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Unraveling the ecological
landscape of mast cells in
esophageal cancer through
single-cell RNA sequencing
Shengyi Zhang1†, Xinyi Zhang2†, Zhikai Xiahou3†, Shunqing Zuo1,
Jialong Xue1 and Yi Zhang1*

1Department of Thoracic Surgery, Songjiang Hospital Affiliated to Shanghai Jiao Tong University
School of Medicine, Shanghai, China, 2Clinical Medical College, Southwest Medical University,
Luzhou, China, 3China Institute of Sport and Health Science, Beijing Sport University, Beijing, China
Background: Esophageal cancer (EC) is a major health issue, ranking seventh in

incidence and sixth in mortality worldwide. Despite advancements in

multidisciplinary treatment approaches, the 5-year survival rate for EC remains

low at 21%. Challenges in EC treatment arise from late-stage diagnosis, high

malignancy, and poor prognosis. Understanding the tumor microenvironment is

critical, as it includes various cellular and extracellular components that influence

tumor behavior and treatment response. Mast cells (MCs), as tissue-resident

immune cells, play dual roles in tumor dynamics. High-throughput single-cell

RNA sequencing offers a powerful tool for analyzing tumor heterogeneity and

immune interactions, although its application in EC is limited.

Methods: In this study, we investigated the immune microenvironment of EC

using single-cell RNA sequencing and established a comprehensive immune

profile. We also performed analysis of upstream transcription factors and

downstream pathway enrichment to further comprehensively decipher MCs in

EC. Besides, we performed knockdown experiments to explore the role of

epidermal growth factor receptor (EGFR) signaling pathway in MCs-tumor cell

interactions, highlighting its potential as a prognostic marker. Finally, we

constructed a prognostic model for EC, which provided valuable suggestions

for the diagnosis and prognosis of EC.

Results: Our analysis identified 11 major cell types, of which MCs were

particularly present in pericarcinoma tissues. Further grouping of the 5,001

MCs identified 8 distinct subtypes, including SRSF7-highly expressed MCs,

which showed strong tumor preference and potential tumor-promoting

properties. Moreover, we identified the key signaling receptor EGFR and

validated it by in vitro knockdown experiments, demonstrating its cancer-

promoting effects. In addition, we established an independent prognostic

indicator, SRSF7+ MCs risk score (SMRS), which showed a correlation between

high SMRS group and poor prognosis.
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Conclusion: These findings illuminate the complex interactions within the tumor

microenvironment of EC and suggest that targeting specific MCs subtypes,

particularly via the EGFR signaling pathway, may present novel therapeutic

strategies. This study establishes a comprehensive immune map of EC, offering

insights for improved treatment approaches.
KEYWORDS

single-cell RNA sequencing, mast cells, EGFR signaling pathway, prognostic model,
esophageal cancer
GRAPHICAL ABSTRACT

Article research flow chart. First, we downloaded the clinical data of three esophageal cancer patients from TCGA, and after a series of data proces-
sing, we obtained the UMAP map of esophageal cancer. After that, we focused on MCs to get its UMAP map and performed trajectory analysis, en-
richment analysis, cellular communication analysis and transcription factor analysis sequentially. Finally, we performed in vitro experiments on the
pathway derived from communication analysis, verified the effect of the pathway on esophageal cancer progression through a series of experiments,
and analyzed the related prognosis, and the results obtained were consistent with our study.
1 Introduction

Esophageal cancer (EC) is a common malignant tumor of the

gastrointestinal system, with the seventh highest incidence and

sixth highest mortality rate in the world (1). In China, the
t cells; TME, tumor

ing.

02
incidence and mortality rates of EC rank third and fourth,

respectively, among all malignant tumors (2). Despite the

development of a multidisciplinary treatment approach, the

prognosis remains unfavorable (3). The 5-year survival rate for

EC is only 21%, after pancreatic and liver cancers (4). Therefore,

EC has been a major malignant tumor threatening the

health of Chinese residents. EC consists of two main subtypes,

esophageal squamous cell carcinoma (ESCC) and esophageal

adenocarcinoma, with ESCC accounting for about 90% of all EC
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cases worldwide (5). EC is an aggressive cancer with rapid growth

and a high rate of lymph node metastasis, usually involving the

upper two thirds of the esophagus (6). In retrospective studies in

EC, smoking, hot tea consumption, red meat consumption, poor

oral health, low intake of fresh fruits and vegetables, and low

socioeconomic status were associated with a higher risk of EC (7).

Previous studies have shown that chronic inflammation plays a

central role in progression from esophageal precancerous lesions

(EPL) to esophageal squamous cell carcinoma, that dietary

inflammatory potential has been linked to both EPL and ESCC,

and that inflammatory imbalances promote tumorigenesis, and

that the consumption of anti-inflammatory foods may be helpful

in the prevention of EPL and ESCC (8–10). Difficulty swallowing

and swollen lymph nodes in the neck do not appear until the

cancer has progressed to an advanced stage (11), and the

treatment of EC patients faces major challenges due to the lack

of early symptoms, high malignancy, poor prognosis, and surgical

complexity of EC. Although we have made great progress in the

treatment of EC in recent years, especially through preoperative

radiotherapy combined with immunotherapy, which shows a

broad potential in the treatment of EC. However, due to the

high rate of post-treatment recurrence and the limitations of

drugs and treatment strategies after metastasis, only a small

proportion of EC patients can benefit from the available

treatments, while the majority of patients respond poorly to the

treatments, and therefore, the overall survival rate of EC is still

disappointing in China (3, 12).

In addition, due to the heterogeneity and complexity of

tumors, the mechanisms of tumor proliferation, metastasis, drug

resistance, and immunosuppression are unknown. Therefore,

elucidating the molecular mechanisms of tumorigenesis and

tumor progression is crucial for effective control and

management of tumor development. Notably, the presence of

non-tumor cells within the tumor tissue is also critical for tumor

development (13). Therefore, shifting the therapeutic focus to

other components of the tumor microenvironment (TME) may

become an important strategy for future tumor therapy. The

introduction of TME has played a very powerful role in

advancing oncology research. TME has had an incredibly

important role in the development and evolution of EC (14).

The TME consists of multiple cellular components (e.g.,

fibroblasts, endothelial cells, and immune cells) and extracellular

components (including cytokines, hormones, extracellular

matrices, and growth factors), which form a complex network

that encapsulates EC cells. These cells shape cancer biology and

influence the response to treatment (15–17). In TME, mast cells

(MCs) are tissue-resident immune cells that are important players

in diseases associated with chronic inflammation such as cancer.

Because MCs can infiltrate solid tumors and promote or limit

tumor growth, MCs may polarize to either pro- or anti-tumor

phenotypes and remain a challenging area of research (18).

Previous articles have also hypothesized that NRF2 in

combination with AC-MCs may be a predictive marker for

prognosis and may influence immunotherapy by modulating

PD-L1 in EC (19).
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High-throughput single-cell RNA sequencing (scRNA-seq),

developed in recent years, is an effective method that has been

shown to dissect heterogeneous tumors and decipher the

interactions between cancer cells and their microenvironmental

components, and to elucidate the transcriptomic profiles of both

the cancer cells and the microenvironmental components (20–

22), which is the basis and foundation for furthering the

understanding of cancers and the development of effective early

diagnostic and therapeutic strategies, previous studies have

dissected the esophageal squamous cell carcinoma ecosystem by

single-cell transcriptomic analysis (16), but its application in EC is

still limited. At the same time, there is still a long way to go for

early detection of esophageal cancer (23), and prognostic tools

lack the necessary accuracy to facilitate individualized patient

management strategies (24).

Therefore, in this study, scRNA-seq was used to sequence EC

samples in order to decipher the immune microenvironment of

EC, reveal the immune map of EC, and provide new insights for

the treatment of EC. The functional role of MCs subtypes in EC

and their association with tumor tissues are extensively discussed

and summarized in this paper, and a prognostic model is

established, which provides a valuable resource for deeper

understanding of the causes and progression of EC and helps to

improve its therapeutic strategies.
2 Materials and methods

2.1 Data source

The scRNA-seq data of EC were acquired from the GEO website

(https://www.ncbi.nlm.nih.gov/geo/) under the accession number

GSE196756. Patient clinical sample information can be found at

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi. Considering the

utilization of publicly accessible data derived from databases,

it was not required to secure an ethical endorsement for

this investigation.
2.2 Single‐cell sequencing

The gene expression data were imported into the R software and

analyzed using the Seurat R package (25, 26). Cells of inferior

quality were excluded based on the following criteria (1): nFeature

between 300 and 7,500 (2); nCount between 500 and 100,000 (3);

mitochondrial gene expression occupying no more than 25% of the

total gene count within the cell (4); erythrocyte gene expression not

surpassing 5% of the total gene count within the cell.

Subsequently, all gene expression data underwent normalization

and scaling using the “NormalizeData” and “ScalData” functions

within the Seurat R package (27). For the purpose of principal

component analysis, the “FindVariableFeautres” function (28) was

implemented to identify the top 2,000 most variable genes. These cells

were then segregated into clusters based on the top 30 principal

components (PCs) using the “FindClusters” function at a resolution
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of 1.0. Finally, the top 30 significant PCs were selected to

dimensionality reduction and visualization of gene expression

through uniform manifold approximation and projection (UMAP)

(29, 30). The harmony R package (31, 32) was employed to alleviate

the influence of batch effects among the samples. The dim value was

set to 30, while the resolution parameter was configured to 1.2.
2.3 Identification of cell subtypes

Cell clusters were init ial ly discerned uti l izing the

“FindClusters” and “FindNeighbors” functions within Seurat

(33–35), employing a default resolution of 0.8. Afterwards,

these cell clusters were bestowed with annotations based on the

average gene expression of representative markers. In order to

evaluate differentially expressed genes (DEGs) across distinct cell

clusters, a Wilcoxon rank sum test was employed utilizing

Seurat’s “FindAllMarkers” function (36, 37). The parameters

min.pct and min.diff.pct were established at 0.25, while the

LogFc threshold was set to 0.25.
2.4 Cancer preferences analysis

In order to evaluate the predilection of MCs subtypes for

cancer, odds ratios were computed utilizing the calculation

methodology (38).
2.5 Trajectory analysis of MCs subtypes

The slingshot R package was employed to deduce cellular

lineages and pseudotimes. It delineated the structure of lineages

through clustering-based minimum spanning trees and employed

synchronized master curves to model branching trajectories for

these lineages. The “getCurves” function was utilized to acquire

refined trajectory curves. The association between gene expression

and pseudotime was characterized by modeling the noise

distribution of each gene through a generalized additive model

with negative binomials. This approach allowed for the simulation

of genes exhibiting a gradual alteration in expression throughout

the pseudotime continuum (39).
2.6 Assessment of cell stemness

AUCell (40) represents a novel approach to discerning cells

harboring active genes within single-cell RNA-seq datasets. Given a

gene set as input, it provides an evaluation of the “activity” exhibited

by that particular gene set in each individual cell. In the context of

this study, AUCell was employed to quantitatively assess the level of

stemness exhibited by various subtypes of MCs. To hypothesize the

temporal trajectory of cell differentiation, the CytoTRACE R

package was utilized (41).
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2.7 Enrichment analysis of cellular subtypes

By leveraging the Gene Ontology (GO), Kyoto Encyclopedia of

Genes and Genomes (KEGG), and Genome Enrichment Analysis

(GSEA) tools, available at http://software.broadinstitute.org/gsea/

msigdb, within the Cluster Profiler R package (42–44), we carried

out enrichment analysis on the DEGs. To discern the disparities

among various risk groups within the bulk data, the DESeq2 R

package was applied, employing a threshold of |logFC| > 2 and a p-

value threshold below 0.05.
2.8 Cell communication analysis

The CellChat R package (45) was used to analyze complex cell-to-

cell interactions and develop regulatory networks based on ligand-

receptor expression. The “netVisual DiffInteraction” function was

applied to depict differences in communication strength among cells,

and the “IdentifyCommunicationPatterns” function was utilized to

estimate the number of communication patterns. A significance

threshold of 0.05 was set. Various visualizations, including circle

plots, bubble plots, and violin plots, were used to represent the

incoming and outgoing signals of all cells
2.9 Scenic analysis

In evaluating the transcriptional activity within diverse subtypes

of tumor cells, we employed the SCENIC analysis with Python.
2.10 Cell culture

Cell lines TE-10 and KYSE-30 were acquired from the

American Type Culture Collection. The TE-10 cell line was

grown under standard conditions (37°C, 5% CO2, 95% humidity)

in RPMI1640 media with 10% fetal bovine serum (FBS) and 1%

penicillin-streptomycin. KYSE-30 cell line was grown under

standard conditions (37°C, 5% CO2, 95% humidity) in RPMI1640

media with 10% FBS, 1% penicillin-streptomycin, and 1%

sodium pyruvate.
2.11 Cell transfection

EGFR knockdown was accomplished through the use of

GenePharma (Suzhou, China) small interfering RNA (siRNA)

constructs. According to Lipofectamine 3000 RNAiMAX

(Invitrogen, USA) manufacturer’s instructions, transfection was

carried out. Two knockdown constructs (Si-EGFR-1 and Si-

EGFR-2) and a negative control (si-NC) were transfected into

cells that had been plated at 50% confluency in six-well plates.

Every transfection was carried out using Lipofectamine 3000

RNAiMAX (Invitrogen, USA).
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2.12 Cell viability assay

Using the CCK-8 assay, the cell viability of transfected AGS and

SGC-7901 cells was evaluated. After being cultivated for 24 hours,

cells were planted at a density of 5×10³ cells per well in 96-well

plates. Following the addition of 10mL of CCK-8 reagent (A311-01,

Vazyme) to each well, the plates were incubated for two hours at

37°C in the dark. On days 1, 2, 3, and 4 post-transfections,

absorbance at 450 nm was measured using a microplate reader

(A33978, Thermo). Plotting of the mean OD values was done.
2.13 5-Ethynyl-2’-deoxyuridine
proliferation assay

In 6-well plates, 5×10³ cells were planted per well with

transfected CNE2 and HNE2 cells, and they were grown for an

entire night. A 2x EdU working solution was then created by

combining serum-free medium with 10 mM EdU. Following two

hours of incubation at 37°C, the cells were rinsed with PBS, fixed for

thirty minutes with 4% paraformaldehyde, permeabilized for fifteen

minutes with a solution of 2 mg/mL glycine and 0.5% Triton X-100,

then stained for thirty minutes at room temperature using a

solution of 1X Apollo and 1X Hoechst 33342. The measurement

of cell proliferation was done by fluorescence microscopy.
2.14 Wound-healing assay

In 6-well plates, stabilized transfected cells were plated and

allowed to grow to confluence. Each well was scratched with a sterile

200mL pipette tip, and then it was cleaned with PBS to get rid of any

remaining cell debris before being incubated in a medium without

serum. Using Image-J software, the breadth of the scratches was

measured after they were photographed at 0 and 48 hours.
2.15 Transwell assay

Before the experiment, cells were fasted for 24 hours in a serum-

free medium. The upper chamber of Costar plates was filled with

cell suspension after being treated with Matrigel (BD Biosciences,

USA), while the lower chamber was filled with media containing

serum. In a cell culture incubator, the cells were incubated for 48

hours. To evaluate the cells’ ability to invade, they were fixed with

4% paraformaldehyde after incubation and stained with

crystal violet.
2.16 Construction and validation of the
prognostic model

We determined the most important predictive genes using

LASSO regression analysis and univariate Cox analysis (46–48).
Frontiers in Immunology 05
The risk coefficients for each prognostic gene were then determined

using multivariate Cox regression analysis, allowing for the creation

of a risk score model:

Risk score ¼on
i Xi� Yi

X stands for the coefficient and Y represents the gene expression

level. Using the “surv-cutpoint” function to compute the best cutoff

value, patients were divided into two groups: low-risk and high-risk.

We also used the Survival R package for survival analysis of the

created risk score model and the “ggsurvplot” function (27) to

depict survival curves in order to observe the prognostic outcomes

in various patient cohorts. ROC curves were plotted using the

timeROC R package to assess the predictive model’s accuracy and

calibration (49, 50).
2.17 Kaplan-Meier survival curve of
selected genes

We performed a survival analysis utilizing the R packages

survminer and survival. The area under the ROC curve (AUC)

was calculated after generating ROC curves for 1-year, 3-year, and

5-year survival rates using the Survive and Time ROC R packages.

Model validation was conducted through survival analysis and

time-dependent ROC analysis. To evaluate the model, we

employed a heatmap, a scatter plot of survival status, and a

distribution of risk scores.
3 Result

3.1 ScRNA sequencing revealed the main
cell types in the EC

To identify the major cell types during the progression of EC,

we collected pericarcinoma and tumor tissue samples from three

EC patients for single-cell RNA sequencing (scRNA-seq). We also

checked the quality and completeness of the raw data. This

included checking for missing values, outliers, or any anomalies

that might affect the analysis. We excluded genes in the sample

that did not meet the minimum expression threshold. For

example, genes with low counts or low variability were excluded

as they may not provide meaningful insights. After performing

initial quality control and removing batch effects, we retained a

total of 29,719 cells. We categorized these 29,719 cells into 30 cell

clusters by dimensionality reduction (Figure 1A). According to

the cell gene map and typical markers, 30 cell clusters were finally

identified into 11 cell types, including B-Plasma cells (IGKC), T-

NK cells (IL32), mast cells (MCs, TPSB2), neutrophils (S100A8),

fibroblasts (DCN), myeloid cells (LYZ), epithelial cells (EPCs,

KRT5), proliferating-cells (MKI67), endothelial cell (ECs,

AQP1), smooth muscle cell (SMCs, MYH11), and neurons

(NRXN1). From the pie charts and bar graphs, we could learn

that for tissues, T-NK cells accounted for the largest proportion in
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FIGURE 1

A single-cell profiling of EC, comprising 30 clusters and 11 cell types. (A) UMAP plot showed the 30 clusters of cells in EC patients and the number of
cells in each cluster (left); UMAP plot showed the distribution of sample sources in the 11 cell types (middle); UMAP plot showed the 11 major cell types
obtained by dimensionality reduction clustering of cells in EC (right). Each point corresponded to a single cell colored according to cell cluster or cell
type. (B) The pie charts showed the proportion of different patient sources (left) and cell phases (right) in each cell type. (C) The bar graphs showed the
proportion of different cell types in sample sources (top) and cell phase(bottom) respectively. (D) Bubble plot showed differential expression of top5
maker genes in EC cells across 11 cell types. Bubble colors were based on normalized data and sizes indicated the percentage of genes expressed in
each cell type. (E-G) UMAP and violin plots revealed the expression levels of nCount-RNA, nFeature-RNA, G2M.Score, and S.Score in different cell types
and sample sources. ****, p < 0.0001 indicated a significant difference. (H) UMAP plots visualized the differential genes of 11 cell types.
Frontiers in Immunology frontiersin.org06
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FIGURE 2

8 subtypes of MCs were identified with different markers. (A-C) UMAP plot demonstrated the 8 cell subtypes of MCs in EC patients and the number
of cells in each cell subtype (A); UMAP plot demonstrated the distribution of cell phases and sample sources in the 8 MCs subtypes respectively
(B, C). Each point corresponded to a single cell colored according to cell different groups. (D) UMAP plots showed the distribution of MCs in each
patient source respectively. (E) The bar graphs showed the proportion of different MCs subtypes in each patient source. (F) Cell phases and sample
sources preference of each MCs subtype estimated by Ro/e score. (G) Bubble plot showed differential expression of top 5 maker genes in 8 MCs
subtypes. Bubble colors were based on normalized data and sizes indicated the percentage of genes expressed in each subtype. (H, I) UMAP and
violin plots revealed the expression levels of CNVscore, nCount-RNA, S.Score and G2M.Score in different MCs subtypes. (J) Bar plots showed the
expression levels of gene markers in each MCs subtype.
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https://doi.org/10.3389/fimmu.2024.1470449
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhang et al. 10.3389/fimmu.2024.1470449
tumor tissues, followed by B-Plasma cells, while MCs were the

most predominant cell type in pericarcinoma tissues; for phases,

T-NK accounted for the largest proportion in both the G2M and

the S phases, while on the contrary, most of MCs accounted for the

largest proportion in the G1 phase (Figures 1B, C). Figure 1D

showed the top 5 marker genes for 11 cell types. UMAP and violin

plots were utilized to visualize nCount-RNA, nFeature-RNA,

G2M.Score, and S.Score across all cells, demonstrating that

proliferating cells exhibited the highest proliferative activity and

vigorous division (Figures 1E-G). At the same time, the

distribution of marker genes on UMAP for each cell type was

presented (Figure 1H).

Among all cell types, MCs drew our attention. MCs play a

crucial role in allergic reactions, pathogen immune responses

during infections, angiogenesis, and the regulation of both

innate and adaptive immunity. In addition to all these roles,

MCs were increasingly recognized as regulators of the tumor

microenvironment. Despite the accumulating evidence for MCs

in tumors, their exact role in the tumor microenvironment

remained incompletely understood (51). Therefore, we next

performed a further analysis of mast cells.
3.2 Visualization of MCs subtypes in EC

Next, we analyzed the scRNA-seq data from tumor and

pericarcinoma tissues, identified MCs, and performed further sub-

clustering. This analysis resulted in eight distinct cell subtypes from a

total of 5,001 mast cells: C0 EGR1+ MCs, C1 SRSF7+ MCs, C2

TXNIP+ MCs, C3 DUSP1+ MCs, C4 S100A8+ MCs, C5 HSPA6+

MCs, C6 IL32+MCs, C7 RPL35A+MCs (Figure 2A), and showed the

distribution of phases and sample sources in the subtypes, while

faceting gived a clearer picture of the distribution of MCs from

different sample sources (Figures 2B-D). The bar graphs illustrated

that the C1 SRSF7+ MCs had the highest proportion of tumor tissues

of P1 and P3 origin and was enhanced over the pericarcinoma tissues

share, and similarly, the Ro/e preference graph corroborated this,

suggesting that the C1 SRSF7+ MCs was more preferred to tumor

tissues (Figures 2E, F). In order to better explore the characteristics of

differentMCs subtypes, we visualized their typical genes. As shown in

Figure 2G, C1 SRSF7+ MC highly express DDX5, which had been

shown to be associated with a variety of key tumor promoting

molecular interactions and was involved in tumorigenesis and

tumor progression signaling pathways (52). This suggested that C1

SRSF7+ MCs in EC might be involved in tumor promoting effect.

Several related features (CNVscore, ncount-RNA, S.Score and

G2M.Score) of eight MCs subtypes were visualized (Figures 2H, I).

From the Figures, we could learn that C7 RPL35A+ MCs had the

highest expression level of CNVscore and G2M.Score, while C1

SRSF7+ MCs and C6 IL32+ MCs had the highest nCount-RNA

expression level, and all subtypes had basically the same expression

level of S.Score. In the end, bar plots showed the expression level of

gene makers in each MCs subtype, validating the basis for delineating

subtypes (Figure 2J).
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3.3 Slingshot analysis of proposed
temporal trajectories of MCs subtypes

To infer the lineage trajectory and pseudotime sequence of MCs,

we employed slingshot analysis to assess the distribution of MCs

differentiation trajectories across all MCs, visually represented

through UMAP plots (Figure 3A). Then, we found 3 cell lineage

trajectories of the MCs subtypes (Figures 3B-E). Including: lineage 1:

C4→C2→C3→C0; lineage 2: C4→C2→C3→C1; lineage 3: C4

→ C2 → C3 → C6. Slingshot analysis revealed that the differences

among the three trajectories mainly reside in the late stages.

Combined with Figures 3C-E to determine, lineage 1’s endpoint

was located in C0, which showed no preference for tumor tissue,

lineage 3’s endpoint was located in C6, which had a very small

number of cells and a low percentage of tumor tissue, while lineage 2’s

endpoint was located in C1, which not only showed a preference

for tumor tissue, but also had a high percentage of tumor tissue.

Therefore, we concluded that lineage 2 represented the differentiation

line of MCs associated with the tumor. In addition, we also noted that

MCs are influenced by some cytokines or tumor cell-secreted

proteins during development in TME, resulting in a possible

transformation of the MCs phenotype to a tumor-associated or

pro-tumorigenic phenotype (18), whereas C1 belonged to the

terminal end and consisted predominantly of MCs originating

from tumor tissues, and based on this observation, we

hypothesized that C1 may play a crucial role in the differentiation

of tumor-associated MCs(TAMCs) process. Subsequently, we

confirmed the biological processes corresponding to the three cell

lineage trajectories of MCs subtypes using GO-BP enrichment

analysis (Figure 3F). It was found that C1 in lineage 2 was

associated with biological processes such as endopeptidase and

cysteinetype, C2 was linked to processes such as protein folding,

C3 was related to leukocyte functions, and C4 was involved in

processes such as lamellipodium formation, contraction, and

production. Finally, the dynamic trends plot demonstrated

the expression variation and distribution of marker genes for

MCs subtypes along the three differentiation trajectories in

pseudotime (Figure 3G).
3.4 Expression of stemness gene sets in
subtypes of MCs

To investigate the expression of stem cell genes in MCs

subtypes and to understand their differentiation potential, we

used bubble plots to illustrate the different expression of stem

cell genes in MCs subtypes. The results showed the corresponding

expression of stem cell genes KDM5B, EPAS1, CTNNB1, EZH2,

KLF4, CD44, BMI1, and HIF1A in MCs subtypes and different

tissue types (Figure 4A). Subsequently, we visualized the cell

stemness AUC scores of different MCs subtypes using a UMAP

plot (Figure 4B). We then combined this with other analyses to

assess the expression levels of stemness-related genes in different

subtypes of MCs, and violin plots showed the different expression
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levels of stemness genes in different sample sources, tissues,

subtypes of MCs, and phases, respectively (Figures 4C-F). The

results showed that C1 SRSF7+ MCs exhibited a higher level of cell

stemness, indicating a lower degree of differentiation and higher

differentiated potential; and it also showed that pericarcinoma

tissues had the higher level of cell stemness. In addition, there was

no significant difference in the expression levels of stemness genes
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in different cell phases. By CytoTRACE analysis, C1 SRSF7+ MCs

showed the lowest degree of differentiation and the highest cell

stemness among all subtypes, which we hypothesized might be

related to the transformation of MCs to TAMCs (Figures 4G, H).

Afterwards, the expression profiles of stemness genes with

relatively elevated expression levels in Figure 4A were

demonstrated in all MCs by UMAP plots (Figure 4I).
FIGURE 3

Slingshot analysis reveals three differentiation trajectories of MCs. (A) Demonstration of the distribution of slingshot-predicted MCs differentiation
trajectories among all MCs by UMAP plot. Plotting each spectrum according to the pseudotime value to infer the result, the color from blue to red
indicates the pseudotime from naïve to mature, and the grey part of the cells represent not belonging to the lineage. (B-E) The distribution of three
differentiation trajectories of 8 MCs subtypes fitted by the pseudotime order in all mast cells (B). Each trajectory was displayed respectively in UMAP
(C-E). (F) Heatmap demonstrated the related characteristics of 3 pseudotime trajectory lineages of MCs. The value of pseudotime correlated with
differentiation, where 0 indicates the start point and 20 is the end point. (G) Scatter plots demonstrated the trajectories of named genes of 8 cell
subtypes of mast cells changing on three lineages obtained after slingshot visualization.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1470449
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhang et al. 10.3389/fimmu.2024.1470449
FIGURE 4

Analysis of cell stemness in mast cell subtypes. (A) Bubble plot showed expression of stemness genes in 8 MCs subtypes. Bubble colors were
based on normalized data and sizes indicated the percentage of genes expressed in each subtype. (B) UMAP plot visualized the AUC values of cell
stemness. (C-F) Violin plots revealed the expression levels of AUC values of MCs cell stemness in different patient sources (C), sample sources
(D), subtypes (E) and phases (F). ****,p < 0.0001 indicated a significant difference, ns indicated a non-significant difference. (G) The left panel
demonstrated the distribution of MCs CytoTRACE scores. The color represented high or low cell stemness. The right panel indicated the distribution
of MCs subtypes. The color represented different MCs subtypes. (H) Box line plot ranked the stemness of MCs subtypes according to CytoTRACE.
(I) UMAP plots visualized the 8 stemness genes expressed in MCs subtypes.
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3.5 Enrichment analysis of MCs subtypes
in EC

First, we utilized volcano plots to represent the DEGs profiles

between subtypes of MCs (Figure 5A). The results showed that the
Frontiers in Immunology 11
up-regulated DEGs in C1 SRSF7+ MCs were mainly DDX5,

EEF1A1, TPSB2, TPSAB1, and CPA3. In addition, we performed

GO-BP enrichment analysis of the DEGs in the subtypes of MCs

to reveal their enrichment in biological processes. The heatmap

showed the results of the top four enrichment entries in the MCs
FIGURE 5

Results of functional enrichment analysis of differentially expressed genes in 8 MCs subtypes. (A) Volcano plots showed differentially expressed genes
in 8 subtypes. (B) Heatmap showed the enrichment items of GO_BP scored. zscore > 0 was positive enrichment and < 0 was negative enrichment.
(C) Word cloud diagrams demonstrated the activity of different pathways in MCs subtypes. (D) GSEA analysis diagram of different pathways in each
MCs subtype. NES > 0 was positive enrichment and < 0 was negative enrichment. NES, N stands for standardization, and ES for enrichment scores.
(E) GSEA enrichment analysis among C1 SRSF7+ MCs.
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subtypes (Figure 5B). The C0 EGR1+ MCs subtype was mainly

associated with pathways such as response to unfolded protein,

response to topologically incorrect protein and regulation of

neuron death; The C1 SRSF7+ MCs subtype was enriched in

pathways such as protein folding, protein refolding, chaperone-

mediated protein folding and ‘de novo’ protein folding; The C2

TXNIP+ MCs subtype revealed their close association with

cytoplasmic translation, oxidative phosphorylation, ribosome

biogenesis and rRNA processing; The C3 DUSP1+ MCs subtype

showed enrichment in pathways such as negative regulation of

transferase activity, response to muscle stretch, response to

mechanical stimulus and negative regulation of phosphorylation;

The C4 S100A8+ MCs subtype was enriched in pathways related

to leukocyte migration, myeloid leukocyte migration, response to

molecule of bacterial origin and leukocyte chemotaxis; The C5

HSPA6+ MCs subtype mainly exhibited enrichment in pathways

such as protein refolding, response to temperature stimulus,

myeloid cell differentiation and regulation of hemopoiesis; The

C6 IL32+ MCs subtype revealed pathways related to leukocyte

mediated cytotoxicity, lymphocyte mediated immunity, natural

killer cell mediated immunity and positive regulation of leukocyte

cell-cell adhesion; The enrichment analysis conducted on the C7

RPL35A+ MCs subtype revealed their association with

cytoplasmic translation, ribosomal small subunit biogenesis,

rRNA processing and rRNA metabolic process. The word cloud

plots illustrated the enrichment results of DEGs across various

pathways in the eight MC subtypes (Figure 5C). The results

showed that the C1 SRSF7+ MCs subtype was mainly enriched

in leukocyte, immune and activation, and it was hypothesized that

C1 SRSF7+ MCs subtype might be related to MCs activation and

participation in immune regulation.

In addition, the results of GSEA enrichment analysis were also

shown in the form of bubble plots (Figure 5D). It showed that C1

SRSF7+ MCs subtype was significantly expressed in regulation of

immune system process, cell motility and migration, protein

folding, response to immune and external stimulus pathways. All

of the above pathways would suggest that MCs in the C1 SRSF7+

MCs subtype had likely transformed into TAMCs. Finally, we

performed GSEA on the DEGs of the C1 SRSF7+ MCs subtype

according to GO-BP terminology. The results were shown in

Figure 5E. We observed that pathways associated with protein

refolding, skeletal muscle cell differentiation, chaperone cofactor-

dependent protein refolding and ‘de novo’ protein folding were

upregulated in the C1 subtype. In contrast, pathways associated

with ATP synthesis coupled electron transport, mitochondrial ATP

synthesis coupled electron transport, aerobic electron transport

chain and cytoplasmic translation were downregulated in the C1

subtype. Combining the above up-regulated genes and enriched

pathways with previous studies, we believed that the C1 subtype was

affected by the endoplasmic reticulum stress state, which disrupts

the homeostasis of the original proteins and generates aberrant

protein folding, and that this stress state could control a variety of

pro-tumorigenic attributes of cancer cells, dynamically re-

programming the function of immune cells, transforming MCs

into TAMCs, thus exerting pro-tumorigenic effects, and conferring
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a greater tumorigenic, metastatic, and drug-resistant capacity to the

malignant cells (53).
3.6 Transcription factors regulate the
carcinogenic mechanism of C1
SRSF7+ MCs

Transcription factors can directly act on the genome and

regulate gene transcription and affect the biological function of

cells by combining specific nucleotide sequences in the upstream

of the gene. Therefore, we used scenic to analyze the gene

regulatory network of C1 SRSF7+ MCs. First of all, we carried

out cluster analysis of MCs according to regulator activity

(Figure 6A). It was obvious that the discretization of UMAP

diagram based on regulator activity was smaller, the interference

factors were better excluded, and all MCs were clustered and

distributed. Among them, C1 SRSF7+ MCs were mainly

distributed on the right side of UMAP plot without significant

discretization. By further analyzing the key regulators of different

MCs subtypes, the five major regulators of C1 SRSF7+MCs, ATF4,

JUNB, NFkB2, MAFK and JUN, were identified (Figures 6B, C).

After analyzing these five key regulators in depth in conjunction

with previous studies and Figure 6D, ATF4 and JUNB caught our

attention. ATF4, which was expressed at higher levels in C1 SRSF7

+ MCs than in other subtypes, was a major transcriptional

regulator of the unfolded protein response to hypoxia, activated

genes that promoted recovery of normal endoplasmic reticulum

function and hypoxic survival (54), regulated mast cells through

endoplasmic reticulum stress (55), and had been associated with

programmed cell death in a variety of tumors, particularly ER

stress-induced iron death (56, 57, 86). As for JUNB, its expression

level was high in C1 SRSF7+ MCs, C4 S100A8+ MCs and C5

HSPA6+ MCs subtypes, and it is a potent inhibitor of endoplasmic

reticulum stress and apoptosis, and, in particular, its modulation

of endoplasmic reticulum stress is associated with ATF4

alterations (58).
3.7 CellChat analysis among all cells

In order to systematically elucidate complex cellular

responses, we aimed to investigate cell-to-cell relationships and

ligand-receptor communication networks to better understand

interactions between cells. Using CellChat analysis, we initially

established intercellular communication networks involving

various cells such as tumor cells, fibroblasts, T-NK cells, and

different subtypes of MCs, etc (Figure 7A). After establishing the

intercellular communication networks using CellChat analysis, we

calculated both the number of interactions (represented by the

thickness of the connecting lines between two cell types) and the

strength of interactions (indicated by the weight of the lines,

where thicker lines denote stronger interaction strengths). This

approach helped quantify the complexity and intensity of

communication pathways between different cell types in the
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network. We utilized gene expression pattern analysis methods

available through CellChat to investigate how cells and signaling

pathways interact. Initially, we assessed the relationship between

inferred potential communication patterns and groups of cells

that secrete signaling molecules to decipher outgoing

communication patterns. Three distinct signaling patterns were

identified through our analysis: pattern 1 (subtypes of MCs),
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pattern 2 (Neurons cells, fibroblasts, SMCs, tumor-cells and

ECs) and pattern 3 (myeloid-cells, B-Plasma cells, neutrophils,

proliferating-cells and T-NK cells) (Figure 7B). To identify the key

incoming and outgoing signals associated with the eight MCs

subtypes, we quantitatively analyzed the ligand-receptor network

using CellChat. This approach allowed us to predict the primary

incoming signals from secreting cells (signal senders) releasing
FIGURE 6

Identification of C1 SRSF7+ MCs Gene Regulatory Network. (A) UMAP visualized all MCs based on regulon activity score. Colored according to cell
subtypes. (B) Different MCs subtypes were highlighted in the UMAP plots (red) (left); rank for regulators in different MCs subtypes based on regulon
specificity score (RSS) (green) (right). (C, D) Expression of transcription factors ATF4, JUNB, NFKB2, MAFK and JUN of C1 SRSF7+ MCs in different
MCs subtypes.
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FIGURE 7

CellChat analysis among all cells. (A) Circle plots showed the number (left) and strength (right) of interactions between all cells. (B) Heatmap showed
pattern recognition of outgoing cells (left), and incoming cells (right) among all cells. (C) Outgoing contribution bubble plot and incoming
contribution bubble plot demonstrated the communication patterns between the secreting cells and target cells of EC, the color of the dots
indicated different cells and the size of the dots indicated the contribution of cells. (D) Sankey diagrams showed inferred outgoing communication
patterns of secreting cells and incoming communication patterns of target cells, as well as correspondence between inferred potential patterns, cell
groups, and signaling pathways. The color and width of the branches represented the type and strength of the communication. (E) Heatmap showed
ligands and receptors related to the incoming and outgoing signals of cell interactions.
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various cytokines or ligands. Additionally, we assessed which cell

types acted as targeting cells (signal receivers), and how ligand-

receptor-mediated communications between different cell types

contributed to the progression of EC. This analysis helped

illustrate how receptors on these cells were targeted by ligands
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released either from the same type of cell or from other cell

types (Figure 7C).

In addition to examining detailed communication within

individual pathways, an important aspect was understanding

how multiple cell populations and signaling pathways
FIGURE 8

Visual analysis of AREG-EGFR/AREG-(EGFR+ERBB2) signaling pathway. (A, B) The number (left) and strength (right) of cellular interactions circled
plots with C1 SRSF7+ MCs as source (A) and tumor as target (B). (C) Heatmap demonstrated the centrality score of the EGF signaling pathway
network, showing the relative importance of each cell group. (D) Heatmap showed the cell interactions of the EGF signaling pathway. (E, F) Violin
and bubble plots demonstrated cellular interactions in the EGF signaling pathways. (G–H) Circle plot and hierarchical plots showed the inferred
intercellular communication network for EGF signaling. Solid and hollow circles indicated source and target cell types in hierarchical plots,
respectively. The edge color of the middle circle in hierarchical plots was consistent with the signal source.
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coordinate their functions. To address this, CellChat employed a

pattern recognition method based on nonnegative matrix

decomposition. This method identified global communication

patterns and key signals across different cell groups, shedding

light on how various cells and pathways collaborate in their

functions. The application of this analysis revealed three distinct

incoming signaling patterns and three outgoing signaling patterns.

For instance, this output indicated that the majority of outgoing

MCs signaling was characterized by pattern 1, which represented

multiple pathways, including but not limited to CD99, ANNFXIN,

EGF, PARs, ICAM, CSF, etc. All output tumor-cells, fibroblasts,

ECs, SMCs, neurons signalings were characterized by pattern 2,

which represented pathways such as COLLAGEN, LAMININ,

FN1, APP, PTN and so on. On the other hand, the analysis of

communication patterns in target cells indicated that incoming

signalings to tumor-cells, SMCs, and neurons were predominantly

characterized by pattern 1. This pattern included signaling

pathways such as EGF, TENASCIN, JAM, MPZ, CADM, and

TWEAK. In contrast, the majority of incoming signalings

to subtypes of MCs, B-plasma cells, T-NK cells, proliferating-

cells, myeloid-cells, and neutrophils were characterized by

pattern 2, which was driven by pathways such as CXCL and

ANNEXIN (Figure 7D).

Combining the above analysis and the demonstration of all

incoming and outgoing signal intensities in Figure 7E, the

signaling molecule EGF caught our attention. EGF was present

in the incoming pathway of tumor-cells, i.e., tumor-cells were the

target cells, and EGF is again present in the outgoing pathway of

C1 SRSF7+ MCs subtype, i.e. C1 SRSF7+ MCs subtype was the

secreting cell, which links C1 SRSF7+ MCs subtype and tumor-

cells, we speculated that this signaling pathway might be related to

tumor progression, so we next focused on EGF.
3.8 Analysis of AREG-EGFR/AREG-(EGFR
+ERBB2) signal pathway

The circular displayed the inferred cell-cell communication

network between MCs and other cells (Figures 8A, B). The results

showed that there was a strong crosstalk between C1 SRSF7+ MCs

and tumor cells. We considered all identified cell types in ECEC as

source cells for the EGF signaling pathway, and the results indicated

that all subtypes of MCs could target tumor cells with released EGF.

In addition to the senders and receivers of EGF signaling, based on

the relative importance of each cell type in EGF signaling-mediated

intercellular communication, we identified the cell types that act as

mediators and influencers in this process, which is referred to as the

“centrality measurement” algorithm. As can be seen from the Figure,

C1 SRSF7+ MCs subtype had higher expression as a ‘sender’ in the

EGF signaling pathway, whereas tumor-cells were acting as ‘receiver’,

‘mediator’ and ‘influencer’ in this signaling pathway (Figure 8C).

Similarly, the heatmap corroborated this conclusion (Figure 8D). The

violin plot showed the cell-cell interactions while giving the different

ligands and receptors in the EGF signaling pathway, and the results

showed that C1 SRSF7+ MCs subtype and tumor-cells were mainly

contacted with AREG as a ligand and EGFR or ERBB2 as receptors
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(Figure 8E). Bubble and circle plot as well as hierarchical plots

likewise corroborated this conclusion (Figures 8F–H). Combined

with the results of previous results in this paper, it can be

concluded that the C1 SRSF7+ MCs and tumor cells crosstalk

through the AREG-EGFR/AREG-(EGFR+ERBB2) signal pathway,

thereby exerting a tumor-promoting effect.
3.9 In vitro experimental validation of EGFR

To further investigate the role of EGFR in EC, we conducted in

vitro experiments using the TE-10 and KYSE-30 cell lines. Initially,

we knocked down EGFR and measured the mRNA and protein

expression levels before and after knockdown. We observed a

significant reduction in both mRNA and protein expression levels

in both cell lines compared to the control group (Figure 9A).

Subsequently, the CCK-8 assay revealed a marked decrease in EC

cell viability post-EGFR knockdown (Figure 9B). Colony formation

assays and EDU experiments confirmed that EGFR knockdown

inhibited EC cell proliferation (Figures 9C, E, F). Additionally,

scratch and transwell assays were employed to assess the migration

and invasion capabilities of EC cells post-EGFR knockdown,

demonstrating a significant reduction in migration and invasion

levels (Figures 9D, F-H). These results collectively indicate that

EGFR knockdown suppresses the activity, proliferation, migration,

and invasion of EC cells, thereby inhibiting tumor growth.
3.10 Enrichment analysis and construction
of predictive models

To further investigate the impact of MCs with high SRSF7

expression on EC patients, we divided the TCGA cohort patients

into high and low SMRS (SMRS: SRSF7+MCs risk score) groups

according to the gene expression levels of the SRSF7+ MCs subtype.

A heatmap illustrated the expression profiles of the top 30 DEGs

(Figure 10A), and a volcano plot depicted the up-regulation and

down-regulation of DEGs (Figure 10B). Subsequently, we employed

various enrichment methods to gain insights into the associated

biological processes. KEGG enrichment analysis revealed that DEGs

were primarily enriched in pathways such as cholesterol

metabolism, PPAR signaling pathway, and Fat digestion and

absorption (Figure 10C). In GO-BP analysis, enrichment was

observed in the triglyceride metabolic process, acylglycerol

metabolic process, and neutral lipid metabolic process

(Figure 10D). In GO-CC analysis, enrichment included

chylomicron and high- and low-density lipoproteins, and in GO-

MF analysis, glycosaminoglycan binding and lipoprotein particle

receptor binding were highlighted (Figures 10E, F). We then

visualized the primary enrichment terms for each gene set and

used t-SNE plots to graphically represent the risk score distribution

of these enrichment terms (Figure 10G). GSEA results showed that

the up-regulated genes were mainly enriched in processes such as

intestinal absorption, peptidyl methionine modification, intestinal

lipid absorption, and protein lipid complex assembly, while down-

regulated genes were enriched in processes like regulation of release
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of sequestered calcium on into cytosol, external encapsulating

structure organization, B cell receptor signaling pathway, and

collagen fibril organization (Figure 10H). Additionally, we

constructed a prognostic model to explore the clinical significance

of MCs with high SRSF7 expression. Univariate Cox regression
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analysis identified 11 genes significantly associated with prognosis

(Figure 10I), with AHR as a protective factor (HR < 1) and the

others as risk factors. To address the issue of multicollinearity

among these genes, we further screened them using LASSO

regression analysis, ultimately identifying eight prognostic-related
FIGURE 9

In vitro experiments confirmed the effects of EGFR knockdown. (A) Following EGFR knockdown, both mRNA and protein expression levels were
significantly reduced. (B) The CCK-8 assay demonstrated a marked decrease in EC cell viability post-EGFR knockdown compared to the control
group. (C) Colony formation assays revealed a significant reduction in colony numbers after EGFR knockdown. (D) The scratch assay indicated that
EGFR knockdown inhibited EC cell migration. (E) The EDU staining assay confirmed that EGFR knockdown exerted an inhibitory effect on EC cell
proliferation. (F) Bar graphs showed a significant reduction in both EC cell migration and proliferation capabilities post-EGFR knockdown (P < 0.01).
(G, H) Transwell experiments indicated that EGFR knockdown inhibited the migration and invasion capabilities of tumor cells in the TE-10 and KYSE-
30 cell lines. ***, p < 0.001; ****, p < 0.0001 indicates significant difference.
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genes (Figure 10J). Cox regression analysis was then used to

calculate the coefficient values of these genes (Figures 10K, L).

Curve and scatter plots demonstrated the differences in risk scores

and survival outcomes between the two groups, indicating that the

high SMRS group was associated with poorer prognosis
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(Figure 10M). Moreover, a heatmap displayed the differential

expression patterns of genes used in model construction

(Figure 10N). Kaplan-Meier survival curves further confirmed the

conclusion that the high SMRS group had a worse survival outcome

(Figure 10O). ROC curves and AUC values for 1-year, 3-year, and
FIGURE 10

Enrichment analysis of differential genes and construction of the prognostic model. (A) Heatmap illustrated the expression profiles of differential
genes in high and low SMRS groups. (B) Volcano plot depicted the distribution of differential genes in high and low SMRS groups. (C-F) Bar charts
separately presented the enrichment analysis results of differential genes in KEGG, GO-BP, GO-CC, and GO-MF pathways for high and low SMRS
groups. (G) t-SNE plot visualized the risk score distribution of the top-ranked GSVA enrichment term in high and low SMRS groups. (H) Detailed
exposition of GSEA pathway enrichment results for differential genes across various pathways was provided. (I) Forest plot from univariate Cox
regression analysis showcased statistically significant genes (P<0.05) with HR<1 indicating protective factors and HR>1 indicating risk factors.
(J) Selection of eight prognostic-related genes (non-zero regression coefficients) was made via LASSO regression analysis, with optimal parameter
(lambda) determined through cross-validation (top), and LASSO coefficient curve determined by optimal lambda (bottom). (K) Forest plot of eight
prognosis-related genes. (L) Bar chart showed the Coef values of genes utilized for model construction. (M) Curve chart illustrated the risk scores of
high and low SMRS groups, and scatter plot depicted survival/death events over time for both groups. (N) Heatmap displayed differential expression
of model genes, with color scale based on normalized data. (O) Kaplan-Meier curves demonstrated survival disparities between high and low SMRS
groups. (P) ROC curve and AUC value were used to evaluate the sensitivity and specificity of the prognostic model in predicting 1-year, 3-year and
5-year prognosis.
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5-year outcomes indicated that the model had good predictive

value (Figure 10P).
4 Discussion

In recent years, the rapid development and application of

scRNA-seq in cancer research has revolutionized our

understanding of the biological features and dynamics within

cancer lesions, greatly facilitating the diagnosis, treatment, and

prognosis prediction of a range of tumors (59–61). Overall, the

present study focused on mast cells in esophageal cancer, and we

validated the pro-carcinogenic role of this pathway by launching a

comprehensive profiling of mast cell subtypes with an eye on the C1

SRSF7+ MCs and obtaining its reciprocal receptor, EGFR, using

cellular communication analysis, and subsequently verifying the

pro-carcinogenic role of this pathway through cellular knockdown

experiments. In this study, we comprehensively characterized the

cellular heterogeneity of EC using scRNA-seq technology. We

identified immune cells including T-NK cells, MCs, and myeloid

cells and so on, as well as non-immune cells such as smooth muscle

cells and neuronal cells. In addition, we carefully analyzed the

sample origin of these cell types and the distribution characteristics

during the phase. Among them, MCs caught our attention. Until

more than a hundred years ago, MCs were regarded as effectors of

allergy, and it is only in the last two decades that MCs have gained

recognition for their involvement in other physiological and

pathological processes. MCs maturation, phenotype and function

as a direct result of the local microenvironment (62), and by

releasing a range of bioactive mediators has a significant effect on

their ability to specifically recognize and respond to a variety of

strategies (63–65). Therefore, depicting and analyzing the TME is

important for MCs. And in previous studies, MCs have been shown

to correlate with pro-tumorigenic effects (66–68). Despite the

accumulating evidence for MCs in tumors, their exact role in the

TME remains incompletely understood (51). We therefore focused

our attention on the study of MCs. By further dimensionality

reduction clustering, we obtained eight MCs subtypes, i.e., C0

EGR1+ MCs, C1 SRSF7+ MCs, C3 TXNIP+ MCs, C4 S100A8+

MCs, C5 HSPA6+ MCs, C6 IL32+ MCs, and C7 RPL35A+ MCs.

By integrating the proportions of MCs subtypes in sample

sources and cell phases, Ro/e preference analyses, cell stemness

analyses, and slingshot proposed pseudotime analyses, we identified

the target subtype in this study: the C1 SRSF7+ MCs. C1 SRSF7+

MCs were significantly more abundant in tumor tissues than in

pericancer tissues in P1 and P3 samples, and this was confirmed by

Ro/e preference analysis. In slingshot proposed pseudotime

analysis, Lineage 2 was considered to be representative of the

differentiation trajectory of MCs associated with tumors. And the

endpoint of Lineage 2 was a subtype of C1 SRSF7+ MCs, this result

may prove that MCs are affected by some cytokines or tumor cell-

secreted proteins during their development in the TME, leading to

the transformation of MCs into a tumor-associated or pro-tumor
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phenotype, which is in line with the previous study (69).

Meanwhile, cell stemness analysis by AUC value and CytoTRACE

showed that the C1 SRSF7+ MCs subtype had the strongest cell

stemness among all subtypes, with high differentiation potential,

which did not contradict slingshot’s results, and it is understandable

that the transformation from normal phenotype to TAMCs

phenotype would result in an increase in cell stemness. It can be

seen that the C1 SRSF7+ MCs subtype is intricately linked to

tumor progression.

To further investigate the tumor-promoting related roles of the

C1 SRSF7+ MCs subtype, we performed enrichment analysis and

obtained the upregulated genes DDX5, TPSB2, and CPA3, of which

DDX5 interacts with a variety of key pro-tumorigenic molecules

and participates in tumorigenic and tumor progression signaling

pathways, and when DDX5 is expressed or its post-translational

modifications are deregulated, the normal cellular signaling

network collapses, leading to many pathological states, including

tumorigenesis and tumor progression (52, 70). Moreover, the

enriched pathways obtained by GO-BP and GSEA on the C1

SRSF7+ MCs subtype showed that the C1 SRSF7+ MCs subtype

was extensively involved in protein folding and refolding, regulation

of immune system processes, and response to external stimuli. All

these pathways suggest that the C1 SRSF7+ MCs subtype has

probably been transformed into TAMCs. Finally, combining the

above up-regulated genes and enriched pathways, we suggest that

the C1 SRSF7+ MCs subtype is affected by the endoplasmic

reticulum stress state (71), which disrupts the original protein

equilibrium (72) and produces aberrant protein folding (73, 74),

and this stress state dynamically reprograms the function of MCs,

transforming MCs into TAMCs, which exerts pro-tumorigenic

effects (75) and confers cancer cells with enhanced tumorigenic,

metastatic, and drug-resistant capabilities. In this regard, we can

treat patients with esophageal cancer by targeting the abnormal

protein folding to prevent MCs from entering the endoplasmic

reticulum stress state in patients, thus preventing the conversion of

MCs into TAMCs, and thus controlling the progression of

the cancer.

In addition, gene regulatory network of C1 SRSF7+ MCs was

revealed by scenic analysis, in which the most valuable key

regulators were ATF4 and JUNB. ATF4 showed a dual role in

iron death and cancer under endoplasmic reticulum stress (75), and

under sustained stress conditions, ATF4 promotes apoptotic cell

death induction. Characterizing the mechanisms that regulate

ATF4-mediated transcription and its effects on cellular

metabolism may identify novel targets for cancer therapy (56). As

for JUNB, more and more studies have shown that it is involved in

tumorigenesis by regulating cell proliferation, differentiation,

senescence, and metastasis, and in particular, it affects the TME

by transcriptionally promoting or repressing oncogenes in tumor

cells or immune cells (76). Furthermore, previous mechanistic

studies have shown that JUNB overexpression regulates the

mitochondrial apoptosis pathway, mediating resistance to FasL

and TRAIL-induced cell death, and thus tumor resistance to
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1470449
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhang et al. 10.3389/fimmu.2024.1470449
immunotherapy (77). This study of ours provides a theoretical basis

for subsequent analysis of drug sensitivity and provides new

insights into the development of innovative targeted therapeutics.

To explore the interactions involving the C1 SRSF7+ mast cell

subtype and other cell types, we employed CellChat communication

pattern analysis. This approach helped reveal coordinated responses

and interactions between different cell types in the context of their

communication pathways. Different cell types can simultaneously

activate common cell type-independent signaling pathways or

different cell type-specific signaling transduction transduction

pathways (77). Through CellChat analysis, we established the

intercellular communication network between most cells,

including tumor cells, fibroblasts, T-NK cells, and various

subtypes of MCs, etc., as a way to characterize the relationship

between the subtype of C1 SRSF7+ MCs and other cell types, and at

the same time, we identified the three modes of outgoing, incoming

and their corresponding signaling pathway expression. The C1

SRSF7+ MCs subtype belongs to mode 1 in the outgoing

pathway, and its communication molecules, i.e., ligands, include

ANNEXIN, PARs, CSF, ICAM, etc.; and it belongs to mode 2 in the

incoming pathway, and its communication molecules, i.e.,

receptors, include BAFF, CLEC, ALCAM, SELPG, etc. It is also

worth noting that tumor cells, which can be learned after our careful

observation, belong to mode 2 on the outgoing and mode 1 on the

incoming, echoing the subtype of C1 SRSF7+ MCs, which drew

our attention.

By targeting tumor cells and the C1 SRSF7+ MCs subtype for

interactions analysis, we have identified the secretion of AREG

ligands by a subtype of C1 SRSF7+ MCs in the EGF signaling

pathway that act on the protein receptor EGFR on the membrane of

the tumor cells. In previous studies, the EGFR family has been

validated to play a key role in EGFR signaling through the activation

of many important cellular processes, including cell division,

growth, and differentiation. Playing a key role in mediating cell

growth factor signaling (78), overexpression of EGFR signaling

widely promotes tumor progression and leads to promotion of

proliferation and inhibition of apoptosis (79). And cancer

immunotherapies, particularly immune checkpoint blockade

(ICB), have transformed oncology care over the past decade and

significantly improved survival in a wide range of metastatic

tumors. Based on significant treatment benefits, ICB therapy is

approved by the FDA as monotherapy or in combination with other

cancer therapies for cancers such as melanoma, breast cancer, renal

cell carcinoma, head and neck squamous cell carcinoma, and lung

cancer (80–84). However, the MCs-mediated pro-tumor axis

AREG-EGFR in EC has not yet been mentioned. Therefore, our

study provides new EC target therapeutic approaches and provides

a scientific basis for the treatment and prognosis of EC. Meanwhile,

to further investigate the role of EGFR in EC, we performed in vitro

experiments using TE-10 and KYSE-30 cell lines. We observed that

EGFR knockdown inhibited tumor cell activity, migration and

proliferation, thereby suppressing tumor growth. However,

previous studies have shown that epidermal growth factor

receptor inhibitors (EGFRIs) produce a variety of dermatologic
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side effects in the majority of patients, and this targeted therapeutic

regimen needs to be further refined (85).

Given their role in promoting tumor growth and immune

evasion, mast cells are considered potential therapeutic targets.

Contemporary therapeutic strategies may include the use of mast

cell stabilizers, mast cell mediator inhibitors, or blocking mast cell

recruitment to tumor tissues and organs.

Finally, we constructed a prognostic model to indicate that the

higher the SMRS score, the worse the prognosis.

Our study will direct attention to MCs in the progression of

esophageal cancer, trigger attention to them, and promote

researchers’ understanding of the tumor microenvironment in

esophageal cancer. At the same time, we discovered the

communication pathway between the tumor and our target MCs

subtype. Although EFGR antagonists are still proved to have certain

side effects, we believe that the development of targeted therapy will

be further advanced in the future. However, this study still has some

limitations. The relatively small sample size chosen is one aspect,

and secondly, we only performed transcriptomics studies and in

vitro experiments. The analysis of mast cell in EC using SCENIC

and AUCell in our article is well-founded though and provides a

detailed understanding of the regulatory networks that drive mast

cell behavior. However, to draw more reliable conclusions, these

findings must be validated by further experiments and compared

across different cancer types. Next, we will integrate in vivo and in

vitro experiments to provide a more comprehensive validation.

In conclusion, the innovative features of our study lie in the use of

high-resolution single-cell analysis technology, the construction of cell-

cell interaction networks, the analysis of dynamic evolutionary

trajectories, the identification of regulatory networks, and experimental

verification, which provide new ideas for the targeted treatment of MCs

in EC and new cell carriers for the development of EGFR targeted drugs.

These will help to promote the in-depth development of the research on

EC and provide new strategies for the disease.
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