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Sepsis, characterized by a widespread and dysregulated immune response to

infection leading to organ dysfunction, presents significant challenges in

diagnosis and treatment. In this study, we investigated 203 coagulation-related

genes in sepsis patients to explore their roles in the disease. Through differential

gene expression analysis, we identified 20 genes with altered expression

patterns. Subsequent correlation analysis, visualized through circos plots and

heatmaps, revealed significant relationships among these genes. Gene Ontology

(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway

enrichment analyses indicated that these genes are involved in immune

response activation, coagulation, and immune receptor activity. Disease

Ontology (DO) enrichment analysis further linked these genes to autoimmune

hemolytic anemia and tumor-related signaling pathways. Additionally, the

CIBERSORT analysis highlighted differences in immune cell composition in

sepsis patients, revealing an increase in neutrophils and monocytes and a

decrease in inactive NK cells, CD8 T cells, and B cells. We employed machine

learning techniques, including random forest and SVM, to construct a diagnostic

model, identifying FCER1G and FYN as key biomarkers. These biomarkers were

validated through their expression levels and ROC curve analysis in an

independent validation cohort, demonstrating strong diagnostic potential.

Single-cell analysis from the GSE167363 dataset further confirmed the distinct

expression profiles of these genes across various cell types, with FCER1G

predominantly expressed in monocytes, NK cells, and platelets, and FYN in

CD4+ T cells and NK cells. Enrichment analysis via GSEA and ssGSEA revealed

that these genes are involved in critical pathways, including intestinal immune

networks, fatty acid synthesis, and antigen processing. In conclusion, our
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comprehensive analysis identifies FCER1G and FYN as promising biomarkers for

sepsis, providing valuable insights into the molecular mechanisms of this

complex condition. These findings offer new avenues for the development of

targeted diagnostic and therapeutic strategies in sepsis management.
KEYWORDS
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Introduction

Sepsis is a serious worldwide health issue marked by a strong,

systemic response to infection that results in organ dysfunction

(1–3). Sepsis continues to be the world’s biggest cause of death in

intensive care units despite advancements in medical care (4, 5).

The complexity of sepsis, marked by its heterogeneous etiology and

variable clinical presentation, poses significant challenges in its

diagnosis and management (6–8). Traditionally, sepsis was

understood primarily as a disorder of systemic inflammation (9).

However, recent insights have revealed that it is a more complex

syndrome involving various aspects of the immune response,

coagulation pathways, and cellular metabolism (10).

The dysregulated immune response is one of the central features of

sepsis (11, 12). Initially, there is an overwhelming pro-inflammatory

response aimed at controlling the infection, often followed by a

compensatory anti-inflammatory response (13–15). This biphasic

pattern can lead to immune paralysis, making patients susceptible to

secondary infections (16). In order to create effective therapeutic

strategies, it is essential to comprehend the mechanisms behind this

dysregulated immune response.

The coagulation system plays a critical role (17–19). The cross-

talk between inflammation and coagulation pathways exacerbates

the severity of sepsis (20, 21). A high mortality rate is associated

with the advancement of disseminated intravascular coagulation

(DIC) in several septic patients (22, 23). However, the relationship

between specific coagulation-related genes and the onset and

progression of sepsis is still inadequately understood.

The current criteria for diagnosis of sepsis are based on clinical

signs and biomarkers such as procalcitonin (PCT) and C-reactive

protein (CRP), which are not unique to sepsis and differ widely

among individuals (24, 25). Moreover, the therapeutic strategies are

mainly supportive, focusing on infection control and organ support

rather than targeting the underlying pathophysiological

mechanisms of sepsis (9, 26).

Given the challenges of diagnosing and treating sepsis, there is

an urgent need to deepen our understanding of its molecular and

cellular mechanisms. Identifying genetic markers and pathways

related to coagulation and immune response may provide crucial

insights into sepsis’s pathophysiology, leading to more targeted
02
therapeutic interventions and diagnostic tools that could improve

patient outcomes (27, 28). This study addresses these gaps by

investigating the link between sepsis and coagulation-related

genes. We hypothesize that specific genes within the coagulation

cascade play critical roles in the onset and progression of sepsis,

with their expression patterns potentially serving as diagnostic

markers or therapeutic targets. Utilizing advanced bioinformatics

and machine learning techniques, we comprehensively examined

these genes in sepsis patients, aiming to uncover the genetic basis of

sepsis and pave the way for more personalized and effective

management of this complex condition.
Methods

Data collection

The sepsis patient dataset GSE85233, comprising 22 normal

and 51 sepsis samples, was retrieved from the Gene Expression

Omnibus (GEO) database. Additionally, single-cell RNA

sequencing data were obtained from the GEO dataset GSE167363.

For independent validation, another dataset, GSE57065, including

25 control and 28 sepsis samples, was utilized.
Gene selection

A curated list of 203 coagulation-related genes was compiled using

gene sets from the Gene Set Enrichment Analysis (GSEA) database.

These gene sets were derived from the pathways hsa04610 and

hsa04611, which are associated with coagulation and related processes.
Differential gene expression analysis

The differential expression analysis of coagulation-related genes

in sepsis patients was performed using the ‘limma’ package in R. To

visualize the results, a volcano plot was generated with ‘ggpubr,’ and

a heatmap depicting the expression levels of differentially expressed

genes was created using the ‘heatmap’ package.
frontiersin.org
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Correlation analysis

A correlation analysis examined the interrelationship among the 20

differently expressed genes. A correlation heatmap was generated in R

using the “corrplot” package, and a circos plot created using the

“RCircos” package was used to visualize the results (29).
Functional enrichment analysis

Gene Ontology (GO) and Disease Ontology (DO) enrichment

analysis was performed using the ‘clusterProfiler’ package to

identify the biological functions and disease associations of the

differentially expressed genes (30). Additionally, a Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathway analysis

was carried out using “clusterProfiler” to investigate the roles of

genes in different biological pathways (31).
Chromosomal location analysis

Using the “RCircos” package, which shows genomic data in a

circular form and enables the identification of potential

chromosomal patterns related to changes in gene expression in

sepsis, the chromosomal positions of the 20 differentially expressed

coagulation-related genes were determined.
Machine learning for diagnostic
model construction

A diagnostic model was constructed using machine learning

techniques. The ‘randomForest’ package was used for random forest

analysis to determine the key genes differentiating sepsis patients from

controls. Support Vector Machine (SVM) analysis was conducted with

the ‘SVM’ function within the ‘e1071’ package to optimize the accuracy

and minimize error based on feature selection. The ‘glmnet’ package

was utilized for lasso analysis to find diagnostic biomarkers by applying

a penalty to the coefficient sizes. The common key genes among the

different machine learning approaches were identified through a Venn

diagram using the ‘Venn’ package.
Validation of key gene expression and
ROC curves

The ‘limma’ package, intended for gene expression data analysis

from microarray or RNA-seq technologies, validated the key gene

expression. The ‘timeROC’ package was utilized to perform

Receiver Operating Characteristic (ROC) curve analysis to

evaluate the identified biomarkers’ diagnostic efficacy.
Biological function and pathway
enrichment analysis

The ‘patchwork’ and ‘org.Hs.eg.db’ packages were used to conduct

Gene Set Enrichment Analysis (GSEA) to investigate the key genes’
Frontiers in Immunology 03
biological function and pathway enrichment analysis. Single-sample

GSEA (ssGSEA) was used to identify important signaling pathways

differently activated in sepsis patients compared to healthy controls.

The analysis was done using ‘Limma’, and the correlation between the

key genes and the signaling pathways was shown using ‘ggplot2’.
Single-Cell RNA Sequencing Analysis

Following quality control filtering of single-cell RNA sequencing data

from the GSE167363 dataset, the remaining cells were processed for

dimensionality reduction and clustering. The ‘SingleR’ package was utilized

for automated cell-type annotation, while ‘ggplot2’was employed to assess the

expression levels of key genes in different cell types.
Immune cell deconvolution

The ‘CIBERSORT’ package, based on gene expression profiles

and a predefined signature matrix of immune cell types, was used to

deconvolute the immune cell proportions in sepsis patients. We

visualized the differences in immune cell fractions between the

control and sepsis samples using the ‘ggpubr’ package.
PCA and clustering for subtype analysis

Based on the patterns of gene expression, different sepsis

subtypes were distinguished using Principal Component Analysis

(PCA) utilizing the ‘prcomp’ and ‘ggplot2’ functions. To classify

sepsis patients into distinct subtypes, consensus clustering was

carried out with the help of the ‘ConsensusClusterPlus’ package

(32, 33). The ‘pheatmap’ package was used to create heatmaps of

gene expression, and ‘ggpubr’ was used to generate box plots for

visual comparison of differential gene expression across subtypes.
RNA extraction and qRT-PCR analysis

This study was approved by the Ethics Committee. Five sepsis

patients and five healthy individuals undergoing routine health

examinations were recruited at Nanfang Hospital, Southern Medical

University, between December 2023 and January 2024. Peripheral

blood mononuclear cells (PBMCs) were isolated from patients’

peripheral blood samples using previously described methods (34).

Total RNAwas extracted from PBMC samples using the FastPure Cell/

Tissue Total RNA Isolation Kit (Vazyme). RNA was then reverse-

transcribed into cDNA using the ReverTra Ace qPCR RT Master Mix

and gDNA Remover Kit. Quantitative real-time PCR (qRT-PCR) was

performed using the SYBR Premix Ex Taq II in a real-time fluorescence

quantitative PCR system, with GAPDH selected as the endogenous

control for mRNA. The reaction conditions were as follows: initial

denaturation at 95°C for 10minutes, followed by 45 cycles of 95°C for 5

seconds and 60°C for 30 seconds (35). The amplification of target genes

and internal reference genes was performed separately for each sample,

with each group of samples containing three replicate wells. Data
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analysis was conducted using the 2^(-DDCt) method. The primer

sequences are provided in Supplementary File 1.
Statistical analysis

Rstudio was used for all statistical analysis and computational

modeling (version 4.2.1).
Results

Analysis of differential gene expression and
correlation in coagulation-related genes
associated with sepsis

We studied 203 coagulation genes using differential gene

expression analysis to comprehend the connection between
Frontiers in Immunology 04
coagulation-related genes and sepsis. This analysis revealed 20 genes

that exhibited significant differential expression, as shown in

Figures 1A, B. Furthermore, we conducted a correlation study to

explore the relationships among these genes. The results from the

circos plot indicated a substantial correlation among all 20 genes, as

depicted in Figure 1C. Additionally, the heatmap of correlations

reinforced these findings, demonstrating a close association between

these 20 genes, as illustrated in Figure 1D.
Gene ontology and pathway enrichment
analysis of differentially expressed genes

To elucidate the biological roles of the differentially expressed

genes, we conducted Gene Ontology (GO) analysis and pathway

enrichment analysis using the Kyoto Encyclopedia of Genes and

Genomes (KEGG). The GO analysis indicated that these genes are

primarily involved in biological functions such as immune receptor
FIGURE 1

Differential expression and correlation of coagulation-related genes in sepsis. (A) Heatmap illustrating the differential expression of 20 coagulation-
related genes between sepsis patients and controls. Each row represents a gene, and each column represents a sample. Red indicates higher
expression, and blue indicates lower expression relative to the mean. (B) Volcano plot showing the differential expression of coagulation-related
genes. The x-axis represents the log fold change, and the y-axis represents the negative logarithm of the p-value. Genes marked in red are
significantly upregulated, green represents downregulated genes, and gray indicates no significant difference. (C) Circos plot depicting the
correlation among the 20 differentially expressed genes. The circle segments represent individual genes, and the connecting ribbons indicate the
correlation strength (red for positive and green for negative correlation). (D) Correlation matrix displaying the pairwise correlations between the 20
differentially expressed genes. Red circles indicate positive correlations, and green circles indicate negative correlations, with the color’s intensity
corresponding to the correlation’s strength.
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activity, coagulation, secretory granule lumen composition, and

immune response activation (Figure 2A). The Disease Ontology

(DO) enrichment analysis revealed that these genes are enriched in

pathways related to tumor signaling and autoimmune hemolytic

anemia (Figure 2B). KEGG pathway analysis demonstrated that

these differentially expressed genes are mainly concentrated in

pathways associated with complement system activation and platelet

activation (Figure 2C). Additionally, the chromosomal locations of

these 20 genes were visualized using a circos plot (Figure 2D).
Immune cell differential in sepsis patients

Our results indicated a significant relationship between sepsis and

immune responses. Further investigation through CIBERSORT

analysis elucidated the differences in immune cell composition in

sepsis patients. The findings revealed that sepsis patients exhibited

lower levels of unactivated B cells, CD8 T cells, and unactivated NK

killer cells while having higher proportions of monocytes and

neutrophils, as shown in Figures 3A, B. Subsequent correlation
Frontiers in Immunology 05
analysis between the 20 differentially expressed genes and immune

cells demonstrated that most genes significantly associate with immune

cells, as depicted in Figure 3C.
Subtyping of sepsis patients based on
differential gene expression

We employed consensus clustering through differential gene

expression analysis to categorize sepsis patients into two subtypes,

as illustrated in Figures 4A–C. Analysis of the differential genes

between these two subtypes revealed that most of the 20 genes

exhibited significant differences, as presented in Figures 4D, E.
PCA and immune cell infiltration analysis in
sepsis subtypes

Principal Component Analysis (PCA) results suggested a good

distinction between the two sepsis subtypes, as indicated in
FIGURE 2

Gene ontology and pathway enrichment analysis. (A) Bubble chart for Gene Ontology (GO) analysis showing the biological functions associated with
the differentially expressed genes. The bubble size represents the gene count, and the color indicates the p-value, with darker shades representing
higher significance. (B) Bar plot of Disease Ontology (DO) enrichment analysis indicating diseases and conditions related to the differentially
expressed genes. Red bars represent conditions with the highest gene counts, and purple bars indicate conditions with lower counts. (C) Bar plot of
KEGG pathway enrichment analysis showing the pathways in which the differentially expressed genes are involved. Red bars represent pathways with
the highest gene counts, and purple bars indicate pathways with lower counts. (D) Circos plot illustrating the chromosomal distribution of the 20
differentially expressed genes. Each gene is positioned according to its location on the chromosome.
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Figure 5A. An examination of immune cell infiltration in these

subtypes revealed that subtype A had higher immune cell

infiltration, as shown in Figure 5B. A heatmap of correlations

highlighted significant relationships between immune cells and

the 20 genes, as seen in Figure 5C.
Development and validation of a diagnostic
model using machine learning

To create a diagnostic model, we used machine learning

techniques. As shown in Figures 6A, B, random forest analysis

identified the top five key genes, including FCER1G and A2M. The

Support Vector Machine (SVM) results indicated that the selection

of two genes offered the best accuracy and minimal error. However,

we chose a set of five genes for further analysis, achieving an

accuracy of 1 and an error rate of 0, as depicted in Figures 6C, D.

Lasso analysis identified six diagnostic biomarkers, as shown in

Figure 6E. To develop a common key gene diagnostic model, a

Venn diagram was utilized to find the intersecting genes among the
Frontiers in Immunology 07
three analyses, resulting in two intersecting genes: FYN and

FCER1G, as illustrated in Figure 6F. The qRT-PCR results

showed that FYN was downregulated in the sepsis patient group

compared to the healthy control group (Figure 7A), while FCER1G

was upregulated in the sepsis patient group compared to the healthy

control group (Figure 7B).
Diagnostic efficacy of the
identified biomarkers

We assessed the diagnostic capability of the two identified

biomarkers through column line graphs, as seen in Figure 8A.

Decision Curve Analysis (DCA) suggested that patients could benefit

from these biomarkers, as shown in Figure 8B. Calibration curves

indicated a minimal difference between the actual risk of sepsis and the

predicted risk, signifying the high accuracy of the model, as presented

in Figure 8C. The ROC curves of the column line graphs demonstrated

good predictive performance, as depicted in Figure 8D. Additionally,

the diagnostic ROC for the key genes, FYN and FCER1G, showed areas
FIGURE 4

Subtyping of sepsis patients and differential gene expression. (A) Consensus matrix heatmap from consensus clustering showing two distinct clusters
(k=2) of sepsis patients based on differential gene expression profiles. (B) A Consensus Cumulative Distribution Function (CDF) plot is used to determine
the number of clusters (k), each color representing a different k value. (C) Delta area plot depicting the relative change in area under the CDF curve for
each k, aiding in selecting the optimal number of clusters. (D) Heatmap displaying the expression patterns of the 20 differentially expressed genes across
the two identified sepsis subtypes. Genes and patient subtypes are clustered based on expression similarity. (E) Boxplots illustrating the expression levels
of the 20 differentially expressed genes in the two sepsis patient subtypes, with significant differences denoted by asterisks.
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FIGURE 5

PCA and immune cell infiltration analysis in sepsis subtypes. (A) PCA plot showing the separation of the two sepsis subtypes, with each subtype form
infiltration profiles between the two sepsis subtypes across various immune cell types. (C) Heatmap of the correlation matrix between the 20 differe
indicating the strength and direction of correlation. * mean P < 0.05, ** mean P < 0.01, *** mean P < 0.001.
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FIGURE 6

Machine learning analysis for diagnostic model development. (A) Random forest analysis showing the error rate as a function of the number of trees
used in the model. (B) Variable importance plot from the random forest model, with the size and color of the dots representing the importance of
each gene in the model. (C) Line graph displaying the SVM model’s 5-fold cross-validation (CV) accuracy as the number of features varies. (D) Line
graph showing the 5-fold CV error rate from the SVM model for different numbers of features. €: Lasso coefficient profile plot against the log
(lambda) sequence, with vertical lines drawn at the optimal values using cross-validation. (F) Venn diagram depicting the intersection of key genes
identified as potential biomarkers from the random forest, SVM, and Lasso analyses.
FIGURE 7

Expression levels of FYN and FCER1G in sepsis patients and healthy controls. (A) The relative expression of FYN in peripheral blood mononuclear
cells (PBMCs) from sepsis patients compared to healthy controls. (B) The relative expression of FCER1G in PBMCs from sepsis patients compared to
healthy controls. **** P < 0.0001.
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under the curve (AUC) of 0.999 and 1.000, respectively, indicating

excellent diagnostic efficacy, as shown in Figures 8E, F.
Biological function analysis of key genes

GSEA enrichment analysis revealed that FCER1G was

predominantly associated with pathways such as fatty acid

synthesis and the intestinal immune network for IgA production

(Figure 9A). In contrast, FYN was primarily enriched in pathways

related to transplant rejection, antigen processing, and presentation

(Figure 9B). Using ssGSEA, we examined differences between sepsis

patients and healthy controls across 50 hallmark signaling

pathways. In sepsis patients, several hallmark pathways, including

KRAS_SIGNALING_DNE, REACTIVE_OXYGEN_SPECIES_

PATHWAY, and TNFA_SIGNALING_VIA_NFKB, were

significantly upregulated (Figure 9C). Additionally, a correlation

analysis between the two key genes and various hallmark pathways

revealed significant associations with most pathways (Figure 9D).
Frontiers in Immunology 10
Validation of key genes and diagnostic
model efficacy

The expression levels of the key genes and their diagnostic

efficacy were validated in a separate cohort. FCER1G expression was

found to be elevated in sepsis patients (Figure 10A), while FYN

expression was reduced (Figure 10B), consistent with findings from

the training set. ROC curve analysis demonstrated the strong

diagnostic potential of these genes, with the area under the curve

(AUC) being 1 for FCER1G and 0.985 for FYN (Figures 10C, D).
Single-cell analysis from the
GSE167363 dataset

After quality control filtering, 25,458 cells were extracted from the

GSE167363 dataset. Post-dimensionality reduction and clustering,

these cells were categorized into 11 distinct clusters (Figure 11A).

Further cell annotation identified six cell types (Figure 11B). FCER1G
FIGURE 8

Diagnostic performance of biomarkers FCER1G and FYN. (A) Nomogram for sepsis prediction, incorporating the biomarkers FCER1G and FYN.
The top scale represents the total points calculated by summing the assigned points for each biomarker, correlating with the probability of sepsis.
(B) Decision Curve Analysis (DCA) showing the net benefit of using the nomogram across different threshold probabilities. (C) Calibration curve of the
nomogram. The diagonal dotted line represents a perfect prediction by an ideal model. The solid line represents the performance of the nomogram, with
the closer fit to the diagonal dotted line indicating better prediction. (D) Receiver Operating Characteristic (ROC) curve for the nomogram. The AUC of 1.000
suggests the perfect discriminative ability of the nomogram for predicting sepsis. (E) ROC curve for the biomarker FYN with an AUC of 0.999, indicating
near-perfect diagnostic performance. (F) ROC curve for the biomarker FCER1G with an AUC of 1.000, indicating perfect diagnostic performance.
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was found to be highly expressed in monocytes, NK cells, and platelets

(Figure 11C), whereas FYN showed higher expression in CD4+ T cells

and NK cells (Figure 11D).
Discussion

This study embarked on an exploration of the complex

interplay between coagulation-related genes and sepsis, utilizing a
Frontiers in Immunology 11
combination of differential gene expression analysis, machine

learning, and pathway enrichment techniques. Our findings

revealed significant alterations in the expression of several

coagulation-related genes in sepsis patients, with FCER1G and

FYN emerging as potential biomarkers. The robustness of these

biomarkers was validated through various analytical methods,

including random forest, SVM, and ROC curve analyses.

Identifying FCER1G and FYN as key players in sepsis aligns with

and extends the findings of previous research (36). For instance, studies
FIGURE 9

Gene set enrichment analysis (GSEA) and single-sample GSEA (ssGSEA). (A) GSEA plot for FCER1G showing the enrichment of gene sets across the
ranked list of genes in the dataset, with pathways related to fatty acid synthesis and IgA production significantly enriched. (B) GSEA plot for FYN
highlighting the enriched gene sets, including those related to transplant rejection and antigen processing. (C) Box plot representing ssGSEA scores
for different hallmark pathways in sepsis patients and controls, indicating significant upregulation of specific pathways in sepsis. (D) Heatmap
showing the correlation of FCER1G and FYN expression with the ssGSEA scores for the hallmark pathways, illustrating significant associations with
most pathways.
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have highlighted the role of FCER1G in immune regulation and its

potential as a biomarker in other inflammatory diseases (37). Our

findings corroborate these studies and further illuminate their

significance in sepsis. Similarly, FYN, known for its role in T-cell

signaling and immune responses, has been implicated in other

pathological conditions, but its specific role in sepsis has been less

clear (38). Our research bridges this gap, providing evidence of its

involvement in sepsis pathogenesis.

Patients with sepsis exhibit higher expression of FCER1G and

lower expression of FYN, suggesting a complex interplay between

these genes in the immune response during sepsis. The roles these

genes play in the immune system, particularly in modulating
Frontiers in Immunology 12
inflammation and immune cell activation, are crucial for

understanding the pathophysiology of sepsis. Our findings

indicate that these genes are essential in the body’s response to

infection and developing sepsis. These pathways include fatty acid

synthesis, the intestinal immune network’s ability to produce IgA,

and the processing and presentation of antigens.

Our study’s insights into FCER1G and FYN enhance our

understanding of sepsis and open new avenues for diagnostics

and therapeutics. The high diagnostic accuracy of these genes, as

indicated by their AUC values, underscores their potential as

biomarkers for early detection of sepsis. Furthermore,

understanding their role in sepsis pathophysiology could lead to
FIGURE 10

Expression analysis and ROC curves of FCER1G and FYN in validation cohort. (A) Violin plot displaying the expression levels of FCER1G in the control and
treatment groups, with significant overexpression in sepsis patients. (B) Violin plot showing the expression levels of FYN in the control and treatment
groups, with significant underexpression in sepsis patients. (C) ROC curve for FCER1G in the validation cohort, with the AUC indicating excellent
diagnostic accuracy. (D) The ROC curve for FYN in the validation cohort also shows high diagnostic accuracy with an AUC of 0.985. *** P < 0.001.
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the development of targeted therapies, which could be more

effective than the current broad-spectrum approaches.
Limitations

While our study offers significant new insights, it has several

limitations. The generalizability of our findings may be influenced

by the diversity of the patient population and the sample size.

Future research should focus on larger and more diverse cohort

studies to validate our results. Additionally, experimental studies

are needed to fully understand the mechanisms by which FCER1G
Frontiers in Immunology 13
and FYN influence sepsis progression. This could include both in

vitro and in vivo experiments to elucidate the molecular pathways

involved and assess their potential as therapeutic
Conclusion

In conclusion, our study illuminates the complex genetic

landscape of sepsis, with a particular focus on the roles of

FCER1G and FYN. The identification of these genes as potential

diagnostic markers and therapeutic targets offers promise for

developing improved management strategies for sepsis, a
FIGURE 11

Single-cell RNA sequencing analysis from GSE167363 dataset. (A) t-SNE plot illustrating the clustering of single cells from the GSE167363 dataset
into 11 distinct groups. (B) t-SNE plot with cell types annotated, identifying six major cell populations within the dataset. (C) Violin plots showing the
expression level of FCER1G across different identified cell types, with higher expression in monocytes, NK cells, and platelets. (D) Violin plots
depicting the expression level of FYN across various cell types, with higher expression in CD4+ T cells and NK cells.
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condition that continues to pose significant challenges in critical

care. Integrating our findings with ongoing research into sepsis

pathophysiology has the potential to revolutionize our

understanding and treatment of this life-threatening condition.
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