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Polycystic ovary syndrome (PCOS) is a prevalent endocrine and metabolic

disorder affecting 6-20% of women of childbearing age worldwide. Immune

cell imbalance and dysregulation of inflammatory factors can lead to systematic

low-grade chronic inflammation (SLCI), which plays a pivotal role in the

pathogenesis of PCOS. A significant higher infiltration of immune cells such as

macrophages and lymphocytes and pro-inflammatory factors IL-6 and TNF-a
has been detected in PCOS organ systems, impacting not only the female

reproductive system but also other organs such as the cardiovascular,

intestine, liver, thyroid, brain and other organs. Obesity, insulin resistance (IR),

steroid hormones imbalance and intestinal microecological imbalance,

deficiencies in vitamin D and selenium, as well as hyperhomocysteinemia

(HHcy) can induce systematic imbalance between pro-inflammatory and anti-

inflammatory cells andmolecules. The pro-inflammatory cells and cytokines also

interact with obesity, steroid hormones imbalance and IR, leading to increased

metabolic imbalance and reproductive-endocrine dysfunction in PCOS patients.

This review aims to summarize the dysregulation of immune response in PCOS

organ system and the intrinsic mechanisms affecting SLCI in PCOS to provide

new insights for the systemic inflammatory treatment of PCOS in the future.
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1 Introduction

Polycystic ovary syndrome (PCOS) is a prevalent reproductive

endocrine and metabolic disorder affecting 6-20% of women of

reproductive age globally (1). It is usually characterized by

hyperandrogenism (HA), anovulation or oligo-ovulation, and

polycystic ovary morphology (PCOM) (2). The detrimental effects

of PCOS on fertility and long-term health in women have garnered

considerable attention in the field of reproductive medicine.

However, the etiology of PCOS remains unclear. Accumulating

evidences suggested that PCOS might be a complex multigenic

disorder, influenced by epigenetic and environmental factors,

including lifestyle choices such as diet, exercise, rest, tobacco and

alcohol consumption, psychological stress, and exposure to various

pollutants like environmental endocrine disruptors (3, 4). In addition

to insulin resistance(IR) and compensatory hyperinsulinemia, PCOS

patients experience an elevated risk for various metabolic disorders

and malignancies in the long term (5, 6). Disruptions in common

regulatory mechanisms between substance-energy metabolism and

reproduction may contribute to concurrent metabolic and

reproductive disorders, which aligns with the evolutionary

understanding of the disorder (7).

Systematic low-grade chronic inflammation (SLCI) plays a

pivotal role in the pathogenesis of various chronic disorders,

including PCOS. An imbalance between immune cells and

inflammatory cytokines is evident in the serum, ovaries and

organs of PCOS patients (8). The interplay between inflammatory

state and obesity, HA and IR, leads to increased metabolic

imbalance and reproductive-endocrine dysfunction in PCOS

patients (9). Furthermore, SLCI contributes to PCOS-related

compl icat ions of mult i-organ dysfunct ion, including

cardiovascular diseases (CVDs), non-alcoholic fatty liver disease

(NAFLD), and depression (10–12). Therefore, a comprehensive

understanding of SLCI in PCOS is crucial for effective prevention

and management strategies.

This review elucidates the critical role of SLCI in the

development of PCOS by analyzing the systemic mechanisms of

chronic inflammation in PCOS from a novel perspective on the

disruption of the balance between pro-inflammatory and anti-

inflammatory factors. This review aims to deepen our

understandings and provide new insights into the pathogenesis

and treatment of PCOS (Figure 1).
2 SLCI in PCOS

SLCI in PCOS patients plays a crucial role in disease

progression (9). Compared with age-matched healthy women

(controls), PCOS patients exhibited significantly increased

amounts of immune cells, such as lymphocytes, neutrophils,

monocytes, macrophages, and eosinophilic granulocytes in the

peripheral blood (13–17). Additionally, elevated levels of

inflammatory factors, such as high sensitive C-reactive protein

(hs-CRP), interleukin-18 (IL-18), tumor necrosis factor a (TNF-

a), interleukin-6 (IL-6), monocyte chemoattractant protein-1

(MCP-1), and macrophage inflammatory protein-1a (MIP-1a),
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are detected in the peripheral blood of PCOS patients (9, 18),

indicating the presence of SLCI (Table 1). A significantly higher

infiltration of immune cells, such as macrophages and lymphocytes,

were detected in the ovaries of PCOS patients. Macrophages and

immature dendritic cells (iDCs) were elevated in the endometrial

tissue, and macrophages were also identified in the hearts of PCOS

mice. Macrophages, neutrophils, mast cells, B cells, T cells, NKT

cells infiltrate the adipose tissue. Additionally, inflammatory factors

such as TNF-a , IL-6, CRP, IL-12, IFN-g , and NLRP3

inflammasome were elevated in various tissues, including those in

the ovaries and follicular fluid (FF), adipose tissue, endometrium,

intestine and liver (8, 15, 17, 33). Excessive secretion of

inflammatory factors TNF-a and IL-6 by immune cells activates

the inflammatory signaling pathways, leading to cell damage and

fibrosis within interstitial cells, ultimately causing dysfunction in

these organs systems. Chronic immune response dysregulation

contributes to PCOS-related immune dysregulation in the female

reproductive system, cardiovascular system, cardiovascular,

digestive, and endocrine systems (8). Correlation analysis

indicated that increased serum inflammatory cytokine levels were

strongly related to the severity of obesity, IR, ovulation disorder,

and HA in PCOS patients (9, 34, 35). Taken together, the systematic

imbalance between pro-inflammatory and anti-inflammatory

factors in PCOS patients gives rise to the PCOS phenotypes. The

pivotal role of the chronic inflammation in these organs systems

and the intrinsic mechanisms of PCOS have been elaborated in the

subsequent sections (Figure 2).
2.1 Reproductive system inflammation
in PCOS

2.1.1 Ovary
SLCI contributes to defects in oocyte quality, leading to

ovulatory infertility, and accelerating the decline in ovarian

reserve (35). Increased inflammatory response has been observed

in the ovarian tissues of both PCOS patients and PCOS-like rodent

models (15). Histological analysis comparing ovarian samples from

of 53 PCOS patients and 48 healthy controls revealed a higher

infiltration of macrophages and lymphocytes in PCOS patients.

These cells secrete excessive amounts of pro-inflammatory

cytokines such as TNF-a and IL-6 (9). Furthermore,

inflammatory mediators such as IL-18, IL-18-binding protein (IL-

18BP), pentraxin3 (PTX3), IL-1b, chemerin, hs-CRP, IFN-g, and
TNF-a were elevated in the FF from PCOS patients undergoing in

vitro fertilization and embryo transfer (IVF-ET) treatment,

reflecting the local function and pathological state within the

PCOS ovaries (9, 36, 37). Macrophages and lymphocytes

infiltration have also been detected in PCOS-like mice (38).

PCOS-like rodent models exhibited increased levels of TNF-a,
IFN-g, NLRP3 and caspase-1within the ovaries (38, 39). These

immune perturbations contribute to reduced fertility and metabolic

comorbidities in PCOS-like models and PCOS patients. However,

PCOS-like models may not fully replicate the complexity of PCOS

in humans, particularly in terms of inflammatory markers and their

expression levels. In PCOS patients, inflammation is influenced by
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factors such as obesity and IR which may not be identically

represented in animal models of PCOS.

Pro-inflammatory TNF-a, primarily secreted by macrophages,

was significantly increased in the ovaries and FF of PCOS patients

(40, 41). TNF-a and its receptor TNFRI (TNF-a receptor 1) are

expressed in mammalian oocytes and surrounding granulosa cells

(GCs), indicating a direct impact of TNF-a on cells involved in

reproductive function (42–44). In vitro experiments demonstrated

that TNF-a can directly induce apoptosis of primary rat GCs after

24h of incubation in serum-free medium 24 (45). Furthermore, in

vivo treatment with TNF‐a inhibits steroidogenesis of the thecal

cells and GCs, leading to regression of the corpus luteal (21).

Another pro-inflammatory cytokine IL-6, which is produced by

mononuclear (MNC) cells and adipose tissue cells. The levels of IL‐

6 in the peripheral blood, ovaries, and FF in PCOS patients were

higher than those in healthy control women (15, 46). IL-6 may serve

as an early low-grade chronic inflammatory marker in PCOS

patients with IRS-2 polymorphism (47). Higher IL-6 levels in the

peripheral blood of both lean and obese women with PCOS were
Frontiers in Immunology
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significantly associated with homeostasis model assessment of

insulin resistance (HOMA2-IR) ratio and total testosterone ratios

(48). Increased IL-6 levels in the ovary can reduce the conversion of

androstenedione to estradiol by inhibiting the aromatase activity of

GCs, leading to excessive androgen production (19, 49).

Inflammatory cytokines IL-1b and IL-18 present in the ovarian

t issue and FF in PCOS pat ients a l ter the fol l icular

microenvironment by binding to receptors like IL-1R and TLR4

on the GCs, activating NF-kB, which subsequently translocates into

the nucleus (50). Activated NF-kB promotes gene expression of key

components of the NLRP3 inflammasome, such as NLRP3, ASC

and caspase-1, resulting in the death of GCs and inhibition of

oocyte maturation, eventually disrupting ovarian function (50).

These results suggested that the increased pro-inflammatory

profile in the ovary and FF mediates apoptosis of GCs, leading to

excessive follicle atresia. This stimulates the production of excessive

testosterone by thecal cells, disrupting the hypothalamic-pituitary-

ovarian (HPO) axis, ultimately affecting dominant follicle generation,

follicular dysfunction, and ovarian interstitial cell fibrosis (51, 52).
FIGURE 1

Immune dysfunction in PCOS and the intrinsic mechanisms influencing SLCI in PCOS. Immune dysfunction in PCOS affects not only the female
reproductive system but also other organ systems, including the cardiovascular, intestinal, hepatic, thyroid, pancreatic, adrenal gland,brain and other
organs. Obesity, IR, hyperandrogenism, and intestinal microecological imbalance, and hyperhomocysteinemia induce the secretion of systematic
pro-inflammatory cells and cytokines. Conversely, deficiencies in progesterone, vitamin D, and selenium have the exert opposite effects.
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2.1.2 Uterus
Successful pregnancy, encompassing embryo adhesion,

implantation, growth, invasion of trophocytes, and formation and

functional maintenance of the placenta, requires precise regulation

of immune cells and inflammatory factors at the maternal-fetal

interface to establish immune tolerance (53). This immune and
Frontiers in Immunology 04
inflammatory regulation in the endometrial tissue, also known as

endometrial receptivity (ER), refers to the compatible state between

the embryo and maternal uterus (54, 55). Reduced ER contributes

significantly to early pregnancy loss, often resulting from

dysregulation of immune and inflammatory responses in the

endometrial tissue observed in women with autoimmune diseases
TABLE 1 Inflammatory markers which are the most predictive in the serum of PCOS patients.

Inflammatory
markers

Years Study Tendency Role References

IL-6 2020 Review Increase The increase of IL-6 in the ovary can reduce the conversion of
androstenedione to estradiol by inhibiting the aromatase activity of
granulosa cells (GCs), leading to excessive androgen production

(19)

CRP 2019 Editorial Increase The levels of CRP in PCOS patients are significantly higher, regardless
of whether they have a low body mass index (BMI) or are obese. This
suggests that CRP may be a marker for identifying the risk of future
cardiovascular diseases (CVDs) in young women with PCOS.

(20)

TNF-a 1997 Review Increase TNF‐a inhibits steroidogenesis of the thecal cells and GCs leading to
regression of corpus luteal

(21)

IL-18 2004 Clinical study Increase The serum levels of IL-18 in the PCOS group were significantly higher.
Furthermore, PCOS patients with insulin resistance (IR) and obesity
had higher serum IL-18 levels, suggesting that IR and obesity may
accelerate the increase in serum IL-18 levels. The study also found that
IL-18 was positively correlated with BMI, IR, and testosterone (T).

(22)

WBC 2015 Clinical study Increase PCOS patients had significantly higher WBC counts, which were
positively correlated with BMI, total T, insulin, triglyceride (TG),
homeostasis model assessment (HOMA) scores, free androgen index
(FAI), and sex hormone-binding globulin(SHBG), and negatively
correlated with high-density lipoprotein(HDL). Multiple regression
analysis showed that BMI, SHBG, and TG were the main predictive
factors for WBC in PCOS.

(23)

IL-15 2022 Research and
clinical study

Increase IL-15 is involved in the pathogenesis of PCOS potentially by affecting
survival, the inflammation state and steroidogenesis of GCs.

(24)

IL-17a 2020 Clinical study Increase The levels of IL-17a are significantly higher in PCOS patients. Its
original negative correlation with anti-Müllerian hormone (AMH)
levels is altered, thereby weakening glycolipid metabolism and
promoting IR

(25)

IL-1Ra 2017 Clinical study Increase PCOS patients have significantly higher levels of IL-1Ra, which may
reduce IR and glucose metabolism, leading to obesity and
metabolic syndrome.

(26)

NLR 2022 Systematic review
and meta-analysis

Increase PCOS have a significantly increased NIR, which was significantly
positively associated with fasting blood glucose and total cholesterol
levels in PCOS

(27)

MPV 2022 Systematic review
and meta-analysis

Increase PCOS have a significantly increased MPV than women without PCOS,
which is probably associated with IR

(28)

IL-22 2023 Review Decrease IL-22 has been shown to be therapeutically effective in immunological
dysfunction and metabolic diseases, which suggests a role in the
treatment of PCOS

(29)

AGEs 2005 Clinical study Increase A positive correlation was also observed between AGE proteins and
the free androgen index (FAI), waist-to-hip ratio (WHR),
insulin, HOMA

(30)

MCP-1 2021 Meta-analysis Increase It revealed that the circulating levels of MCP-1 are upregulated in
women with PCOS and are associated with an increased risk of PCOS

(31)

CRP/albumin 2024 Clinical study Increase The CRP/albumin ratio was found to be significantly higher in women
with PCOS as compared to healthy controls along with serum total
testosterone and HOMA-IR

(32)
IL-interleukin, CRP-C-reactive, TNF-a-tumor necrosis factor a, WBC-White Blood Cell Count, IL-1Ra-interleukin-1 receptor antagonist, NLR-Neutrophil-to-lymphocyte ratio, MPV-mean
platelet volume, AGEs-Advanced Glycation End-Products, INF-INF-gamma, MCP-1-monocyte chemoattractant protein-1, MIP-1a-macrophage inflammatory protein-1a, CRP/albumin-CRP
albumin ratio.
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(AID) or antiphospholipid syndrome (APS). Notably, the

prevalence of recurrent miscarriages during early pregnancy due

to an abnormal ER is higher in PCOS patients (56).

Immunohistochemical analysis of endometrial tissues from

PCOS patients revealed an increase in the presence of

endometrial inflammatory cells, including macrophages, iDCs,

mature dendritic cells (mDCs), and CD8+ T cells (33), indicating

increased chronic inflammation in the endometrial tissues.

Additionally, PCOS endometrial stromal fibroblasts produce

higher levels of IL-6, IL-8, MCP-1, and granulocyte-macrophage

colony-stimulating factor (GM-CSF), which facilitate the

maturation of endometrial DCs and macrophages, subsequently

leading to progesterone resistance in the endometrium and

impairing endometrial decidualization (57).

The NLRP3 inflammasome, which plays a crucial role in the

processing of pro-IL-1b and pro-IL-18 into their mature forms

through caspase-1, has been significantly increased in the

endometrium of women with recurrent miscarriage (58), suggesting

a potential dysregulation of ER mediated through inflammasome

function. Therefore, NLRP3 may serve as a novel biomarker of ER

dysfunction. As expected, increased expression of NLRP3 in the

endometrial tissue has been implicated in the pathogenesis of higher

miscarriage rates in PCOS patients (18, 59). In contrast, stanniocalcin-

1 (STC-1), a glycoprotein, known for its ability to mitigate

inflammatory stress is reduced in the endometrium of PCOS

patients (60). This diminished expression of STC-1 may contribute

to a weakened protective response to inflammatory stress (61). These

findings suggested that the decrease in ER observed in PCOS is due to

an imbalance between pro-inflammatory and anti-inflammatory cells

and factors.
Frontiers in Immunology 05
In addition to decreased ER, which contributes to adverse

pregnancy outcomes, the chronic inflammation may also be

associated with an increased long-term risk of endometrial

carcinogenesis in PCOS patients. Simultaneously, the expression

of both inflammation-related genes (CCL-2, IL-6, TNF-a, induced
protein 6 [TNFAIP6] and pro-oncogenic genes (cell adhesion

molecule with homology to L1CAM [CHL1]) is upregulated in

the endometrium of PCOS patients than in controls (62). These

findings highlight the importance of understanding and addressing

the immunological and inflammatory aspects of PCOS to improve

pregnancy outcomes and reduce long-term health risks for patients.
2.2 Other endocrine glands inflammation
in PCOS

2.2.1 Thyroid gland
Autoimmune thyroid disease (AITD) is a common

autoimmune disorder. PCOS and AITD share several clinical

symptoms, including menstrual irregularities, infertility, obesity,

IR, and dyslipidemia (63, 64).Therefore, screening for thyroid

function and thyroid-specific autoantibodies is often

recommended in the clinical diagnosis of PCOS. Furthermore,

PCOS and AITD exhibit a strong clinical association. The

prevalence of AITD in PCOS patients was significantly higher

than that in the non-PCOS patients (65–68). Additionally, levels

of thyroid-related autoantibodies, such as anti-TSH, anti-TPO, and

anti-Tg, as well as T- and B-cell infiltration into the thyroid gland

were higher in PCOS patients than controls (69–71). The elevated

androgen levels in PCOS patients may contribute to AITD.
FIGURE 2

In women with PCOS, there is a discernible imbalance in the inflammatory cells and cytokines in the peripheral blood, FF, ovaries, and adipose
tissue. Inflammatory mediators interact with factors such as obesity, IR, hyperandrogenism, and intestinal microecological imbalances. This interplay
may exaggerate the pathophysiological features of PCOS. In adipose tissues, peripheral blood, ovary/follicle fluid of PCOS, immune cells such as T
cells, B cells, and neutrophils are activated, leading to the secretion of inflammation cytokines such as TNF-a, MCP-1, IL-17, IL-23 and IL-18.
Subsequently, this inflammatory milieu may induce apoptosis in the ovarian GCs and impair oocyte maturation, contributing to the reproductive
dysfunctions observed in PCOS.
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Excessive androgens enhance the activity of T suppressor cells or

promote Th1 responses, and Th1-mediated autoimmunity,

resulting in thyroid cytolysis and hypothyroidism (68).

Furthermore, PCOS patients exhibit compensatory increases in

estrogen levels and inadequate progesterone levels. Estrogen may

upregulate IL-6 expression in T cells, whereas inadequate of

progesterone suppression potentially results in immune system

overactivation (72). These findings indicates that the disruption of

steroid hormones in PCOS patients contributes to inflammation

dysregulation in the thyroid gland, leading to thyroid dysfunction.

In summary, the clinical overlap between PCOS and AITD, along

with the evidence of immune system dysregulation and thyroid

dysfunction in PCOS patients, underscores the importance of

considering thyroid health in the management of PCOS.

2.2.2 Pancreas
Pancreatic b-cell dysfunction is prevalent in PCOS patients,

which significantly contributes to their abnormal glucose tolerance

and the long-term risk of developing type II diabetes mellitus

(T2DM) (73, 74). Malin et al. reported a direct relationship

between b-cell dysfunction in PCOS patients and the MNC-

derived NF-kB activation as well as an inverse correlation with

IkB expression, indicating impaired inflammation regulation in the

pancreas of PCOS patients (75). Conversely, nanocurcumin, a

potential anti-inflammatory agent, significantly reduced oxidative

markers and TNF-a levels in the pancreas, alleviated IR, restored

islets integrity in PCOS models (75–77). Additionally, medications

such as saxagliptin and metformin have demonstrated effectiveness

in regulating b-cell function by reducing inflammation in newly

diagnosed T2DM patients with PCOS (74).These findings suggest

that the crucial role of pancreatic inflammation and b-cell
dysfunction in PCOS-related metabolic complications and

highlight the need for targeted interventions that can improve b-
cell function and reduce inflammation.

2.2.3 Adrenal gland
Adrenal immune damage has recently been identified in

patients with PCOS, coinciding with the overproduction of

adrenal androgens(AA) (78, 79). Dehydroepiandrosterone

(DHEA) and its sulfated form, dehydroepiandrosterone sulfate

(DHEA-S), are the predominant AA in PCOS patients. DHEA

synthesized in the adrenal gland is converted into DHEA-S and

released into the bloodstream. Circulating DHEA-S levels has been

used as a maker of adrenocortical dysfunction in PCOS (79). DHEA

plays a role in maintaining ovarian immune homeostasis by

modulating the balance between Th1 and Th2 immune responses

within the ovary through NF-kB regulation, which decreases IL-2

and IL-10 (80). DHEA-S exerts immunomodulatory effects,

reducing the T cell population with a concurrent increase in NK

and T cells. These findings suggest a potential association between

AA and immunological response in PCOS.

However, a retrospective cohort study identified a previously

unrecognized infertile PCOS-like phenotype characterized by

elevated levels of anti-Müllerian hormone (AMH) and low total

testosterone, DHEA-S, and cortisol. Notably, this phenotype is also
Frontiers in Immunology 06
associated with increased levels of thyroid autoimmunity markers,

such as thyroid autoimmunity (TPO antibodies) and the

inflammatory markers CRP and IL-6. Therefore, this hypo-

androgenic PCOS phenotype (HH-PCOS) may be related to the

autoimmune damage in the adrenal zona reticularis (81, 82).

However, further research is needed to confirm chronic

inflammation in the adrenal glands and its potential effects on

endocrine function in PCOS patients. These findings revealed a

complex interplay between AA overproduction and immune

dysfunction with adrenal gland in PCOS, Additionally, they

indicate that infertile PCOS-like phenotype may be an

immunoinflammatory disorder associated. This underscores the

importance of reducing the AA levels and inflammation to

ameliorate HH-PCOS.

2.2.4 Hypothalamus
Inflammatory markers, including IL-1b, IL-6, and TNF-a,

were significantly upregulated within the hypothalamus of

PCOS-like rats, indicating the presence of chronic low-grade

neuroinflammation (83, 84). Hypothalamic inflammation

contributes to the occurrence and progression of numerous

metabolic disorders in PCOS, including obesity, diabetes,

hypertension, and dyslipidemia, by affecting food intake

homeostasis, energy balance, insulin and leptin signaling, glucose

metabolism and fatty acid oxidation in the liver (85). High-fat diet

(HFD)-induced overactivation and/or excessive M1-type

macrophages-microglia, which is characterized by a pro-

inflammatory response in the central nervous system. This M1-

polarized microglia induce an inflammatory response and release a

large number of inflammatory factors, such as nitric oxide, IL-6,

TNF-a, and reactive oxygen species (ROS), which are key drivers of

hypothalamic inflammation (86–89). Furthermore, hypothalamic

inflammation alters the pulsatile secretion pattern of gonadotropin-

releasing hormone (GnRH), resulting in an increase in luteinizing

hormone (LH)/follicle stimulating hormone (FSH) ratios and

leading to irregular menstrual cycles and ovulatory disorders (90).

These findings highlight the strong association between

hypothalamic inflammation and the etiology and phenotype of

PCOS, suggesting that targeting hypothalamic inflammation could

be a potential therapeutic strategy (91).
2.3 Inflammation of non-endocrine organs
in PCOS

2.3.1 Cardiovascular system
The risk of CVDs is higher in PCOS patients (92–94). Vascular

alterations, such as endothelial dysfunction, increased arterial stiffness,

enhanced intima-media thickness, and arterial wall calcification, are

prevalent even in young women with PCOS (94–96). Furthermore,

vascular endothelial injury and endothelial cell dysfunction in PCOS

patients are independent of age, body weight, and metabolic

abnormalities, suggesting that PCOS may be an independent risk

factor for CVDs and could lead to an earlier onset of CVDs despite the

presence of metabolic disorders (97, 98).The current consensus is that
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chronic inflammation of the vascular endothelium and the resulting

endothelial dysfunction are fundamental to the pathogenesis of CVDs

(99, 100). Additionally, pro-inflammatory factors such as CRP, IL-6

and IL-18, which are closely associated with the incidence of CVDs,

are also elevated in the plasma of women with PCOS patients (18).

The critical role of macrophages in the pathogenesis of CVDs in

PCOS has been recently reported, with a substantial augmentation in

the number of M1-macrophages in the hearts of PCOS model mice,

predominantly derived from circulating monocytes (10). Furthermore,

PCOS mice with atherosclerosis and myocardial infarction exhibited a

pronounced infiltration of macrophages into the myocardium (10).

The adverse cardiovascular effects of PCOS could be attributed to the

over-activation of the norepinephrine-NF-kB pro-inflammatory

signaling pathway, contributing to increased expression of a

hematopoietic progenitor retention factor, vascular cell adhesion

molecule 1(Vcam1), in splenic macrophages, subsequently resulting

in increased circulating total monocytes and inflammatory monocytes.

These findings indicate that the accumulation of macrophages in the

heart contributes to endothelial dysfunction, emphasizing the need to

address chronic inflammatory state in PCOS patients for effective

management of their cardiovascular health (10).

2.3.2 Liver
The prevalence of NAFLD is higher in PCOS patients than in

healthy women (34%–70% vs. 14%–34%) (101, 102). IR, obesity,

HA, chronic inflammation, genetic factors and dyslipidemia are risk

factors for NAFLD development in PCOS patients (103–105).

Interestingly, HA in PCOS is an independent risk factor for

NAFLD, as demonstrated in a recent systematic review and meta-

analysis (101, 106). Bioinformatics data identified 52 differentially

expressed genes (DEGs) shared between PCOS and NAFLD. Gene

ontology (GO) and Kyoto Encyclopedia of Genes and Genomes

(KEGG) pathway enrichment analyses suggested that these DEGs

were mostly enriched in immunity- and inflammation-related

pathways (107). NAFLD-like hepatic pathological changes such as

steatosis, inflammatory cell infiltration, necrotic hepatocytes, and

liver fibrosis, accompanied by increased expression of inflammatory

cytokines (TNF-a, IL-1b), stress-related protein urocortin-1,

antioxidant gene glutathione peroxidase-1 (Gpx1), and the

NLRP3 inflammasome within the hepatic tissues, have been

observed in several rodent models of PCOS (108–111). Over-

production of these pro-inflammatory mediators in the liver of

individuals with PCOS leads to the infiltration of various immune

cells, including macrophages, T lymphocytes, dendritic cells, and

neutrophils (11). These cells further release additional

inflammatory cytokines that interact with adipokines, such as

leptin, adiponectin, vaspin, visfatin, and chimerin. This

exacerbates the imbalance between the pro-inflammatory and

anti-inflammatory states within the liver, ultimately contributing

to the development of the NAFLD in PCOS (12).

2.3.3 Lung
The association between PCOS and inflammatory diseases of the

lung has not been extensively investigated. Recent studies on the

association between PCOS and coronavirus-induced disease 19
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(COVID-19) have provided valuable insights. COVID-19 is

characterized by an excess of pulmonary inflammatory cells such as

macrophages, neutrophils, and dendritic cells and elevated levels of

inflammatory factors, including IL-2, IL-7, IL-10, G-CSF, IP-10, MCP-

1, MIP1A, and TNF-a. Overproduction of these factors can ultimately

lead to damage and death of alveolar epithelial cells, potentially leading

to respiratory failure and death (112). PCOS patients are more

susceptible to infection by severe acute respiratory syndrome

coronavirus 2(SARS-CoV-2) and exhibit more severe clinical

symptoms than those of control women without PCOS (113).

PCOS patients exhibit higher infection rates (28%–50%) across all

age groups, leading to increased hospitalization rates and morbidity

and mortality rates than those of age-matched women without PCOS.

HA may be a factor in the increased susceptibility to SARS-CoV-2 in

PCOS in individuals with PCOS (114). In dihydrotestosterone (DHT)-

induced PCOS-like female mice, DHT up-regulates ACE2 mRNA in

the lung, cecum, heart and kidney, which synergizes with host

transmembrane protease serine 2 (TMPRSS2) to facilitate SARS-

CoV-2 viral entry into the host cells (115). These findings suggest

that PCOS patients, particularly those with HA, are more susceptible

to COVID-19, which leads to increased pulmonary inflammation and

damage in the lung tissues, ultimately contributing to an increased

mortality rate.

2.3.4 Brain
Approximately 5%-10% of reproductive-age women without

PCOS worldwide experience depression and anxiety, and 40% of

women with PCOS suffer from depression (1, 116). Psychiatric

disorders, including generalized depressive disorder, are

inflammatory conditions characterized by elevated levels of

inflammatory markers (117–119). Inflammatory markers such as

CRP, IL-1, IL-6 and TNF-a elevated both in patients with

depression and PCOS (120, 121). Inflammatory factors may

penetrate the blood-brain barrier (BBB) via cytokine-specific

transport mechanisms, potentially involving the active transport

of saturable transporter molecules (122, 123). Subsequently,

increased inflammatory factors can disrupt the metabolism of

brain monoamines such as neuronal 5-hydroxytryptamine (5HT)

and dopamine (DA), which are hypothesized to contribute to the

pathogenesis of depressive disorders (124–126). Nevertheless,

experimental animal studies to elucidate the mechanisms by

which inflammatory mediators induce depressive disorders in

PCOS are lacking. The complex relationship between PCOS and

psychiatric disorders, particularly depression and anxiety,

underscores the need for further research to better understand

and address these comorbidities.
3 Intrinsic mechanisms affecting SLCI
in PCOS

3.1 Obesity and IR in PCOS

The clinical comorbidities associated with metabolic disorders

in PCOS include obesity and IR. Approximately 52%-64% of
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women with PCOS are either overweight or obese, which is an

independent risk factor for IR in PCOS. Additionally,

approximately 30% of PCOS patients with a normal body mass

index (BMI) also show abdominal obesity, marked by an excessive

accumulation of visceral fat (127, 128). Obesity also contributes to

ovarian inflammation, steroidogenesis, and ovulation (129).

Visceral obesity in PCOS patients primarily contributes to

systemic inflammation throughout the body. The infiltration of

immune cells such as macrophages, neutrophils, mast cells, B cells,

T cells, NKT cells within the adipose tissue, coupled with the

overproduction of inflammatory mediators and adipokines (e.g.,

leptin and lipocalin), adipocyte-derived MCP-1 and hypertrophy of

visceral adipocytes, leads to hypoxia, autophagy, and apoptosis (17,

130). Additionally, hypoxia adipocytes can activate the c-Jun N-

terminal kinase (JNK) and NF-kB pathways, resulting in the

synthesis and secretion of pro-inflammatory factors such as IL-6,

TNF-a, IL-1b, IL-12, and IFN-g, which induce a SLCI state in

adipose tissue (131, 132). Specifically, adipose tissue-resident

macrophages exacerbate IR by elevating the levels of TNF-a,
which in turn increase the phosphorylation of insulin receptors

substrate-1 (IRS-I) (phospho-IRS-I). This event, through the

phosphatidylinositol 3-kinase (PI3K) pathway, which inhibits the

activation of protein kinase B (PKB), a pivotal enzyme regulating

the insulin-sensitive glucose transporter type 4 (GLUT-4),

ultimately resulting in IR (133, 134). These additional release

mediators released into the circulation can induce inflammatory

responses in extra-adipose tissues, including the ovaries and peri-

ovarian adipose tissues (129, 135).

IR is present in 50%-70% of PCOS patients, and high insulin

levels in the FF potentially directly stimulate the LH receptors on

thecal cells, increasing their sensitivity to LH or reducing the hepatic

production of sex hormone binding globulin (SHBG). Elevated free

testosterone levels lead to impaired follicle development in PCOS

patients (136). In PCOS patients with IR, the underlying mechanisms

involves a dysfunction of the PI3K pathway, whereas the MAPK

pathway remains functional (137–139). Impaired mitochondrial

function due to the downregulation of nuclear-encoded genes

involved in oxidative phosphorylation increases ROS production,

which in turn phosphorylates the serine residues of insulin receptors

and IRSs, thereby resulting in SLCI and a reduction in IR.

Consequently, these processes synergistically contribute to the

exacerbation of SLCI in PCOS.

Obesity and IR can exacerbate the SLCI in PCOS. A causal

relationship between obesity, IR, and increased pro-inflammatory

activity within adipose tissue. In summary, the molecular

mechanisms associated with obesity and IR play a pivotal role in

the development of the SLCI in PCOS (140).
3.2 Imbalance of the sex hormones
in PCOS

3.2.1 Androgen
The primary etiology and symptoms of PCOS are predominantly

associated with the dysregulation of steroid hormones, particularly
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elevated levels of androgen and decreased progesterone levels linked to

luteal phase deficiency. Both androgens and progesterone play crucial

roles in the inflammation response. As a pro-inflammatory steroid

hormone, HA induces SLCI in the ovaries by stimulating monocyte

infiltration, enhancing ROS production, and activating the NF-kB
pathway, which contributes to metabolic disorders in PCOS patients

(141). Additionally, HA promotes the secretion of and pro-

inflammatory factors, subsequently suppressing folliculogenesis and

ovulation, resulting in a cascade of events including pyroptotic death of

ovarian GCs, follicular dysfunction, and ovarian interstitial cell fibrosis

(15, 142). Increased endometrial cytokine synthesis and inflammation

in PCOS patients induced by excess androgens through TLR4/IRF-7/

NF-kB signaling contributes to inflammation in PCOS patients (143).

Higher serum total testosterone and free testosterone index (FTI) were

also found to be linked to an elevated risk of NAFLD in women with

PCOS, independent of obesity and IR (106, 144, 145). HA induces

ovarian inflammation in PCOS mice by activating the NLRP3

inflammasome, resulting in follicular dysfunction, ovarian fibrosis,

and pyroptotic death (146). In vitro studies have indicated that DHEA

directly inhibits the proliferation and promotes apoptosis of human

ovarian granulosa tumor cell line (KGN) cells by down-regulating

IFN-g expression via the activation of the PI3K/AKT signaling

pathway (147). DHEA administration directly activates the MNC

cells and increases heightened sensitivity to glucose intake. In lean,

healthy women, oral androgens increase mRNA expression of

androgen receptors (AR) and stimulate TNF-a release from MNC

in response to glucose-induced inflammation (148, 149).

3.2.2 Progesterone
Progesterone, a critical anti-inflammatory steroid hormone, has

recently been studied. Although the exact anti-inflammatory

mechanism of progesterone remains unclear, current evidence

suggests that its effects encompass both non-specific and specific

immune regulation. The non-specific regulation is hypothesized to

involve the inhibition of NF-kB activation, cyclooxygenase (COX) and

prostaglandin synthesis. On the other hand, specific immune

regulation is thought to include the modulation of T cell activation

and cytokine production by immune cells (150). Notably, a study

conducted on patients with COVID-19 demonstrated that

progesterone exhibited therapeutic effects that are comparable to

those of glucocorticoids in preventing severe illness and mortality

associated with SARS-Cov2 infection (151–153). Furthermore,

progesterone decreases the production of IL-1b, IL-6, TNF-a, and
IL-12, as well as MCP-1/CCL2, suggesting it as a valuable adjunct to

current SARS-CoV-2 treatment regimens (154). In PCOS patients,

oligo/anovulation leads to reduced progesterone levels, which may

result in inadequate inhibition of inflammation at the myometrium

and maternal-fetal interface (155–158). This deficiency is associated

with an increased risk of adverse pregnancy outcomes (159). Moreover,

progesterone enhances the release of gonadotropin-releasing hormone

(GnRH) and increases the sensitivity of the pituitary gland to GnRH,

thereby triggering an LH surge. This results in the normalization of

hyperandrogenemia and hyperinsulinemia levels, restore the

physiological balance between androgens, estradiol, and progesterone

within the menstrual cycle (160). Consequently, PCOS patients with
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progesterone deficiency may be at an increased risk of developing

multi-system diseases owing to elevated systemic inflammation.

3.2.3 Estrogen
Estrogen plays a dual role in regulating the immune system in

women. During pregnancy, elevated estrogen levels inhibit the

production of pro-inflammatory cytokines such as TNF-a, IL-1b,
IL-6, MCP-1, iNOS, and MMPs. Concurrently, it reduces NK cell

activity. Additionally, high concentrations of estradiol stimulate anti-

inflammatory cytokines such as IL-4, IL-10, and TGF-b. This
indicates that the sustained high levels of estrogen, in conjunction

with progesterone, during gestation, play a synergistic role in

suppressing the immune response and inflammation, which is

crucial for the preservation of normal fetal development (161). In

contrast, at the lower concentrations observed in non-pregnancy

states, estrogen stimulates the production of inflammatory cytokines

such as TNF-a, IFN-g, and IL-1b, while also enhancing the activity of
NK cells (161). Clinically, estrogen supplementation has shown anti-

inflammatory and protective effects under certain conditions

associated with chronic inflammation, such as osteoporosis, CVDs,

and neurodegeneration during menopausal hormone replacement

therapy (MHT) (162). Conversely, estrogen exerts pro-inflammatory

effects in specific autoimmune diseases (AIDs), including rheumatoid

arthritis (RA), systemic lupus erythematosus (SLE), highlighting

estrogen as a risk factor for the increased incidence of various

AIDs in women than in men (161, 163). PCOS patients may

exhibit a lower average estrogen level owing to the absence of the

fluctuations and peaks that typically occur during ovulation and the

luteal phase in non-PCOS women with regular ovulation. Although

estrogen levels can reach the pregnancy-like concentrations during

ovulation in healthy individuals, the oligo/anovulation characteristic

of PCOS leads to a deficiency in high estrogen levels, which may

predispose individuals to excessive inflammation. Further

investigations are necessary to clarify the potential role of estrogen

in the regulation of chronic systemic inflammation associated

with PCOS.
3.3 Intestinal microecological imbalance
in PCOS

The gastrointestinal tract (GI) is inhabited by trillions of

microorganisms, including bacteria, archaea, fungi, and viruses.

Collectively known as the gut microbiome, these microorganisms

interact with the external environment (such as nutrients), immune

system of the human intestinal barrier, metabolic intermediates,

and substances released from cells to establish the intestinal

microecosystem (164). The gut microbiota, often referred to as

the “second genome” in human beings, has significant clinical

implications. Disturbances in the gut microbiota have been linked

to various chronic health conditions such as metabolic syndrome,

mental, and psychological diseases, and cancer (165–169). Gut

microbiota disturbance is a major characteristic observed in

PCOS patients and PCOS-like rodent models (170–172). Whole-

genome shotgun sequencing demonstrated no significant difference

in bacterial alpha diversity between PCOS patients and healthy
Frontiers in Immunology 09
controls; however, there was a significant increase in beta diversity

in PCOS patients than that observed in healthy controls (173).

DHEA-treated PCOS rats, exhibited a reduction in the relative

abundances of Turicibacter, Anaerofustis and Clostridium

sensustricto at the genus level. These findings underscore the

potential role of gut microbiota in the pathogenesis and

progression of PCOS.

The interaction between the gut immune barrier and these

microbes contributes to the GI tract becoming a potential source of

chronic inflammation, which is closely associated with gut

microecology (174, 175). In 2012, Tremellen et al. proposed the

theory of Dysbiosis of Gut Microbiota (DOGMA) in the

inflammatory pathogenesis of PCOS. They suggested that diet-

induced imbalances between beneficial and harmful gut bacteria

lead to increased intestinal permeability involving lipopolysaccharide

(LPS), LPS-binding protein (LPS-BP), and zonulin entering systemic

circulation, activating the TLR-4/NF-kB-mediated inflammatory

response. This interference can affect insulin receptor function,

causing IR, and potentially promoting testosterone synthesis in the

ovaries, contributing to PCOS (176, 177). Studies have also

consistently demonstrated that androgen exposure can cause

intestinal dysbiosis, forming a vicious circle in PCOS patients

(9, 178–180). Furthermore, the transplantation of androgen-induced

gut microbiota into pseudo germ-free recipients disrupts glucolipid

metabolism, ovarian morphology, and reproductive hormone

imbalance (178) (Figure 3).

The impact of intestinal microbiome dysbiosis on the

inflammatory processes that affect ovarian function in PCOS has

been previously demonstrated. Huang et al. observed an increased

abundance of Akkermansia and desulfurization bacteria in the

intestines, as well as elevated serum levels of lipopolysaccharide

(LPS) and interferon IFN-g in DHEA-induced mice. Notably, IFN-g
can trigger pyroptosis in macrophage within the ovaries, which

disrupts of estrogen production and promotes apoptosis of GCs,

and ultimately leading to the abnormal ovarian function in PCOS

mice. However, treatment with disulfiram and metformin increased

the abundance of intestinal Akkermansia bacteria, decreased serum

IFN-g levels, and inhibited the pyroptosis in ovarian macrophages,

thereby improving PCOS symptoms (39). Qiao et al. found that

systemic inflammation in PCOS patients may be associated with an

altered abundance of intestinal Bacteroides vulgatus and changes in

metabolism of bile acids glycine deoxybile acid (GDCA) and

tauroursodeoxycholic acid (TUDCA). The mechanism involves

the interaction of the bile acid metabolite GDCA with the

intestinal inherent (innate) group 3 lymphocytes GATA binding

protein 3(GATA3), resulting in reduced secretion of the anti-

inflammatory regulator IL-22.The therapeutic potential of IL-22

has been demonstrated and its administration shown to ameliorates

IR, ovarian dysfunction, and infertility in PCOS (173).

Furthermore, in DHEA-induced female mice exhibited

upregulation of the metabolite agmatine from Bacteroides

vulgatus was upregulated, which activates the farnesoid X

receptor (FXR) pathway to inhibit glucagon-like peptide-1 (GLP-

1) secretion in intestinal epithelial L cells. Furthermore, IL-8, IL-6,

IL-1b and IL-18 were upregulated, contributing to ovarian

inflammation. These findings suggested that the agmatine-FXR-
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GLP-1 signaling axis contributes to IR and ovarian dysfunction in

PCOS-like mice (181). In addition to bile acid metabolites, short-

chain fatty acids (SCFAs), primarily composed of acetate (C2),

propionate (C3), and butyrate (C4), are beneficial metabolites

derived from the fermentation of dietary fiber and resistant starch

by the gut microbiota. Furthermore, SCFAs serve as potent anti-

inflammatory modulators, capable of inducing Treg differentiation

and interleukin secretion in peripheral tissues (182–184). Animal

experiments have demonstrated that supplementation with SCFAs,

such as butyric acid, can enhance ovarian function and reduce the

levels of inflammatory factors within the ovaries. Butyric acid

inhibits of m6A methyltransferase METTL3 expression in KGN

cells, resulting in a decrease in FOSL2m6A methylation level and

mRNA expression (185). Therefore, gut microbiota dysbiosis and

the alterations in its metabolites contribute to the low-grade chronic

inflammation present in the peripheral blood and ovaries of PCOS

patients (Figure 4).
3.4 Vitamin D and selenium deficiency
in PCOS

Vitamin D and selenium are involved in the regulation of

immunity and inflammation, and deficiencies in these essential

substances are associated with an increased risk of PCOS (186).

Multiple case-control studies have reported lower concentrations of

1,25-dihydroxyvitamin D, the active form of vitamin D, in women with

PCOS patients (187–191). Approximately 67%-85% of PCOS patients

either exhibit vitamin D deficiency or insufficiency (192), which is more

prevalent in PCOS patients with HA (193). In addition to its role in

regulating calcium and phosphate metabolism andmaintaining skeletal
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structure, vitamin D also exhibits anti-inflammatory effects. Vitamin D

receptors and the enzymes responsible for activating vitamin D are

expressed in both innate and adaptive immune cells, including

monocytes, macrophages, dendritic cells, and lymphocytes. These

immune cells not only facilitate the secretion of vitamin D but also

respond to activated vitamin D through the autocrine pathways (194,

195). Vitamin D deficiency has been implicated in systemic

inflammation and the pathogenesis of PCOS. A meta-analysis has

shown the administration of vitamin D in PCOS patients can reduce

the levels of inflammatory mediators, such as serum hs-CRP, serum

total testosterone (TT), and oxidative stress indices, while improving

the overall antioxidant capacity. Furthermore, vitamin D replacement

therapy may have a beneficial effects on IR, hormone regulation,

menstruation, and ovulation disorders in PCOS patients (196–199).

A systematic review reported that plasma selenium levels were

lower in PCOS patients than in healthy controls in two out of three

case-control studies, with serum selenium levels were negatively

correlated with androgen levels in PCOS patients. Selenium has

shown therapeutic benefits owing to the its immunomodulatiory

properties (200–202). Selenium, particularly the amino acid

selenocysteine, exerts its biological effects primarily in the form of

selenoproteins. At least 25 selenoproteins have been identified in

human beings, with glutathione peroxidase (GPX) being the primary

selenoprotein responsible for regulating excessive free radical

production at the sites of inflammation. Apart from GPX, other

selenoproteins have been recognized, including selenin-S, which

modulates inflammatory cytokines, and selenin-P, which acts as an

inducer of homeostasis (203–205). Selenoproteins play a crucial role in

regulating inflammation and modulating clinical outcomes in various

diseases including cancer, diabetes, Alzheimer’s disease, mental

disorders, CVDs, fertility disorders, inflammation, and infections,
FIGURE 3

Theory of dysbiosis of gut microbiota in PCOS. Both hyperandrogenism and high-fat diet increase the proportion of harmful gut bacteria, leading to
increased intestinal permeability and the release of LPS, LPS-BP, zonulin, and activated macrophages from the colonic lumen into the circulation.
SLCI disrupts glucolipid metabolism and increases insulin and testosterone secretion. Finally, SLCI induced changes in ovarian morphology, and
reproductive hormone imbalances in PCOS.
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including SARS-CoV-2 (206). Studies conducted on PCOS-like rat

models have revealed that treatment with selenium nanoparticles,

either alone or in combination with metformin, can restore the

estrus cycle, reduce blood glucose, and insulin levels, improve

hyperlipidemia, reduce serum testosterone levels and enhanced

ovarian histopathology, accompanied by decreased levels of serum

pro-inflammatory factors TNF-a and IL-6 as well as oxidative stress

biomarkers MDA and GPX in the ovarian tissues (207–209). Although

these animal studies have demonstrated the effectiveness of selenium in

PCOS treatment. A recent systematic review concluded that selenium

supplementation only positively affected total antioxidant capacity

(TAC) in PCOS patients without significantly improving BMI, body

weight, LDL, HDL, triglyceride, total testosterone, HOMA-IR, NO,

glutathione(GSH), MDA, and FPG levels (210). Further clinical

randomized controlled clinical trials are necessary to confirm the

efficacy and safety of selenium supplementation or selenium-based

drugs for treating of PCOS.
3.5 HHcy in PCOS

Preliminary investigations in observational and randomized

controlled trials have indicated that women with PCOS exhibit

higher serum homocysteine (Hcy) levels, along with higher levels of
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markers of CVDs, such as hs-CRP, soluble CD40 ligand (sCD40L),

and asymmetric dimethylarginine (ADMA) than did healthy

controls (211, 212). In atherosclerosis, Hcy acts as a vascular pro-

inflammatory cytokine capable of activating the monocyte-

macrophage system (213). Hcy stimulates the release of MCP-1

and IL-8 from peripheral blood monocytes, which are two major

chemokines involved in leukocyte trafficking (214). Additionally,

Hcy induces the expression and secretion of IL-8 by aortic

endothelial cells and stimulates MCP-1 production by vascular

smooth muscle cells (215, 216). Accumulation of MCP-1 and IL-8

has also been observed in macrophages from human atherosclerotic

plaques. Furthermore, even slightly elevated levels of Hcy (10 mmol/

L) can effectively stimulate the accumulation of MCP-1 and IL-8 in

the injured artery wall, thereby promoting macrophage-mediated

inflammation and atherosclerosis (217, 218). These studies

suggested that Hcy primari ly targets the monocyte-

macrophage interaction.

A cross-sectional study revealed a positive correlation between

HHcy and IR in PCOS patients. Compared with individuals with

normal Hcy levels, individuals within the HHcy group exhibited

increased numbers of CD14++CD16+ monocytes and higher levels

of IL-1b, IL-6 and IL-2 in the peripheral blood in PCOS patients.

These results suggested that the activation of inflammatory

monocytes may be related to the Hcy-induced PCOS-IR
FIGURE 4

Dysbiosis of the gut microbiota and bile acid metabolites in PCOS ovarian function through inflammation. (A) Bacteroides vulgatus were significantly
elevated levels in the intestinal microbiota of individuals with PCOS-like mice, accompanied by reduced concentrations of bile acid metabolites
GDCA and TUDCA. GDCA stimulates IL-22 secretion via GATA-binding protein 3(GATA3). The Bacteroides vulgatus metabolite agmatine activates
the farnesoid X receptor (FXR) pathway, leading to the inhibition of glucagon-like peptide-1 (GLP-1) secretion in intestinal epithelial L cells. This
contributes to IR and ovarian dysfunction in PCOS-like mice. (B) Elevated abundance of Akkermansia and desulfurization gut bacteria, as well as
increased serum levels of LPS and interferon IFN-g, were observed in DHEA-induced PCOS-like mice. IFN-g has the potential to induce pyroptosis in
macrophages within the ovaries, ultimately resulting in abnormal ovarian function. (C) SCFAs have the potential to modulate ovarian inflammation by
reducing pro-inflammatory IL-6, TNF-a and NLRP3 inflammasome secretion in the ovaries.
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phenotype (219). Moreover, Mondal et al. reported that female rats

exposed to Hcy developed a PCOS-like reproductive-endocrinal

phenotype associated with lipid metabolism disorders without

involvement of other modalities used for PCOS modeling.

Furthermore, this study demonstrated that HHcy and HA share a

common mechanism involving the disruption of PCSK9-LDLR

pathway leading to lipid homeostasis disturbances in PCOS (220).

Another study showed that HHcy promotes IR and adipose tissue

inflammation in PCOS mice by reducing estrogen production while

inhibiting the polarization of M2 anti-inflammatory macrophages

(221). This suggests that HHcy may also contribute to chronic

inflammation-related metabolic disorders, potentially through its

influence on monocyte-macrophage activity.
4 Intervention

4.1 Non-Pharmacological Management
of PCOS

International evidence-based guidelines recommend non-

pharmacological lifestyle management, including dietary

modifications and regular physical activity, as the first-line

treatment for infertility associated with PCOS to optimize health

generally and improve fertility outcomes (222).

4.1.1 Diet
A healthy diet is the cornerstone of a healthy lifestyle and can

significantly ameliorate the symptoms of intestinal dysbiosis,

inflammatory status, and reproductive and metabolic

abnormalities in PCOS. A clinical study reported that the very

low-calorie ketogenic diet (VLCKD) improved ovarian function in

obese women with PCOS. In this study, 25 obese patients with

PCOS were enrolled to receive a VLCKD intervention for 12 weeks.

Significant reductions in BMI, waist circumference (WC), and

HOMA were observed. These results suggest that VLCKD may be

an effective strategy for ameliorating metabolic and ovulation

dysfunction in women with PCOS (223).

The Mediterranean diet (MD), known for its anti-inflammatory

properties, has shown promise in managing PCOS. Barrea et al.

conducted a case-controlled cross-sectional study that revealed that

high adherence to the MD diet resulted in lower CRP levels, HoMA-

IR, testosterone levels, and Ferriman-Gallwey scores. This

preliminary evidence suggests that the MD diet reduces disease

severity, IR, and hyperandrogenemia in PCOS (224).

Intermittent fasting has emerged as a viable approach for

reducing weight and energy intake. The forms of intermittent

fasting include three diets: alternate-day fasting (ADF), 5:2 diet,

and time-restricted eating (TRE). A clinical study reported 15

anovulatory PCOS patients aged 18–31 years who completed 8-h

time-restricted feeding for 6-weeks experienced substantial

improvements. After TRE, body weight, BMI, HOMA-IR, and hs-

CRP decreased, whereas SHBG and insulin-like growth factor 1

(IGF-1) levels increased, and irregular menstrual cycles improved in

73.3% (11/15) of patients (225).
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These results underscore the potential of a healthy diet in

reducing weight and body fat and improving menstruation,

hyperandrogenemia, IR, and chronic inflammation in

PCOS patients.

4.1.2 Nutrient Supplementation
Nutrients, mainly including vitamins (such as vitamin D),

vitamin-like nutrients (such as a-lipoic acid), and minerals (such

as magnesium), are essential components of a healthy diet. Nutrient

supplementation can have a positive impact on PCOS patients

(226). A randomized double-blind placebo-controlled clinical trial

conducted by Bahmani et al. demonstrated that folic acid

supplementation significantly reduced the plasma levels of Hcy,

HOMA-B, hs-CRP, and MDA and significantly increased the

plasma levels of TAC and GSH. These findings suggest that folic

acid supplementation has a potential clinical role in improving

metabolic conditions and reducing inflammation and oxidative

stress in PCOS patients (227). In a randomized, double-blind,

placebo-controlled trial involving patients with PCOS, 60

participants were randomly assigned to two groups (n = 30 in

each group), one receiving a supplement of 1000 mg omega-3 and

400 IU of vitamin E, and the other receiving a placebo for a duration

of 12 weeks. The study results indicated that the combined

supplementation of omega-3 and vitamin E significantly reduced

CIMT and serum hs-CRP levels (228). In a clinical study conducted

by Stracquadanio et al., continuous administration of myo-inositol,

gymnemic acid, and L-methylfolate for 6 months demonstrated

substantial beneficial effects in PCOS patients, including

improvement in menstrual cycle regularity and metabolic

parameters, reduction in BMI and total testosterone, and

increased insulin sensitivity (229). Hager et al. conducted a

randomized controlled trial investigating the effects of a

standardized micronutrient supplementation in PCOS patients.

The supplement included omega-3 fatty acids, folic acid,

selenium, vitamin E, catechin, glycyrrhizin, and coenzyme Q10,

which was administered for 3 months. The study demonstrated that

compared with the control group, the group receiving the

micronutrient supplement experienced a significant decrease in

the LH/FSH ratio, testosterone, and AMH levels (230). These

findings indicated that nutrient supplementation may be

beneficial for ameliorating some of the adverse health outcomes

associated with PCOS. Specifically, nutritional supplements can

potentially improve menstrual cycle regularity, IR, inflammation,

and oxidative stress in PCOS patients.

4.1.3 Physical Activity
Physical activity is recommended as a first-line approach for

managing PCOS, particularly for overweight or obese women. The

guidelines recommend a minimum of 150 min/week of moderate-

intensity exercise, 75 min/week of vigorous-intensity exercise, or a

combination of both (231). A meta-analysis by Moori et al.

demonstrated that exercise training effectively lowered

inflammatory markers, such as serum CRP levels (232). In a

randomized clinical trial, high-intensity interval training (HIIT)

elicited greater improvements in cardiometabolic and reproductive
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outcomes than moderate-intensity interventions in overweight

women with PCOS. Patten et al. further found that HIIT

considerably improved the oxygen-carrying capacity of blood

than did moderate-intensity exercises. HIIT substantially

increased SHBG levels and regularized menstrual cycles in PCOS

patients (233). In summary, engaging in regular physical activity,

particularly HIIT, is beneficial for women with PCOS, as it not only

helps in managing weight but also has positive effects on

inflammation, cardiometabolic health, and reproductive function.

These findings emphasize the importance of incorporating exercise

into the treatment plan for PCOS, highlighting its potential to

improve the overall health and quality of life of affected individuals.
4.2 Pharmacological Interventions

4.2.1 Metformin
Metformin, a biguanide, improves insulin sensitivity, reduces

androgen levels, and enhances oligo-amenorrhoea and subfertility

in women with PCOS (234). Metformin increases gut Akkermansia

abundance, reduces serum IFN-g level released from T cells, and

inhibits macrophage pyroptosis in ovaries in PCOS mice (234). Xue

et al. revealed metformin alleviated PCOS by modulating gut

microbiota, reducing plasma LPS levels, and decreasing the

plasma and ovarian levels of inflammatory cytokines, including

TNF-a, IL-6, and IL-17A, in PCOS patients (235).

4.2.2 Traditional Chinese Medicine
Traditional Chinese Medicine (TCM) formulations and their

active ingredients have been widely used to treat various

gynecological diseases, including PCOS. Herbal medicines and

active ingredients regulate gut microbiota composition and reduce

systemic and ovarian inflammation in PCOS-like models (236–238).

Wang et al. reported the TCM decoction Bu Shen Hua Zhuo formula

(BSHZF) administration improved gut microbiota function in rats

with letrozole-induced PCOS and inhibited the activation of the

TLR4/NF-kB signaling pathway in PCOS-related ovarian tissue,

decreasing the pro-inflammatory cytokines TNF-a, IL-6, and IL-8

(236). Zhu et al. reported Gui-zhi-Fu-ling Wan treatment reduced

inflammatory markers such as hs-CRP, IL-6, and TNF-a and

improved PCOS-IR by remodeling the relative abundance of

multiple intestinal flora (237). Chang et al. reported that Shaoyao-

Gancao Decoction (SGD), commonly used to treat multiple

gynecological disorders such as dysmenorrhea, adenomyosis, and

PCOS, modulated gut microbiota composition, and alleviated

chronic low-grade inflammation by downregulating cytokines

including IL-18, IL-1b, IL-6, and TNF-a in both serum and

ovarian mRNA expression in PCOS rats (238). In summary, these

studies underscore the therapeutic potential of TCM for treating

PCOS by targeting gut microbiota and inflammatory pathways,

which may offer a complementary approach to conventional

treatments. Modulation of the gut microbiota using TCM

formulations holds promise as a therapeutic strategy for PCOS.
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4.2.3 Other Pharmacological Interventions
In clinical practice, other pharmacological interventions for

PCOS include combined oral contraceptives (COCs) and

antiandrogens. COCs are commonly prescribed to PCOS patients

with menstrual irregularities and clinical hyperandrogenism. COCs

reduce free testosterone levels by increasing SHBG production in

the liver, thereby alleviating hyperandrogenism (239). Anti-

androgens such as finasteride, flutamide, spironolactone, or

bicalutamide, along with lifestyle modifications, are more effective

in improving hirsutism, SHBG, fasting insulin, and the fasting

insulin:glucose ratio. Current evidence does not support the

preferential use of anti-androgens over COCs for the treatment of

hyperandrogenism in PCOS. However, antiandrogens are not

preferred over COCs for hyperandrogenism unless COCs are

contraindicated or ineffective (240). Moreover, low-dose

spironolactone in PCOS rats reduces the oxidative stress markers

(MDA) and inflammatory biomarkers such as NF-kB, TNF-a, and
IL-6 (241).
5 Conclusion and perspectives

In conclusion, SLCI plays a critical role in the pathogenesis and

progression of PCOS, contributing to the manifestation of multiple

symptoms and an increased risks of various long-term

complications associated with PCOS. Chronic systemic

inflammation observed in PCOS patients is linked to an

imbalance between pro-inflammatory and anti-inflammatory

intrinsic mechanisms. Targeted inflammatory regulation therapy

may be an effective approach for alleviating PCOS phenotypes of

PCOS and improving patient outcomes.

As for a test panel that should become standard in diagnosing

PCOS patients at SLCI state, while there is no consensus on a

specific “standard test panel” for diagnosing SLCI in PCOS patients,

the mentioned markers could be part of a comprehensive diagnostic

approach. It is important for healthcare providers to consider the

individual patient’s symptoms and risk factors when determining

the appropriate tests to order. Therefore, a potential test panel could

include hs-CRP,IL-1 Ra,IL-6,IL-17 E/IL-25,IL-17A,IL-18,TNF-a,
MIP-1a,and other markers that reflect the inflammatory state and

metabolic health of the PCOS patients (242, 243).

International evidence-based guidelines recommend non-

pharmacological lifestyle management, such as the ketogenic diet, the

Mediterranean diet, intermittent fasting, and regular physical activity,

as the first-line treatment for infertility in PCOS. These

pharmacological approaches aim to reduce inflammation and

optimize overall health to improve fertility (231, 244). Regarding

pharmacological management of PCOS, periodic use of progesterone,

including the use of COCs, can effectively regulate menstruation in

PCOS patients, lower androgen levels, and protect the endometrium.

Additionally, progesterone has potential to control chronic

inflammation (150, 245). Metformin is an excellent regulator of

inflammation and plays an important role in the treatment of PCOS
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by improving the metabolic disorders, reducing androgen levels and

promoting follicular development and ovulation (246–248). Xue et al.

found that metformin alleviates PCOS by modulating gut microbiota,

resulting in reducing plasma LPS levels along with decreased plasma

and ovarian inflammatory cytokines TNF-a, IL-6, and IL-17A levels in

PCOS patients (235). Furthermore, statins, as antihyperlipidemic

drugs, can reduce HA, improve lipid profiles, and reduce systemic

inflammation in women with PCOS (249). Additionally, curcumin,

inositol, CoQ10, and microelement selenium, and vitamin D is widely

recommended as a fundamental intervention for PCOS owing to their

ability to reduce IR and inflammation, enhance ovarian function

restoration, restore hormonal balance, and regulate the menstrual

cycle in PCOS. Other anti-inflammatory and antioxidant dietary

supplements, such as folic acid, inositol, vitamin E, omega-3 fatty

acids, alpha lipoic acid, N-acetylcysteine, have shown potential

adjuvant therapeutic effects by ameliorating IR, lipid profile, reducing

inflammation and oxidative stress markers of PCOS (227–229,

250–255).

Treatment options to relieve gut dysbiosis in PCOS patients

include innovative approaches like fecal bacteria transplantation and

“prebiotics,” which aim to improve intestinal microecology (256).

Additionally, drugs targeting inflammatory cytokines have been

found to ameliorates PCOS-related phenotypes. For example, Lang

et al. conducted a study on the TNF-a inhibitor etanercept (ETA),

which inhibited serum testosterone levels, TNF-a and MCP-1 levels,

decreased excessive recruitment of lipid droplets, altered levels of pre-

adipose differentiation markers, and abnormal development of follicles

in letrozole-induced PCOS rat models. This suggests that anti-TNF-a
therapy with ETA may have a potential ameliorative effect associated

with its ability to reduce excessive androgen levels on PCOS (257).

Moreover, some TCMor ingredients of Chinese herbal medicines, such

as the BSHZF, Guizhi Fuling Wan, and SGD improved IR and

ameliorated sex hormone disturbances in PCOS through anti-

inflammatory effects activation of the PI3K/AKT pathway, and

modulation of gut microbiota (236–238). In conclusion, although the

etiology of PCOS remains unclear, given the important role of SLCI in

PCOS, comprehensive treatment strategies involving long-term

management, including non-pharmacological lifestyle interventions

combined with pharmacological approaches aimed at ameliorating

inflammation, should be adopted to ultimately improve the clinical

phenotype of PCOS, reduce the incidence of long-term complications,

and enhance overall health among individuals with PCOS.
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73. Luque-Ramıŕez M, Alpañés M, Escobar-Morreale HF. The determinants of
insulin sensitivity, b-cell function, and glucose tolerance are different in patients with
polycystic ovary syndrome than in women who do not have hyperandrogenism. Fertil
Steril. (2010) 94:2214–21. doi: 10.1016/j.fertnstert.2009.11.049

74. Tao T, Wu P, Wang Y, Liu W. Comparison of glycemic control and b-cell
function in new onset T2DM patients with PCOS of metformin and saxagliptin
monotherapy or combination treatment. BMC Endocr Disord. (2018) 18:14.
doi: 10.1186/s12902-018-0243-5
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