze gene expression.

Self-designed primers were used in combination with SYBR Green

PCR Mastermix (Applied Biosystems). GAPDH and HPRT1 served

as reference genes in mice and human samples. The DDCt method

was applied to calculate mRNA expression levels compared to the

reference samples (either macroscopically intact cartilage tissue,

untreated controls, or the median of 13-week-old WT mice).
2.10 Safranin O staining and
histopathological assessment of OA grade

Paraffin embedded knee joints were cut, dewaxed, and

rehydrated prior to staining. Sections were then incubated with

Weigert´s iron hematoxylin (Merck, Darmstadt, Germany), then in

0.03% Fast Green (Sigma-Aldrich), followed by 0.1% Safranin O

(Chroma, Köngen, Germany). Stained sections were analyzed with

an Axioskop 2 mot plus microscope. OA grade was determined on

the medial condyle by analyzing the osteoarthritis damage and size

and maturity of osteophytes (42).
2.11 Immunohistochemistry and IF staining
of murine knee joints

Paraffin embedded knee joints were cut, dewaxed and

rehydrated prior to staining. CDKN1A was stained with an IHC

staining protocol, while CDKN2A was stained by IF. Antigen

retrieval was done by incubating the sections in 10 mM citrate

buffer at 95°C for 20 min. In case of IHC, endogenous peroxidase

was blocked with 3% methanol for 15 min. Sections were blocked
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with 10% goat serum for 30 min at 37°C. Staining was performed

with either CDKN1A (1:50, MA5-14949, Live Technologies) or

CDKN2A antibody (1:100, ab189034, Abcam). Secondary

antibodies were either goat anti-rabbit biotinylated or AF594

conjugated (1:100, Invitrogen, Cat # A-11012). IF sections were

counterstained with 1:1000 Hoechst dye.
2.12 Histology of cartilage explants

Paraffin embedded cartilage explants were cut, dewaxed, and

rehydrated prior to staining. For immunohistochemistry (IHC) and

IF, antigen retrieval was preformed depending on the used antibody.

For TCC (1:250, A239, Quidel Ortho, San Diego, USA) sections were

digested with 2 mg/mL hyaluronidase in 10 mM citrate buffer (30

min, 37°C). In case of CDKN1A (1:50, MA5-14949, Live

Technologies), CDKN2A (1:200, ab108349, Abcam), and p53

(1:100, LS-B7723, LSBio, Shirley, USA) antigens were demasked

with 10 mM citrate buffer (16 h, 65°C). Afterwards, primary

antibodies were incubated overnight (4°C), followed by an

incubation in 3% hydrogen peroxide (30 min). Subsequent IHC

staining was performed with the LSAB2 System horseradish

peroxidase kit (Dako, Glostrup, Denmark) and nuclei were stained

with gill´s haematoxylin (Merck). In the case of IF, an iFluor 568-

streptavidin conjugate (0.25 µg/mL, 16960, AAT Bioquest, Sunnyvale,

USA) and DAPI (0.25 µg/mL, 10 min) was used.

Stained sections were analyzed with an Axioskop 2 mot plus

microscope. At least 3 images of different sections and locations

were quantified by manual counting to obtain the percentage of

positive cells.
2.13 Statistical analysis

At least three independent experiments were carried out with cells

or cartilage explants derived from different donors (biological

replicates). Results are presented as box and whiskers with all data

points and GraphPad Prism Version 10 was used for statistical

analysis. Normally distributed data (Shapiro-Wilk test) was analyzed

with an unpaired t-test, one-way ANOVA, or Pearson correlation.

UnpairedMann-Whitney test was chosen for not normally distributed

data. Corrections of multiple comparisons were selected based on the

recommendations of GraphPad Prism and are included in the figure

legends. Significance level was set to p ≤ 0.05.
3 Results

3.1 CD59-ko results in increased
expression of senescence markers and OA
development in aged mice

A murine aging model was used to investigate if the lack of TCC-

specific complement regulator CD59 (CD59-ko mice) or insufficient

TCC formation (C6-def mice) alters the expression of senescence-

associated genes in the femoral condyles of 72-week-old mice. Overall,
Frontiers in Immunology 05
all tested genes were upregulated compared to 13-week-old WT mice

(Figures 1A–F). The cell cycle regulators Tp53, Cdkn1a, and Cdkn2a

were upregulated in CD59-ko mice compared to WT and C6-def mice

(Figures 1A–C). Similar results were found for the mRNA expression

of the SASP factors Il1b and Il6 (Figures 1D, E). Both genes were higher

expressed in CD59-ko mice. mRNA levels ofMmp13 were not affected

(Figure 1F). In the case of Cdkn2a, the upregulation was confirmed on

protein level (Figures 1G, H). However, Cdkn1a expression was

negative in all mice (Supplementary Figure 1). In addition,

correlation of Cdkn1a and Cdkn2a with the SASP factors indicated

that Il1b and Il6 are the potentially relevant SASP factors in this OA

model (Supplementary Figure 2).

Furthermore, OA score of young (13-week-old) and aged (72-

week-old) WT, CD59-ko, and C6-def mice was determined based

on Safranin O-stained sections (Figures 2A–D). In 13-week-old

CD59-ko and C6-def mice no histomorphologic alterations were

observed. Thus, the knee joint and cartilage tissue did not seem to

be affected by the genetical alterations. However, in 72-week-old

mice, clear differences between the groups were observed in

comparison to CD59-ko mice. The OA score of CD59-ko mice

was significantly higher than that of WT and C6-def mice. Loss of

Safranin O staining intensity and formation of osteophytes was

mainly observed in aged CD59-ko mice (Figure 2C). Additionally,

the OA score was positively associated with the expression levels of

Tp53, Cdkn1a, Cdkn2a, Il1b, and Il6 (Figures 2E–I). A positive trend

was found in the case of Mmp13 (Figure 2J).

Overall, these results indicate that enhanced TCC deposition

might be associated with OA development and chondrosenescence

in aged mice.
3.2 CD59 knockdown facilitates enhanced
TCC deposition in hAC

To confirm that the lack of CD59 indeed leads to an enhanced

TCC deposition upon complement activation, we performed an

siRNA-mediated knockdown of CD59 in hAC. Knockdown was

confirmed on mRNA level after 7 days (Figure 3A). CD59 expression

was significantly reduced, compared to the non-transfected control and

hAC transfected with scrambled siRNA (siNC). Furthermore, IF

staining of CD59 confirmed a successful knockdown on protein level

(Figures 3B, C). After HS exposition for 2 h to activate the complement

system, silencing of CD59 resulted in an increased TCC deposition on

hAC (+36,4%) as compared to control cells (Figures 3D, E).
3.3 TCC deposition and p53 expression are
increased in highly degenerated
cartilage tissue

Next, TCC deposition and presence of senescence-associated cell

cycle regulators were analyzed in clinical samples of macroscopically

intact and highly degenerated human articular cartilage. Significant

more cells were TCC- or p53-positive in highly degenerated cartilage

as compared to macroscopically intact tissue (Figures 4A, B, D, E).

For CDKN1A, only a trend was observed (Figures 4C, F).
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Additionally, a positive association between the number of TCC- and

p53-positive cells was found (Figure 4G). CDKN1A expression did

not correlate with TCC deposition (Figure 4H). No association

between the age of the donors and the percentage of positive cells

was detected (Supplementary Figure 3).
3.4 Inhibition of TCC formation reduces
expression of senescence-
associated genes

By means of a human ex vivo cartilage trauma-model, we wanted

to determine whether TCC deposition induces the expression of

senescence-associated genes. Traumatized cartilage explants were

therefore treated with 30% HS and 20 mg/mL HG for 4 days. We
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previously showed that this combination leads to a high TCC

deposition (18). Furthermore, this treatment induced gene expression

of CDKN1A, CDKN2A, and IL6 (Figures 5A–C). Inhibition of TCC

formation by CLU in turn reduced expression of these genes.

Antioxidative therapy by means of NAC did not affect the respective

mRNA levels. Expression of SOD2, which protects cells from oxidative

stress (43), was only upregulated in presences of NAC (Figure 5D).
3.5 Inhibition of inflammatory cytokines IL-
6 and IL-1b reduces CDKN2A expression
after trauma and HS exposition

In our last experiment, we investigated the underlying

mechanism of TCC-induced SIPS in more detail. In this case we
FIGURE 1

Gene and protein expression in femoral condyles of 72-weeks-old WT, CD59-ko, and C6-def mice. mRNA levels of (A) Tp53, (B) Cdkn1a, (C)
Cdkn2a, (D) Il1b, (E) Il6, and (F) Mmp13 were normalized to the median of 13-week-old WT mice; n ≥ 4. (G) Percentage of Cdkn2a-positive cells; n ≥

3. (H) Representative images of Cdkn2a-IF. Scale bars equal 50 mm. Statistical analysis: one-way ANOVA with (A, C) Bonferroni´s, (B, D, G) Tukey´s,
or (E) Šidák´s correction.
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used porcine cartilage to study the effects of HS on healthy tissue.

The porcine knee anatomy is similar to the anatomy of the human

knee (44). In accordance to our human model (18), cartilage trauma

and HS exposition had additive effects on cell death in porcine

cartilage (Figure 6A) and was accompanied by enhanced TCC

deposition (Figures 6B, D). In line with this, HS exposure and
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trauma had additive effects on the percentage of CDKN2A-positive

cells (Figures 6C, E). We previously showed that HS exposition and

enhanced trauma induced IL-6 secretion in human tissue (18).

However, IL-6 alone did not induce the expressions of CDKN1A

and CDKN2A (Supplementary Figure 4) in hAC. On the contrary,

IL-6 induced the number of cells which were positively stained for
FIGURE 2

Histological evaluation of knee joints of 13-weeks and 72-weeks-old WT, CD59-ko, and C6-def mice. (A) OA Score of medial condyles, assessed by
means of Safranin O staining; n ≥ 4. Exemplary images of Safranin O-stained knee joints of 72-week-old (B) WT, (C) CD59-ko, and (D) C6-def mice.
Scale bars represent 200 mm and in magnification 50 mm. Correlation analysis of OA score and gene expression of (E) Tp53, (F) Cdkn1a, (G) Cdkn2a,
(H) Il1b, (I) Il6, and (J) Mmp13 of 72-week-old mice; n ≥ 13. Statistical analysis: (A) one-way ANOVA with Holm-Šidák´s correction; (E–J) Pearson
correlation analysis with 95% confidence intervals.
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the proliferation marker protein Ki-67 (Supplementary Figure 5).

Furthermore, inhibition of IL-6 signaling via Sarilumab or STAT-

IN-1 reduced CDKN2A expression by trend. This was also true

when pro-inflammatory effects of IL-1b were inhibited by IL-1RA.
4 Discussion

Previous research indicates that the complement system is

activated after cartilage trauma and might be involved in consequent

OA progression. Accordingly, there is preliminary evidence that

sublytic TCC influences the cell fate of surviving chondrocytes,

including regulated cell death and phenotypical alteration (7–9, 18).

However, the underlying mechanisms have not yet been completely

clarified. With the present study, we wanted to elucidate if TCC

deposition contributes to SIPS in the context of age-related and

injury-induced OA. Furthermore, we investigated if SIPS is primarily
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induced by oxidative stress or by pro-inflammatory mediators, as both

have been discussed as drivers of chondrosenescence. We

demonstrated that expression of senescence-associated markers was

elevated in the femoral condyles of aged CD59-komice as compared to

WT mice. In line with this, CD59-ko mice developed more severe OA.

Bymeans of an ex vivo cartilage traumamodel, we observed an additive

effect of trauma and serum exposition regarding the development of a

senescent phenotype in human and porcine chondrocytes. The

expression of senescence markers was only reduced by specific

inhibition of TCC formation but not by administration of the

antioxidant NAC. Experiments with porcine cartilage showed that

the inhibition of IL-6 or IL-1b signaling attenuated a senescent

phenotype of chondrocytes after trauma and HS exposition. Taken

together, these findings indicate a crucial role of sublytic TCC

deposition and consequent SIPS in OA.

Originally, the TCC was described as a pore-forming complex

which sole function was the elimination of foreign cells via
FIGURE 3

Knockdown of CD59 in hAC. hAC were transfected in suspension with either scrambled siRNA (siNC) or siRNA targeting CD59 (siCD59). On day 4, a
second knockdown was carried out in suspension. (A) Knockdown was evaluated at day 7 on mRNA level. Gene expression was normalized to
untransfected control; n ≥ 6. (B) Visualization of CD59-IF. Scale bar equals 20 mm. (C) Quantification of CD59 protein expression at day 7, relative to
non-transfected control; n ≥ 4. (D) Visualization of TCC-IF. Scale bars equal 20 mm. (E) Quantification of TCC deposition at day 7 after exposition
with 30% human serum (HS), relative to non-transfected control; n ≥ 4. Statistical analysis: (A, C, E) one-way ANOVA with Tukey´s correction.
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osmolysis – an efficient strategy against gram negative bacteria or

parasites (16). However, nucleated cells such as somatic cells have

multiple defense mechanism (e.g., expression of CD59) to resist

TCC-mediated osmolysis (45, 46). Residual TCC deposition on the

cell membrane is not sufficient to directly kill the cell. However, due

to the pore-forming character of TCC, a calcium influx can be

observed upon sublytic TCC deposition (47, 48). In macrophages,

TCC-mediated increase of intracellular Ca2+ was associated with a

reduced mitochondrial membrane potential, which resulted in

mitochondrial dysfunction and enhanced ROS production (17).

Although, consequent oxidative stress promoted NLRP3

inflammasome activation (17), ROS accumulation is also
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considered as a crucial inducer of SIPS (29). However, the

antioxidant NAC did not prevent the expression of senescence-

associated genes after HS exposition and traumatization.

Furthermore, it was demonstrated that sublytic TCC induced

IL-8 secretion and IL6 expression in human endothelial cells,

presumably mediated by NF-kB (49, 50). Accordingly, we

previously reported that TCC deposition was associated with the

expression of pro-inflammatory mediators, including IL8 and IL-6

after traumatization and HS exposition in our human ex vivomodel

(18). Additionally, secretion of IL-1b was described upon TCC-

mediated potassium efflux and consequent inflammasome assembly

(16). All three proinflammatory cytokines are known SASP factors
FIGURE 4

TCC deposition and expression of p53 and CDKN1A in human articular cartilage. Percentage of (A) TCC-, (B) p53-, and (C) CDKN1A-positve cells in
highly degenerated (OARSI grade ≤ 1) and macroscopically intact tissue (OARSI grade ≥ 3); n ≥ 4. Representative images of (D) TCC-, (E) p53-, and
(F) CDKN1A-IHC of articular cartilage. Scale bars equal 50 mm. Correlation analysis of number of (G) TCC- and p53-positive cells and (H) TCC- and
CDKN1A-positve cells; n ≥ 8. Statistical analysis: (A) unpaired Mann-Whitney test; (B, C) unpaired two-tailed t-test; (G–I) Pearson correlation analysis
with 95% confidence intervals.
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released by senescent hAC (25, 26). They can alter the phenotype of

cells in a paracrine and autocrine manner, thus inducing senescence

of adjacent cells (51). In the present study, we showed that specific

TCC inhibition by CLU reduced IL6 expression as well as the

expression of other senescence-associated genes. Furthermore, Il6

was upregulated in aged CD59-ko mice and correlated with age-

related OA development. Although IL-6 alone was not sufficient to

induce senescence in hAC, inhibition of IL-6 signaling by targeting

either the IL-6 receptor using Sarilumab or the transcription factor

STAT3 [pro-inflammatory signaling pathway of IL-6 (52)] by

STAT3-IN-1 attenuated CDKN2A expression after trauma and

HS exposition. In accordance with our data, the role of IL-6 in

cartilage degeneration and regeneration is currently controversially

discussed (53–55). Besides promotion of paracrine senescence,

SASP factors, and in particular IL-6, are thought to mediate pro-

regenerative processes, comprising proliferation, migration, and

immunomodulation (56). In line with this, we recently reported

cell protective and pro-mitotic effects by growth differentiation

factor 15, a stress-responsive, pleiotropic cytokine and known

SASP factor, in the context of PTOA (57).

Similar to IL-6, IL-1b did not directly induce senescence in hAC

(58), even though inhibition of the IL-1b receptor reduced TCC-
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induced CDKN2A expression after trauma. We assume that

multiple stimuli are needed simultaneously to orchestrate

senescence in hAC, e.g., oxidative stress, pro-mitotic stimuli, and

pro-inflammatory signaling. The latter might not result from a

single mediator but rather a “cytokine cocktail”, in which IL-6 and

IL-1b might represent important players.

Although we previously reported that cartilage trauma and

blood exposure results in complement activation and subsequent

TCC deposition on chondrocytes (8, 9, 18), the current findings of

the age-related OA model imply that a preceding joint injury, is not

mandatory. Thus, we presume that the local expression of

complement components by joint tissues (e.g., the synovium) and

a non-traumatic complement activation is involved in the

development of age-related OA. As reported by Cheng et al.,

2022, synovial C3 levels, but not that of blood plasma, were

positively associated with primary OA severity (59). It is known

that chondrocytes and synovial cells express complement

components. Thus, respective activation products, such as C3a-

desArg, soluble TCC, C4d, and C3bBbP, were also found in the

synovial fluid of healthy individuals (12, 13). This indicates a low

basal activation of the complement system in the knee joint. In

humans, the complement system is often dysregulated in age and an
FIGURE 5

Gene expression of human articular cartilage. Traumatized cartilage explants were cultured for 4 days in presence of 30% human serum (HS) and 20
mg/mL cartilage homogenate (HG). Additionally, explants were treated with 30 mg/mL CLU or 2mM NAC. Gene expression of (A) CDKN1A, (B)
CDKN2A, (C) IL6, and (D) SOD2 was assessed. Unimpacted cartilage served as control; n ≥ 4. Statistical analysis: one-way ANOVA with (A, D) Šidák´s,
(B) Dunnett´s, or (C) Holm-Šidák´s correction.
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uncontrolled activation has been described (60, 61). Similarly, the

CD59-def mice used in the present study lack an important TCC

regulatory mechanism. Although the presence of the TCC could not

be determined, it can be assumed that the cells of aged CD59-ko

animals are more prone to TCC deposition, as we confirmed by

siRNA-mediated knockdown of CD59 in hAC. In the aging mouse

model, we found higher levels of senescence-associated markers in

femur condyles of CD59-ko mice as compared to that of WT mice,
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implying a potential association between susceptibility to TCC

deposition and an accumulation of senescent and therefore

dysfunctional chondrocytes. Summing up, the findings of our

mouse model indicate that TCC-induced SIPS is a possible

pathomechanism of age-related OA.

Previous studies indicated that the complement system is

activated after joint injuries (13) due to an enhanced protease

activity and the accumulation of DAMPs and ROS (15, 62, 63).
FIGURE 6

Histological evaluation of traumatized porcine cartilage exposed to 30% human serum (HS). Cartilage explants were cultured for 4 days. The first 24
h in presence of 30% HS. The following 3 days in presence of either 5 mg/mL Sarilumab, 5 mM STAT3-IN-1, or 50 ng/mL IL-1RA. (A) Cell viability
assessed by Live/Dead staining of explants; n ≥ 3. Exemplary images of (B) TCC-IHC and (C) CDKN2A-IF. Scale bars equal 50 mm. Quantification of
(D) TCC-IHC (n ≥ 3) and (E) CDKN2A-IF (n ≥ 3). Statistical analysis: one-way ANOVA with (A, D) Šidák´s correction, or with (E) Holm-Šidák´
s correction.
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Furthermore, inflammatory cytokines, found after acute knee injury

(64), induce the expression of complement components and thus

amplify complement activation (65, 66). Additionally, intraarticular

bleeding, often observed after knee injuries (67), might contribute

to complement activation in the joint (11). Our present findings

reaffirmed that tissue injury and HS exposition have additive effect

on the expression of CDKN1A and CDKN2A in chondrocytes. In

conclusion, sublytic TCC and consequent induction of

chondrosenescence might play a role in PTOA progression.

Several studies demonstrated that an injury-related

hemarthrosis has harmful effects on cartilage homeostasis (9, 68).

The assumed pathophysiology of blood-induced cartilage

degeneration includes exposure to iron, expression of pro-

inflammatory cytokines and MMPs (68), as well as complement

activation and subsequent TCC deposition (9). Taken our results

into account, we believe that sublytic TCC deposition and

consequent induction of a senescent phenotype are crucially

involved in the disruption of the cartilage integrity. Over all, a

rather short exposition to HS (24 h or 4 days) was sufficient to

induce a senescent phenotype in healthy porcine tissue. Future

studies have to explore whether the observed senescence is transient

or stable in the long term. Nevertheless, an immediate treatment

after joint injury is advisable to diminish the harmful effects of TCC

deposition. The main focus should be the prevention of the TCC

assembly, either on the level of the TCC or more upstream in the

complement cascade.

Previous studies showed that TCC deposition is associated with

various, mainly age-associated diseases. Often, the TCC is not the

main cause, but is involved in the pathogenesis. For example, TCC

deposition was found on dystrophic neurites in the brain of patients

with Alzheimer’s disease (69). Furthermore, affected tissues were

positive for TCC in patients with either Parkinson’s disease (70) or

age-related macular degeneration (71, 72). Additionally, enhanced

soluble TCC levels were detected in the plasma of amyotrophic

lateral sclerosis (73) and schizophrenia patients (74). In the context

of musculoskeletal diseases, it has been reported that TCC

deposition is associated with intervertebral disc degeneration

(75–77). Some studies also evaluated whether presence of TCC is

associated with an altered phenotype of the targeted cells. Zeng et al.

reported that sublytic TCC deposition enhanced the expression of

catabolic enzymes and inflammatory markers in chorioretinal

endothelial cells (78). Similar observations were found in annulus

fibrosus cells which were stimulated with zymosan to induce TCC

deposition (75). Overall, consequences of sublytic TCC deposition

could not only be involved in (PT)OA pathogenesis but also in

other diseases.

One limitation of the present study is that only male mice were

included in the in vivo experiment. This was chosen due to the fact

that male mice are more prone to develop age-related OA (36).

Furthermore, female mice of some breeding strains have lower

serum concentrations of C6 and C9 (37). Using female mice in a

follow-up study might be advisable to determine whether reduced

C6 and C9 levels, and thus reduced TCC deposition, might be an

explanation for the lower OA severity observed in aged female mice.
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Another reason to include female mice is that women have in

general an enhanced risk to develop OA.

Overall, we provided first evidence that complement activation

and consequent TCC deposition is associated with a SIPS-like

phenotype in age-related and trauma-induced OA. We suggest

that chondrosenescence is more likely induced by sublytic TCC

deposition and subsequent cytokine release rather than oxidative

stress. A local inhibition of the complement system, particularly

targeting TCC formation, might be a promising therapeutic

approach to reduce the detrimental effects of TCC, comprising

cell death, inflammation, and SIPS.
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