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Enhancing human islet
xenotransplant survival and
function in diabetic
immunocompetent mice
through LRH-1/NR5A2
pharmacological activation
N. Cobo-Vuilleumier 1, P. I. Lorenzo1, E. Martin Vazquez1,
L. López Noriega1, R. Nano2, L. Piemonti2, F. Martı́n1,3

and B. R. Gauthier 1,3*

1Andalusian Center of Molecular Biology and Regenerative Medicine (CABIMER), Junta de Andalucı́a-
University of Pablo de Olavide-University of Seville-Consejo Superior de Investigaciones Científicas
(CSIC), Seville, Spain, 2Diabetes Research Institute, Istituto di Ricovero e Cura a Carattere Scientifico
(IRCCS) Ospedale San Raffaele, Milan, Italy, 3Centro de Investigación Biomédica en Red de Diabetes y
Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
The intricate etiology of type 1 diabetes mellitus (T1D), characterized by harmful

interactions between the immune system and insulin-producing beta cells, has

hindered the development of effective therapies including human islet

transplantation, which requires strong immunosuppressants that impair beta cell

survival and function. As such alternative immunomodulating therapies are required

for successful transplantation. The discovery that pharmacological activation of the

nuclear receptor LRH-1/NR5A2 can reverse hyperglycemia in mousemodels of T1D

by altering, and not suppressing the autoimmune attack, prompted us to investigate

whether LRH-1/NR5A2 activation could improve human islet function/survival after

xenotransplantation in immunocompetent mice. Human islets were transplanted

under the kidney capsule of streptozotocin (STZ)-induced diabetic mice, and

treatment with BL001 (LRH-1/NR5A2 agonist) or vehicle was administered one

week post-transplant. Our study, encompassing 3 independent experiments with

3 different islet donors, revealed that mice treated for 8 weeks with BL001 exhibited

lower blood glucose levels correlating with improved mouse survival rates as

compared to vehicle-treated controls. Human C-peptide was detectable in

BL001-treated mice at both 4 and 8 weeks indicating functional islet beta cells.

Accordingly, in mice treated with BL001 for 8 weeks, the beta cell mass was

preserved, while a significant decrease in alpha cells was observed compared to

mice treatedwith BL001 for only 4weeks. In contrast, vehicle-treatedmice exhibited

a reduction in insulin-expressing cells at 8 weeks compared to those at 4 weeks.

These results suggest that BL001 significantly enhances the survival, engraftment,

and functionality of human islets in a STZ-induced diabetic mouse model.
KEYWORDS

xenotranplantation, human islet, nuclear receptor, LRH-1, NR5A2, pharmacological
treatment, type 1 diabetes
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Introduction

Type 1 diabetes (T1D) ranks among the most prevalent

multifactorial endocrine and metabolic diseases, characterized

primarily by persistent hyperglycemia. Nine million people globally

have T1D of whom 1.5 million are under the age of 20 years old,

causing 182,000 deaths per year (https://diabetesatlas.org/idfawp/

resource-files/2022/12/IDF-Atlas-T1D-infographic.pdf). Alarming,

the number of individuals with T1D is anticipated to reach 17

million by 2040 amounting to a loss of 32 years of healthy lifestyle

(1). T1D is classified as either immune-mediated or idiopathic (of

unknown aetiology) diabetes (2). The most common form of T1D

in Western societies is immune-mediated, which is caused by a

disruption in the balance between T-regulatory cells (Tregs) and T-

effector cells (Teffs; CD4+ and CD8+ cytotoxic T-cells) that respond

to islet-associated self-antigens. This breakdown in immune

homeostasis or ‘tolerance’ leads to pancreatic islet beta cell

destruction resulting in insulin deficiency and hyperglycemia (3).

The only viable treatment for individuals with T1D is insulin

supplementation which, despite its beneficial effects on glucose

homeostasis, does not eliminate severe diabetic complications (4, 5).

Reconstitution of the beta cell mass has been a focus of intense

research for the past 30 years exploring various cell types as a source

for beta cell regeneration/replacement (6). As a preferred option,

human islet transplantation has evolved from an experimental

procedure to a standard of care for a specific group of patients,

demonstrating good long-term safety and a median graft survival of

5.9 years (7). However, the shortage of donors has hindered the

widespread use of this approach. Great strives have been achieved

using stem cells and cellular reprograming strategies that have

resulted in clinical breakthroughs (8). Combined with the recent

success in the bioreactor-scalable production of stem cell-derived

islets, this source offers a viable clinical implementation of islet cell

therapy (9). Nonetheless, allosteric transplantation of primary and

stem cell derived islets requires an aggressive immunosuppressant

regimen to prevent rejection that entails secondary immune

complications. In addition several post-transplant events, such as

instant blood mediated inflammatory reaction and cytokine

cascade, seriously affect the functionality of transplanted islets

(10). Therefore alternative immunomodulatory regimen are

urgently required to prevent such secondary effects permitting

long-term islet integration, survival and function.

We previously demonstrated that the pharmacological activation

of the nuclear receptor LRH-1/NR5A2 using a small chemical agonist

(BL001) could therapeutically impede the progression of

hyperglycemia in 2 mouse models of T1D (NOD and RIP-B7.1)

without long-term adverse effects, validating the benefits of targeting

this nuclear receptor (11). BL001-mediated activation of LRH-1/

NR5A2 facilitated the resolution of the autoimmune attack in vivo by

increasing the number of anti-inflammatory M2 macrophages and

decreasing the number of pro-inflammatory M1 macrophages.

Simultaneously, BL001 treatment increased the number of

tolerogenic dendritic cells (tolDCs) and Tregs. Additionally, BL001

promoted beta cell regeneration through trans-differentiation and

enhanced cell survival via the PTGS2/PGE2/PTGER1 signaling

cascade (11–13). Given this strong tolerization capacity of LRH-1/
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NR5A2 activation in mouse models of T1D, and aiming for its

clinical applicability, herein we sought to determine whether LRH-1/

NR5A2 activation could facilitate long-term human islet engraftment

and function in immunocompetent hyperglycemic mice.
Materials and methods

Human islet procuration

Human islets were obtained either from the Alberta Diabetes

Institute IsletCore Laboratory (CA) or from ECIT-San Raffaele

Scientific Institute, Milan (IT). Human islet preparations were

washed, handpicked and subsequently maintained in CMRL-1066

media (ThermoFisher Scientific, Madrid, ES) containing 5.6 mM

glucose, and supplemented with 10% FCS, 100 Units/ml penicillin,

100 mg/ml streptomycin and 100 mg/ml gentamycin (all purchased

from Sigma-Aldrich, Madrid, ES).
Xenotransplantation

Mouse experimentations were approved by the Andalusian

Ministry of Agriculture, Farming, Fish and Sustainable

Development (08/07/2019/120). Animal studies were performed

in compliance with the ARRIVE guidelines (14). Eight-week-old

immune-competent C57BL/6J male mice (Janvier Labs, France)

were treated with a single dose of 175 mg/kg b.w. streptozotocin

(STZ, Sigma-Aldrich/Merck, Spain) prepared in 0.01 M sodium

citrate at pH 4.5 to induce hyperglycemia. One week later, mice

were anesthetized via an intraperitoneal (i.p.) injection of 100 mg/

Kg ketamine and 10 mg/Kg xylazine (obtained from the animal

facility veterinarian) and 750 human islet equivalents (IEQ) were

transplanted under the kidney capsule using a PE50 tubing

connected to a 25 µL gauged Hamilton syringe. STZ-treated and

transplanted mice were randomly allocated to either the vehicle- or

BL001-treated group. Upon termination of the experiment, animals

were euthanized and transplanted kidneys extracted, fixed and

embedded for further histological analysis. The entire kidney for

each independent transplantation experiment was sectioned and

insulin/glucagon co-immunostaining as well as CD4 was performed

at every 15th slice, corresponding with an interval of ~ 75-150 µm

which matches the median size of the majority of islets. The sample

size for these in vivo studies to reach statistical significance was not

precalculated because the survival of islet grafts was previously

unknown. Although the xenotransplantation of islets and BL001

treatment were not blinded to the investigator, the subsequent

analysis of blood samples and grafts were performed by

blinded investigators.
BL001 treatment

BL001 [(3aS,6aR)-1,2,3,3a,6,6a-hexahydro-4-(3-methoxyphenyl)-

5-((E)-oct4-en-4-yl)-N-phenylpentalen-3a-amine] was synthesized by

Sreeni Labs Private Limited (Telangana, India), at a HPLC purity >
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98%. The semi-solid compound was dissolved in 100% DMSO, at 100

mg/ml stock concentrations. The optimal formulation for in vivo

administration (hereafter referred to as vehicle) is: 1% DMSO, 40%

WellSolve (Celeste Corporation, Japan) and 59% water. Mice were

injected daily i.p. with 10 mg/kg b.w. BL001 (half-life of 9.4 hours),

starting 7 days post STZ treatment.
Glucose monitoring and health status

Circulating glucose levels were measured from tail vein blood

samples using an Optium Xceed glucometer (Abbott Scientifica SA,

Barcelona, Spain). An oral glucose tolerance test (OGTT) was

performed at 5-weeks post-transplantation as previously

described (15). The health status of mice was monitored by

assessing fur appearance, wounds and tracking weight loss. Mice

were euthanized if they lost more than 25% of their body weight

(criteria set by the bioethics committee). Kaplan-Meier survival

curve were generated based on mice that were either euthanized or

found dead in the cage.
Immunofluorescence analyses

For immunostaining, kidneys were fixed overnight in 4%

paraformaldehyde at 4°C. Tissues were dehydrated, paraffin

embedded, and sectioned at 5 mm thickness. Immunostaining was

then performed overnight at 4°C using a combination of primary

antibodies: 1) insulin (Sigma-Aldrich, Madrid, ES), 2) glucagon

(Cell Signaling, Barcelona, ES) and 3) CD4 (Miltenyi Biotec,

Madrid, ES) in PBS 1% BSA 0.2% TritonX100. Subsequently,

secondary antibodies were incubated for 1 hour at room

temperature in PBS 0.2% TritonX100. Nuclei were stained with

0.0001% of 4′,6-diamidino-2-phenylindole (DAPI, Sigma-Aldrich,

Madrid, ES) and cover slips were mounted using fluorescent

mounting medium (DAKO). Epifluorescence microscopy images

were acquired with a Leica Thunder Imager microscope. Images of

kidney sections were processed using the Thunder imager software

and analyzed using the Photoshop and ImageJ (FIJI) softwares.
Statistical analysis

Data are presented as the mean ± SEM. Student’s t-tests were

used as described in the figure legend. p values less than or equal to

0.05 were considered statistically significant. Statistical analyses

were performed using the GraphPad Prism software version 8

(GraphPad Software, La Jolla, USA).
Results

We have previously demonstrated that the pharmacological

activation of LRH-1/NR5A2 using BL001 promoted immune

tolerance and enhance islet cell survival in the RIP-B7.1 and

NOD mouse models of T1D (11). Building on these benefits,
Frontiers in Immunology 03
herein we aimed to evaluate whether BL001 could improve the

survival and function of human islets transplanted into

hyperglycemic C57BL/6J mice. To this end, we performed

suboptimal human islet transplantations (750 human islet

equivalents; IEQ) under the kidney capsule of immune competent

mice rendered diabetic with a single high dose of streptozotocin

(STZ). One week after transplantation, mice were treated or not

with BL001. The rationale for using suboptimal amounts of IEQ

transplanted in immunocompetent mice was to assess whether

potential improvements in human islet cell survival and insulin

secretion, facilitated by the BL001 treatment, could lead to

improved glycemia correlating with immune tolerance as

previously reported (11). Three independent experiments were

performed using islets from 3 different donors. In 2 of the

experiments BL001 treatment was maintained for 4 weeks

(Figure 1A), and in the third experiment for 8 weeks (Figure 1L).

Although hyperglycemia persisted at either 4 and 8 weeks of

treatment, blood glucose levels were lower in transplanted mice

treated with BL001 for up to 8 weeks correlating with a higher

survival rate as compared to vehicle treated mice at either 4 or 6

weeks, time at which mice had to be euthanized due to pre-defined

health criteria (Figures 1B, C, M, N; Supplementary Figure S1). The

4-week BL001 treatment did not improve glucose tolerance in

transplanted mice as compared to vehicle mice (Figures 1D, E).

Human C-peptide was detected in BL001-treated mice, but not in

vehicle-treated mice, at 4- and 8 weeks post-treatment (6 weeks for

vehicle-treated), confirming functionality of the transplanted

human islet (Figures 1F, O). In contrast, mouse C-peptide blood

levels were marginally discernable in either BL001- or vehicle-STZ-

treated mice, as compared to untreated mice, 4 and 6-8 weeks post-

treatment (Figures 1G, P). Both BL001- and vehicle-treated mice

sacrificed at 4-weeks retained human islet xenotransplants with a

similar number of insulin and glucagon expressing cells as well as

CD4+ T-cell infiltration (Figures 1H–K). The 8-week extended

BL001-treatment preserved the beta cell mass in xenotransplants

correlating with improved glycemia while vehicle-treated mice that

were sacrificed at 6 weeks (due to pre-defined health criteria)

exhibited a significantly lower number of insulin expressing cells

as compared to BL001-treated mice (Figures 1Q, R). Interestingly,

the alpha cell mass was significantly reduced in mice treated with

BL001 for 8 weeks compared to those treated with the vehicle

(Figures 1Q–S). Although not significant, CD4+ cytotoxic T-cell

infiltration was higher in BL001-treated mice compared to vehicle-

treated mice which exhibited low levels of infiltration likely due to

the almost complete destruction of beta cells (Figures 1Q–T). Both

vehicle and BL001-treated mice exhibited similar pancreatic islet

insulin staining patterns, correlating with only marginally

discernable mouse C-peptide blood levels in either BL001- or

vehicle-STZ-treated mice, indicating that the mild recovery of

glycemia in BL001-treated mice was not due to remnant

endogenous islet beta cells but rather attributed to preserved

islet graft mass and improved islet transplant outcomes conveyed

by BL001 administration (Figure 1U). Taken together, these

results indicate that BL001 favors the survival, engraftment, and

function of a marginal mass of human islets in STZ-treated

immunocompetent C57BL/6J mice.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1470881
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Cobo-Vuilleumier et al. 10.3389/fimmu.2024.1470881
FIGURE 1

BL001 improves human islet graft survival and function in STZ-treated immunocompetent C57BL/6j mice. (A) Experimental design of the 4-week
BL001 treatment post-xenotransplantation experiment. (B) Weekly measurement of non-fasting blood glucose and (C) Kaplan Meier survival curve.
(D) OGTT performed at 4 weeks post-BL001/Vehicle treatment. Mice were fasted for 6 hours before the OGTT. (E) Area under the curve (AUC)
corresponding to the OGTT. Student t-test, # p=0003 and & p=0.0037 as compared to control non-STZ mice. (F) Human C-peptide plasma levels at
4 weeks post-BL001/Vehicle treatment. Data are presented as means ± SEM. *p<0.05 student t-test. (G) Mouse C-peptide plasma levels at 4 weeks
post-BL001/Vehicle treatment. Data are presented as means ± SEM. Student t-test, # p=002 and & p=0.0003 as ompared to control non-STZ mice.
(H) Representative immunofluorescence images of kidney sections from mice euthanized at 4 weeks post-BL001/Vehicle treatment, displaying
staining for insulin (INS), glucagon (GCG) staining along with nuclear DAPI staining. Quantitative analysis of (I) insulin (INS), (J) glucagon (GCG), and
(K) CD4+ areas, normalized to the DAPI-positive area per graft, at 4 weeks post BL001 treatment. (L) Experimental design of the 8-week BL001
treatment post-xenotransplantation experiment. (M) Weekly measurement of non-fasting glycemia and (N) Kaplan Meier survival curve (O). Human
C-peptide plasma levels at 6-week vehicle-treated mice and 8-week BL001-treated mice. Data are presented as means ± SEM. **p<0.01 student t-test.
(P) Mouse C-peptide plasma levels at 6-week vehicle-treated mice and 8-week BL001-treated mice. Data are presented as means ± SEM. # p=0001
and & p=0.0002 Student t-test as compared to control non-STZ mice. (Q) Representative immunofluorescence images of kidney sections from mice at
6 weeks post-vehicle treatment and at 8 weeks post-BL001 treatment, displaying staining for insulin (INS), glucagon (GCG) staining along with nuclear
DAPI staining. Quantitative analysis of (R) insulin (INS), (S) glucagon (GCG), and (T) CD4+ areas, normalized to the DAPI-positive area per graft, at 4
weeks post BL001 treatment. Data are presented as means ± SEM. *p<0.05 and ****p<0.0001 student t-test. ns, non-significant. (U) Representative
immunofluorescence images of pancreas sections from mice at 6 weeks post-vehicle treatment and at 8 weeks post-BL001 treatment. displaying
staining for insulin (INS), glucagon (GCG) staining along with nuclear DAPI staining.
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Discussion

Consistent with its previously reported anti-inflammatory and

anti-apoptotic properties in mice (11, 12), the therapeutic

administration of BL001 to hyperglycemic immunocompetent

mice xenotransplanted with human islets promoted graft

implantation and function, as indicated by sustained human islet

beta cell mass and circulating human C-peptide levels at 4 and 8

weeks correlating with reduced hyperglycemia at 8-week post

treatment. While our prior work demonstrated that short-term

BL001 treatment could protect transplanted human islets in mice

against rejection, long-term engraftment, and function, as evaluated

by circulating human C-peptide was not assessed in that study (11).

Interestingly, the alpha cell mass was increased between 4 and 8

weeks in vehicle-treated mice while it remained relatively constant

in BL001-treated mice. Such increase in alpha cell mass has

previously been observed in the pancreases of individuals with

T1D, likely resulting from disruptions in the regulatory balance

between insulin and glucagon secretion, along with changes in islet

architecture and cell signaling (16, 17).

To the best of our knowledge, our study is one of the first to

demonstrate that a pharmacological compound can promote

human islet engraftment and function in immunocompetent

mice, evading immune rejection likely via tolerization as we

previously demonstrated in 2 independent mouse models of T1D

(11). Most human islet transplantation survival and functional

studies have been carried out in immunodeficient mice in order

to circumvent rejection thereby assessing the impact of the

treatment directly on transplanted cells (18). Consequently, our

findings hold significant implications for human studies, as

reversing the disease will not only require improved islet

performance but also the resolution of the chronic pro-

inflammatory/autoimmune attack predominantly steered by islet

self-antigen activated macrophages and mDCs, which play a central

role in the induction of T-cell expansion and subsequent beta cell

destruction (3). In this context, current strategies to avoid graft

rejection encompass cell encapsulation and/or aggressive

immunosuppressant regimens, often resulting in secondary

complications such as kidney failure (19–21). Furthermore,

tacrolimus and sirolimus, both of which are components of

standard immunosuppression protocols, possess diabetogenic

properties (10). Other experimental strategies being explored

include the combined transplantation of mesenchymal stem cells

(MSCs) or Tregs with islets (22, 23). In favor of this approach we

recently demonstrated that transplantation of umbilical cord MSCs

delayed the onset of hyperglycemia in RIP-B7.1 mice (24).

Nonetheless, this combined MSC/Tregs islet therapy merely

extends graft function temporarily by delaying immune rejection,

as the host eventually eliminates these cells. Alternatively, hIPSC-

derived islet-like organoids are being genetically modified to

successfully evade the autoimmune attack in pre-clinical mouse

models (25, 26). Although promising, these approaches have yet to

reach ethical approval for clinical trials. The pharmacological
Frontiers in Immunology 05
activation of LRH-1/NR5A2 circumvent the caveats encountered

by cell therapy by attenuating the pro-inflammatory environment-

without suppressing the general immune system- while increasing

beta cell survival and performance (12, 13).

We acknowledge that the murine and human immune systems

may respond differently to allogeneic or xenogeneic islet

transplants, and that a humanized mouse model would more

accurately replicate the human context. Nevertheless, we argue

that both the murine and human response, regardless of the

specific immune cells involved, lead to islet graft rejection, an

outcome reversed by BL001-mediated activation of LRH-1/

NR5A2. Furthermore, we recently demonstrated that beta cell

death was reduced when co-cultured with BL001-treated human

peripheral blood mononuclear cells (PBMCs) isolated from

individuals with T1D, correlating with decreased cytotoxic T-cell

proliferation and interferon gamma secretion (manuscript under

review). In conclusion, our findings indicate the potential for a

successful immunomodulatory therapy through the pharmacological

activation of LRH-1/NR5A2 in humans.
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