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Integration of transcriptomics
and machine learning for insights
into breast cancer: exploring
lipid metabolism and
immune interactions
Xiaohan Chen1†, Jinfeng Yi2†, Lili Xie1, Tong Liu1,3, Baogang Liu1*

and Meisi Yan2*

1Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, China, 2Department of
Basic Medical Sciences, Harbin Medical University, Harbin, China, 3National Health Commission (NHC)
Key Laboratory of Cell Transplantation, The First Affiliated Hospital of Harbin Medical University,
Harbin, China
Background: Breast cancer (BRCA) represents a substantial global health

challenge marked by inadequate early detection rates. The complex interplay

between the tumor immune microenvironment and fatty acid metabolism in

BRCA requires further investigation to elucidate the specific role of lipid

metabolism in this disease.

Methods: We systematically integrated nine machine learning algorithms into

184 unique combinations to develop a consensus model for lipid metabolism-

related prognostic genes (LMPGS). Additionally, transcriptomics analysis

provided a comprehensive understanding of this prognostic signature. Using

the ESTIMATE method, we evaluated immune infiltration among different risk

subgroups and assessed their responsiveness to immunotherapy. Tailored

treatments were screened for specific risk subgroups. Finally, we verified the

expression of key genes through in vitro experiments.

Results: We identified 259 differentially expressed genes (DEGs) related to lipid

metabolism through analysis of the cancer genome atlas program (TCGA)

database. Subsequently, via univariate Cox regression analysis and C-index

analysis, we developed an optimal machine learning algorithm to construct a

21-gene LMPGS model. We used optimal cutoff values to divide the lipid

metabolism prognostic gene scores into two groups according to high and

low scores. Our study revealed distinct biological functions and mutation

landscapes between high-scoring and low-scoring patients. The low-scoring

group presented a greater immune score, whereas the high-scoring group

presented enhanced responses to both immunotherapy and chemotherapy

drugs. Single-cell analysis highlighted significant upregulation of CPNE3 in

epithelial cells. Moreover, by employing molecular docking, we identified

niclosamide as a potential targeted therapeutic drug. Finally, our experiments

demonstrated high expression of MTMR9 and CPNE3 in BRCA and their

significant correlation with prognosis.
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Conclusion: By employing bioinformatics and diverse machine learning

algorithms, we successfully identified genes associated with lipid metabolism

in BRCA and uncovered potential therapeutic agents, thereby offering novel

insights into the mechanisms and treatment strategies for BRCA.
KEYWORDS

breast cancer, tumor immune microenvironment, fatty acid metabolism, machine
learning, omics, immune infiltration analysis
1 Introduction

BRCA is the most prevalent cancer and a primary cause of

cancer-related death among women worldwide (1).It is widely

acknowledged that this disease is heterogeneous at both the

clinical and molecular levels (2, 3). Immunotherapy has emerged

as the primary treatment (4) for many patients with BRCA and PD-

1-or PD-L1- targeted drugs have shown some initial promise;

however, when used as a single drug or in combination with

traditional cytotoxic chemotherapy, the remission rate is not

satisfactory (5, 6). Therefore, the identification of new immune-

based molecular biomarkers is essential for clinical diagnosis, risk

stratification, and treatment response prediction and monitoring

(7, 8).

The tumor microenvironment is a crucial component of cancer

(9). Metabolic reprogramming of tumors in the microenvironment

is a crucial mechanism for adaptation, which confers metabolic

plasticity for cancer cells, improves cell survival and promotes

unlimited proliferation within the microenvironment, which is

characterized by hypoxia and nutrient deficiency (10). For

example, it has long been known that elevated glutamine

dissolution and aerobic glycolysis are typical metabolic

characteristics of cancer cells (11). Recently, cancer-specific lipid

metabolic remodeling has attracted widespread attention (12). The

features of increased exogenous lipid and lipoprotein intake, as well

as overactivated ab initio synthesis, indicate that BRCA cells have a

greater affinity for lipids and cholesterol than normal cells do. These

factors directly contribute to the malignant transformation and

progression of cancer cells, as well as the aberrant accumulation of

lipids in the tumor microenvironment. Accordingly, these common

lipid compounds also have an impact on tumor-associated immune

cells that reside in the microenvironment (13). According to recent

research, abnormalities in lipid metabolism within BRCA cells can

hinder the stimulation, penetration and effectiveness of immune

cells. This promotes immune escape and affects multiple aspects of

the immune response (14). Additionally, drug resistance caused by

abnormal lipid metabolism in BRCA has become a major obstacle

to clinical treatment (15, 16). Therefore, the identification of

prognostic genes associated with fatty acid metabolism may

provide a viable therapeutic strategy for treating BRCA.
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In this work, we constructed a LMPGS model pertaining to fatty

acid metabolism, utilizing the TCGA BRCA cohort for training. The

prognostic relevance of this model was subsequently validated in

gene expression omnibus (GEO) datasets (GSE88770 and

GSE20711). Furthermore, we investigated the associations

between immunological responses and prognostic genes involved

in the metabolism of fatty acids and the immune microenvironment

as well as somatic mutations in patients. Additionally, single-cell

pseudotime analysis revealed insights into the functions of these

prognostic genes in tumor occurrence and development. Potential

medications for the treatment of BRCA were predicted using

molecular docking technology. In summary, LMPGS holds

promise as a potential biomarker in human BRCA research,

offering new perspectives for diagnosis and treatment.
2 Materials and methods

2.1 Data download and collation

We used the UCSC Xena Browser (https://xenabrowser.net/

datapages/) (17) to download the TCGA-BRCA dataset in the

transcriptome fragments per kilobase million (FPKM) format;

this dataset contains survival data and corresponding

clinicopathological data for 1280 patients. The single nucleotide

variant (SNV) data, copy number variation (CNV) data,

methylation data, mutation count, MSI sensor data and fragment

genomic change frequency information of the corresponding

samples were downloaded from the cBioPortal (18) database.

In addition, we downloaded the GSE88770 (19) and GSE20711

(20) transcriptome chip data and the clinical information of BRCA

patients from the GEO (21) database. The GSE88770 dataset was

generated by sequencing via the [HG-U133_Plus_2] Affymetrix

Human Genome U133 Plus 2.0 Array. A total of 117 human BRCA

tumor samples were selected as the validation set, and quality

control steps were applied to exclude samples with low quality

(based on background noise and signal intensity). The GSE20711

dataset was also generated by sequencing via the [HG-

U133_Plus_2] [HG-U133_Plus_2] Affymetrix Human Genome

U133 Plus 2.0 Array, which contains information on 88 human
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BRCA tumor samples. Normal tissue samples from two patients

were included as controls to analyze gene expression differences.

In addition, we obtained the datasets from GSM5457205 (22),

which included information on human BRCA tumor samples. The

Illumina NovaSeq 6000 (Homo sapiens) platform was used to

generate the sequencing data, and initial data processing included

quality control steps, such as filtering out low-quality reads and

performing adapter trimming. We further obtained data from

MSigDB (https://www.gsea-msigdb.org/gsea/msigdb) (23). The

online database includes 742 genes associated with lipid

metabolism, and functional enrichment analysis will be

performed to explore the biological significance of these genes in

the context of BRCA.
2.2 Single-cell data processing

We used single-cell count data from the original UMI. In

addition, Seurat v4.0 was used for preprocessing steps, quality

control, normalization, dimensionality reduction clustering and

clustering. Specific quality control criteria were established to

ensure data integrity. First, every gene had to be expressed in a

minimum of three cells, and each cell was required to expressed at

least 200 genes. Second, the genes were selected based on the

number of expressed genes in each sample, using the median ±

3*MAD (median absolute deviation) standard for filtering.

Moreover, thresholds of 10% for the proportion of mitochondrial

gene proportion and 1% for the proportion of hemoglobin gene

proportion were set according to different sample types to exclude

potential low-quality or dying cells. After applying quality control

measures, we processed with data analysis using the Seurat

package’s default parameters and standard operating procedures,

which included: standardization of counts, normalization of data,

identification of highly variable genes, dimensionality reduction

(using PCA), and clustering of cells. The Harmony package was

utilized to integrate data from multiple samples, thus correcting for

batch effects. The annotation of single-cell groups was performed

both manually and with the assistance of the scType package (23).

Finally, the FindAllMarkers function used the Wilcoxon signed-

rank test to compute differential gene expression between clusters,

thereby identifying marker genes for each cell type.
2.3 Differential expression analysis

On the basis of the lipid metabolism genes in the MSigDB

database, we performed gene scoring on the BRCA tumor tissue

samples in the TCGA-BRCA dataset, and used the gene set

variation analysis (GSVA) method to perform unsupervised

scoring on each sample by gene set. The samples were

subsequently divided into two groups according to the score

ranking according to the GSVA score: the samples with the top

20% score were the Score+ group, and the samples with the bottom

20% score were the Score- group. We analyzed the DEGs in the

TCGA-BRCA dataset between lipid metabolism score groups in

human BRCA tumor samples using the rank-sum test.
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2.4 Model construction and efficiency test

We used univariate Cox regression based on TCGA-BRCA data

to screen genes associated with survival from DEGs grouped by

lipid metabolism score. We integrated nine machine learning

algorithms into 184 machine learning algorithm combinations,

including LASSO, Ridge, elastic network (Enet), StepCox, survival

support vector machine (survivalSVM), CoxBoost, supervised

principal components (SuperPC), random survival forest (RSF),

and generalized boosted regression modeling (GBM), to develop

prognostic models.

The specific algorithm and parameters are as follows: (a) LASSO

achieves feature selection through L1 regularization, with a

regularization intensity l set to 0.1, demonstrating excellent feature

selection ability while effectively balancing model complexity and

data fitting. (b) Ridge utilizes L2 regularization with a l value of 0.1,

which enhances robustness on the training set, ensuring model

stability and adaptability to high-dimensional data while mitigating

potential overfitting issues. (c) Enet integrates both L1 and L2

regularization techniques, making it suitable for scenarios where

the number of features exceeds the number of samples. The a
value is determined as 0.4 based on cross-validation results,

enabling effective handling of multicollinearity problems by

properly combining the advantages of LASSO and Ridge methods.

(d) StepCox regression adopts the “direction=forward” method for

feature selection based on the Cox proportional risk model. This

progressive variable addition approach ensures focus on influential

key genes in constructing a final model that can effectively identify

important variables. (e) The survivalSVM possesses capabilities in

dealing with survival time and event states using default parameter

settings for model training purposes. With extensive application

experience in survival analysis field, this algorithm generally

captures complex patterns within survival data quite well. (f)

CoxBoost employs Boosting concept to iteratively enhance the Cox

model by utilizing a combination of 10 trees aiming at optimizing

model fitting effect without excessive complexity introduction. (g)

The SuperPC utilized default parameter settings to generate a linear

combination of relevant features that captures the direction of

greatest variation in the dataset. Optimal threshold evaluation was

performed using cross-validation results, and application of the “pre-

validation” function prevented issues with fitting multivariate Cox

regression models to validation datasets. (h) RSF classification and

regression, combining multiple decision trees with n_estimators set at

100 and default settings is widely accepted as it provides sufficient

decision trees for increased prediction accuracy while ensuring model

stability. (i) GBM improves model generalization by combining

multiple weak learning models (usually decision trees) with a

learning rate between 0.1-0.3 and tree depth set at 5 based on step-

by-step experimentation and observation to ensure gradual growth

without compromising stability.

After the construction and tuning of these models, we used two

datasets, GSE88770 and GSE20711, as validation sets, and the

average C-index as the main evaluation index of the model. The

combination algorithm that achieved the highest C-index was

chosen as the ultimate model. In addition, we collected literature

on prognostic model construction from the TCGA-BRCA dataset
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from September 1, 2022 to September 1, 2023 (24–28).During this

time, we conducted a literature survey to ensure that all the latest

research findings were covered and corresponding data were used to

compare the performance of the models.
2.5 Clinical feature correlation, pathway
enrichment and pancancer analysis

First, we used the rank-sum test to compare clinical features

between patients with high and low lipid metabolism scores, and the

results are shown as bars. We then obtained data from the MSigDB

(23) (https://www.gsea-msigdb.org/gsea/msigdb) database to

download 50 tumor-associated pathways for gene set enrichment

analysis (GSEA) (24, 29)to investigate the distinctions between

groups with high and low scores in lipid metabolism. The

transcriptome data and clinical characteristics of 32 tumors were

downloaded from UCSC Xena, and the best machine learning

combination model was subsequently used to analyze the

prognostic effect of the model score in different tumors one by one.
2.6 Transcriptomic analysis of the high-
and low-lipid metabolism score groups

We examined the variations in the tumor mutation burden

(TMB), SNV data, and CNV data. We then selected the most

important genes that make up the lipid metabolism score model

for analysis, and we analyzed the differences in the transcript levels

and methylation levels of these genes and the effects of individual

genes on survival. For the selection criteria of the key genes in the

lipid metabolism scoring model, first, we used univariate and

multivariate Cox regression analyses to screen genes, and the

selection criterion was a P value less than 0.05. Second, among the

genes screened, those with a relatively high risk ratio (HR) and

biological significance were prioritized to ensure that these genes not

only were statistically significant, but also played an important role in

lipid metabolism processes. We also used a combination of multiple

machine learning algorithms (such as LASSO, Ridge, and CoxBoost)

to construct prognostic models, and evaluated the predictive efficacy

of each model. Finally, we selected the combination algorithm that

performed best in the training set and validation set to screen 21

genes as the gene set of the LMPGS model.
2.7 Differential expression of genes linked
to immune checkpoint inhibitors and
immunogenic cell death in groups with
high and low lipid metabolism scores

We analyzed information on 26 immunogenic cell death-related

genes and 47 immune checkpoint inhibitor (ICI)-related genes. We

then compared the differences between the two classes of genes in

the TCGA-BRCA transcriptome data to determine whether the

immunotherapy response varied between groups with high and low

lipid metabolism scores.
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2.8 Response to immunotherapy and
chemotherapy medications in groups with
high and low lipid metabolism scores

To assess the immune response, we used the tumor immune

dysfunction and exclusion (TIDE) tool (http://tide.dfci.harvard.edu/

login/) (30). In addition, we integrated the transcriptome-level data

of each cell line from the cancer cell line encyclopedia (CCLE),

the clinical trials research platform (CTRP), the PRISM database

and the area under curve (AUC) data of 981 drugs (31). The

difference in the AUC between different lipid metabolism

score groups and the correlation between the AUC and lipid

metabolism were analyzed to further identify therapeutic drugs

with different scores.
2.9 Molecular docking

To further analyze the drug of choice from the last set of

experiments and the composition of lipid metabolism genes

encoding proteins, we used the PubChem database (https://

pubchem.ncbi.nlm.nih.gov/) to obtain information on drug and

lipid metabolism, mainly protein structure files. Then, batch

processing and AutoDock Vina v.1.2.2 were used for molecular

docking to select the receptor and ligand pairs with the minimum

binding energy.
2.10 Pseudotime analysis

To further analyze the differentiation status between subsets, we

used the classical monocle2 package (30) to perform a pseudotime

analysis of T-cell subsets. The single-cell data were processed by

constructing monocle objects, normalizing, and filtering low-

quality cells and other processes. Highly discrete genes were

selected to reduce the dimensionality of the data via the DDRTree

method, and then the data were subjected to pseudotime analysis of

different types of cells and important genes.
2.11 Acquisition of key genes from the
immunohistochemical data

We utilized data from the human protein atlas (HPA) (32) to

corroborate the variations in key gene expression between human

BRCA tissues and normal tissues.
2.12 Cell lines and cell culture conditions

The ATCC provided the MCF10A, MDA-MB231, BT549, and

SUM149PT cells. MCF10A, MDA-MB231, BT549, and SUM149PT

cells were acquired from the Type Culture Collection of the Chinese

Academy of Sciences in Shanghai, China. Dulbecco’s modified

Eagle’s medium (DMEM) supplemented with 10% bovine calf
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https://www.gsea-msigdb.org/gsea/msigdb
http://tide.dfci.harvard.edu/login/
http://tide.dfci.harvard.edu/login/
https://pubchem.ncbi.nlm.nih.gov/
https://pubchem.ncbi.nlm.nih.gov/
https://doi.org/10.3389/fimmu.2024.1470167
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Chen et al. 10.3389/fimmu.2024.1470167
serum (HyClone) was used to culture MDA-MB231, and

SUM149PT cells. Ten percent bovine calf serum (HyClone) was

added to complete Roswell Park Memorial Institute 1640 (RPMI

1640) medium to culture the BT549 cells. DMEM/F12

supplemented with 10% bovine calf serum (HyClone) was used to

culture the MCF10A cells. Every cell line was grown in a humidified

incubator with 5% CO2 at 37°C.
2.13 qPCR

Follow the manufacturer’s guidelines to extract total RNA from

cells using TRIzol (Invitrogen). Using an Applied Biosystems

TaqMan reverse transcription reagent kit, 1 mg of RNA per

sample was utilized to synthesize cDNA. Using the SYBR Premix

Ex Taq kit for real-time PCR (TaKaRa), qRT−PCR was conducted

using an Applied Biosystems 7500 real-time PCR system. The

primer sequences are shown in Supplementary Table S1.
2.14 Immunohistochemistry

Samples of adjacent matched nontumor tissues and human

BRCA tissues were acquired from the Affiliated Cancer Hospital of

Harbin Medical University. IHC labeling was performed on

nontumor and BRCA samples from 50 female subjects. The

percentage of positive cells was used to assess tissue section

staining quantitatively.
2.15 Western blot

The cells were lysed on ice with RIPA lysis buffer. The proteins

were separated via SDS−polyacrylamide gel electrophoresis,

transferred to a PVDF membrane, blocked with 5% skim milk

powder and washed with PBST. The membranes were subsequently

incubated with the primary antibody at 4°C overnight. The

membranes were incubated with secondary antibody for 1 hour

after washing with PBST, and the protein bands were detected with

enhanced chemiluminescence (ECL) luminescent solution.
2.16 CCK8 assay

The cells were plated in 96-well plates at 3000 cells per well.

After 24 hours, the control group was treated with DMSO, and the

experimental group was treated with different concentrations of

niclosamide dissolved in DMSO. Cell viability was assessed via

CCK-8 kit, and the light absorption value was measured at 450 nm

with microplate reader.
2.17 Antibodies and reagents

Antibodies against the following proteins were used for the IHC

and western blot experiments: ACSL1 (Proteintech, 13989-1-ap,
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IHC: 1:200, western blot: 1:1000), ACSF2 (Proteintech, 16140-1-ap,

IHC: 1:200, western blot: 1:1000), CPNE3 (Proteintech, 11186-1-

ap, IHC: 1:200, western blot: 1:1000), MTMR9 (ABclonal, A13124,

IHC: 1:200, western blot: 1:1000), and b-actin (Santa Cruz, western

blot: 1:1000). The following reagents were used in the CCK8

experiments: niclosamide (CAS No. 50-65-7, MedChemExpress,

BAY2353) and Cell Counting Kit-8 (LABLEAD, CK001).
2.18 Statistical analysis

In this work, R software (https://www.www.r-project.org/,

version 4.2.1) was used for all data calculations and statistical

analyses. If not otherwise specified, correlation analyses were

performed via Spearman’s correlation analysis via the Hmisc

function of the base package of R software. The Wilcoxon rank

sum test was used to compare MSI scores, altered portions of the

genome, and mutation counts between the Score+ and Score-

groups. The C-index, cross-validation and model ranking were

used to determine the best machine learning mix. We used the

Wilcoxon rank sum test to compare differences in gene

transcription and methylation levels between the high-rated and

low-rated groups. To control the error finding rate of multiple tests,

we also adopted the Benjamini−Hochberg correction method. In

addition, the differences of immune-related gene expression and

immunoinfiltration indexes between the high-low rating groups

were statistically analyzed via the Wilcoxon rank sum test. All of the

statistical P values were bilateral, and differential gene screening was

statistically significant if the corrected p value was < 0.05 (ns stands

for p value>0.05; * stands for 0.01< p value <0.05; ** stands for

0.001< p value <0.01; *** stands for p value <0.001; **** stands for p

value <0.0001).
3 Results

3.1 GSVA and genomic differences
between lipid metabolism groups

Our overall experimental design is shown in Figure 1. We

scored human BRCA tumor tissue samples in the TCGA-BRCA

dataset based on the lipid metabolism genes obtained from the

MSigDB database. We selected the top 20% of the samples as the

Score+ group and the bottom 20% of the samples as the Score-

group. First, we performed GSVA separately for the Score+ group

and the Score- group (Figure 2A), where a t value of GSVA greater

than 1 was taken as the cut-off value. We found that the samples in

the Score+ group were significantly enriched in the Adipogenesis,

Heme metabolism, Bile acid metabolism, and Fatty acid metabolism

gene sets. The Score- group was significantly enriched in the E2f

target, Myc target v2, Myc target v1 and G2M checkpoint gene sets.

On the basis of this grouping, we compared whether the

microsatellite instability (MSI) score (Figure 2D), fraction of the

genome altered (Figure 2C) and mutation count (Figure 2B)

differed between the two groups. We found that the MSI score,
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fraction of the genome altered and mutation count in the Score-

group were noticeably greater than those in the Score+ group.
3.2 Grouping of TCGA-BRCA tumor
samples according to lipid
metabolism score

We selected the top 20% of the samples as the Score+ group and

the bottom 20% of the samples as the Score- group. The Score+ group

included 217 samples, and the Score- group also included 217

samples. We used the rank-sum test to analyze differences between

the high- and low-lipid metabolism groups. To screen for significant

DEGs, we set the thresholds to |logFC| > 0.5 and adjusted P value <

0.05; ultimately, we identified 259 genes related to lipid metabolism

that were differentially expressed between the Score+ and Score-

(high- and low-score) groups (Figures 3A, B).
3.3 Construction of prognostic models
related to lipid metabolism

To construct a prognostic model focused on lipid metabolism-

related genes, we initially employed univariate Cox regression analysis

to pinpoint 26 genes associated with prognosis from the pool of 259

DEGs (p value < 0.05). Then, we utilized a combination of machine

learning algorithms. We carried out parameter tuning for each basic

algorithm, and different combinations were generated under different

parameter settings. As seen from the specific combinations listed on
Frontiers in Immunology 06
the left side of Figure 4, not only were there multiple parameter

combinations for each individual algorithm, but pin-to-pair

combinations and even multiple combinations between algorithms

were also explored. Through these parameter adjustments, different

ratio feature selection strategies, cross-validation strategies, and the use

of integration methods, 184 model combinations were generated from

9 basic machine learning algorithms. Next, we evaluated the

performance of 184 combinations of the machine learning

algorithms using two datasets, GSE88770 and GSE20711, as

validation sets. The C-index was used as the main model evaluation

metric. The results showed that the machine learning combination of

the elastic network (alpha=0.4) combined with LASSO had the highest

C-index, so we selected this model as the best model (Figure 4).

Notably, TCGA-BRCA has a larger C index than the other two

validation sets do, which may be related to the larger data volume

and low noise of the data, and the greater amount of clinical

information contained in it may provide additional context for the

model, further enhancing its predictive power.
3.4 Validation of lipid metabolism-related
prognostic models

To assess the influence of this score on the overall survival (OS)

of BRCA patients, we utilized the optimal cutoff value to categorize

patients into two groups according to the LMPGS. The group with a

high score for LMPGS had a notably lower OS rate than did the

group with a low score in the training set (Figure 5A, p value <

0.0001). The same conclusion was drawn for the GSE88770 and
FIGURE 1

Overall design idea.
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GSE20711 validation sets (Figure 5B, p value = 0.12; Figure 5C, p

value =0.014). To further validate the precision of the prognostic

model, time−ROC curves and Kaplan−Meier (KM) survival curves

were plotted for each of the above three datasets. We found that the

AUC was greater than 0.9 in the TCGA-BRCA cohort, greater than

0.6 in the GSE88770 test cohort for the first 5 years, and greater than

0.6 in the GSE20711 test cohort for most of the first 10 years

(Figures 5D–F).
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3.5 Comparison of lipid metabolism-
related prognostic gene score models and
other published score models for
predicting overall survival in BRCA patients

To compare the accuracy of our lipid metabolism-related

prognostic gene score model and other score models in predicting

overall prognosis in BRCA patients, we first performed a
FIGURE 2

GSVA enrichment analysis and genomic differences between lipid metabolism groups (A) GSVA enrichment results between the high and low lipid
metabolism score groups; (B) Difference in mutation counts between the top 20% and the bottom 20% of samples with lipid metabolism score;
(C) Frequency of segmental genomic alterations between the top 20% and bottom 20% of the lipid metabolism scores; (D) Difference between MSI
sensor scores between the top 20% and the bottom 20% of samples with lipid metabolism scores. (*** stands for p value <0.001).
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multivariate analysis including the lipid metabolism-related

prognostic gene score and other clinicopathological features using

the TCGA-BRCA dataset. The lipid metabolism-related prognostic

gene score, age, and tumor stage were identified as prognostic

factors for BRCA patients (Figure 6A). A nomogram model was

constructed (Figure 6B), and we employed a multivariate Cox

regression model to assess the prognostic lipid metabolism-related

gene score, age, and tumor stage. We also conducted a literature
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survey and searched for articles from September 1, 2022, to

September 1, 2023, with keywords such as TCGA, prognosis and

BRCA, and a total of 5 relevant articles were collected. We

combined the AUC scores of these models and the number of

genes included. In the comparison of the 1-, 3-, and 5-year survival

data, our model had the highest AUC of the multiple models, and at

the same time, the number of genes included in our model was

relatively large (Figure 6C).
FIGURE 3

Screening of DEGs between the high- and low-lipid metabolism score groups (A) Principal component analysis (PCA) between high and low lipid
metabolism score groups in the TCGA-BRCA training set; (B) Heatmap of DEGs between the high- and low-lipid metabolism score groups in the
TCGA-BRCA training set. The color bars from red to blue indicate gene expression from high to low, with red indicating high expression and blue
indicating low expression.
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3.6 Differences in clinical characteristics
and pathway enrichment between the
high- and low-score groups based on
prognostic lipid metabolism-related genes
and their application across cancers

To explore the clinical distinctions between groups

characterized by high and low scores for prognostic genes

l inked to l ipid metabol ism, we init ia l ly conducted a

comparative analysis of age (Figure 7A), tumor stage

(Figure 7B), and tumor status (Figure 7C). We found a
Frontiers in Immunology 09
significant difference in tumor stage (p = 0.004) between the

high- and low-score groups founded on LMPGS model, whereas

no notable disparities were observed in age or tumor status

between these groups. We next assessed the effect of the lipid

metabolism-related prognostic gene score on OS in patients with

31 additional tumor types. The results revealed that the lipid

metabolism-related prognostic gene score was associated with

OS in adrenocortical carcinoma, bladder urothelial carcinoma,

cholangiocarcinoma, colon cancer, and other tumors, suggesting

that the lipid metabolism-related prognostic gene score on OS

has broad applicability (Figure 7D).
FIGURE 4

Construction and validation of the prognostic models in the TCGA-BRCA, GSE207711 and GSE88770 datasets. The top 50 machine learning
combination algorithms for the average C-index in the TCGA-BRCA training set and the GSE20771 and GSE88770 validation sets. We used the
prediction function to calculate the elastic network (alpha=0.4) combined with LASSO for LMPGS, a score consisting of 21 genes (ACAA1, ACSF2,
ACSL1, ALOX15, ALOX15B, APOA5, CPNE3, CPT1A, CYP2D6, CYP4F11, ENPP6, FABP7, GSTM4, INSIG2, LIPH, MBTPS2, MTMR9, OSBPL10, PRKAA2,
SLC27A2, STAR), of which the three most important genes were ACSF2, MTMR9, and ACSL1.
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3.7 Transcriptomic variations between
patients sorted into high- and low-score
groups according to the expression of
prognostic genes related to
lipid metabolism

To further understand the differences between patients with high

and low scores, we performed a transcriptomics analysis. First, we

compared genomic variations to compare the TMB and mutation,

deletion, and amplification profiles between the two groups

(Figure 8A). Next, we focused on determining the differences

between the two groups in terms of the three most important

genes that composed the prognostic model of genes. In terms of

methylation levels, the methylation level of ACSL1 was significantly

greater in the low-score group (p value<0.01), while the methylation

level of MTMR9 was greater in the high-score group (p value<0.01),

and the methylation level of ACSF2 was not significantly different

between the two groups (Figure 8B). At the transcriptome level,

ACSL1, ACSF2 and MTMR9 were highly expressed in the high-score

group (Figure 8C). In addition, the transcriptome expression levels of

these three genes were also significantly correlated with the OS of

BRCA patients. Compared with those of the low-expression group,
Frontiers in Immunology 10
the survival rates of the high-expression groups of ACSF2 (Figure 8D,

p value=0.023) and ACSL1 (Figure 8F, p value=0.0017) were

significantly better. Patients in the low-MTMR9 expression group

had a considerably better survival rates than those in the high-

MTMR9 expression group (Figure 8E, p value=0.0015).

3.8 Differences in immune cell infiltration
between patients grouped into high- and
low-score groups according to the levels
of genes related to lipid metabolism
and prognosis

To assess the differences in immune cell infiltration between the

two score groups, we used the ESTIMATE method (Figure 9C). The

findings indicated that the group with a low lipid metabolism-

related prognostic gene score had higher stromal (Figure 9A) and

immune (Figure 9B) scores, while the high lipid metabolism-related

prognostic gene score group of had greater tumor purity

(Figure 9D). These findings suggest that the low-score group may

exhibit a greater degree of immune cell infiltration than the high-

score group does. Moreover, we further analyzed the differences in

immunogenic cell death-related genes between the lipid
FIGURE 5

Effect of LMPGS on OS and validation of time−ROC curves in TCGA-BRCA, GSE88770, and GSE20711 (A) Survival difference between high and low
score groups of LMPGS in the TCGA-BRCA training set; (B) Survival difference between high and low score groups of LMPGS in GSE88770 validation
dataset; (C) Survival difference between high and low score groups of LMPGS in GSE20771 validation dataset; (D) Line plot of AUC of the training set
TCGA-BRCA for BRCA OS at different time points; (E) Line plot of AUC of test set GSE88770 on BRCA OS at different time nodes; (F) Line plot of
AUC of test set GSE20711 on BRCA OS at different time points.
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metabolism-related prognostic gene score groups and found that

ANXA1, IFNE, LRP1 and other genes were highly expressed among

the LMPGS in the low-score group. CALR, EIF2AK1, EIF2AK1 and

other genes were highly expressed in the LMPGS high -score group,

and the majority of genes linked to immunogenic cell death differed

between the two groups (Figure 9E). Next, we examined the

differences in ICI-related genes between the prognostic gene

groups associated with lipid metabolism. TNFRSF9, CD200,

PDCD1, IDO1 and other genes were highly expressed in the low

lipid metabolism-related prognostic gene score group, and the

expression of approximately half of the ICI-related genes differed

between the two groups (Figure 9F).
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3.9 Efficacy of chemotherapy and
immunotherapy and prediction of
candidate drugs for patients with high- and
low-scores according to the levels of lipid
metabolism and prognosis-related genes

The TIDE scores of the two groups varied, indicating that the

two groups have different responses to immunotherapy

(Figure 10A). In addition, the percentage of patients who

responded to immunotherapy predicted by the TIDE database

varied significantly (Figure 10B). To examine in more detail how

groups with high and low lipid metabolism-related prognostic gene
FIGURE 6

Comparison of the overall model including prognostic genes related to lipid metabolism and other models constructed from TCGA-BRCA data
(A) Forest plot of multivariate Cox regression results in TCGA-BRCA data; (B) Nomogram model of prognostic genes related to lipid metabolism was
constructed; (C) Comparison of AUC and number of genes at 1, 3 and 5 years between the overall model of prognostic genes related to lipid
metabolism and other models collected by retrieval (* stands for 0.01< p value <0.05; *** stands for p value <0.001).
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1470167
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Chen et al. 10.3389/fimmu.2024.1470167
scores respond differently to chemotherapy, we used the first-line

BRCA chemotherapy drug Plinabulin for validation. The findings

indicated that the group scoring high exhibited greater AUC values,

indicating good drug absorption (Figure 10C). Subsequently, we

analyzed the drug data from the CCLE and PRISM databases and

found that the sensitivity to 7 drugs (CERANIB-2, YK-4-279,

NICLOSAMIDE, MONENSIN, CUDC-907, NOCODAZONE,

and CETRIMONIUM) was significantly correlated with the lipid

metabolism-related prognostic gene score (Figure 10D, p

value <0.05). Moreover, there were notable differences in the

dose−response curves between the two score groups (p value

<0.05, Figure 10E).
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3.10 Molecular docking

To further examine the possibility of interactions between these

seven possible medications and the proteins encoded by the three

most significant genes (ACSF2, ACSL1, and MTMR9) in lipid

metabolism-related prognostic gene set, we acquired structural

information on the proteins produced by these three genes as well

as the molecular structures of the pharmacological ligands from the

PubChem database. We subsequently performed molecular docking

via AutoDock Vina v.1.2.2 to identify receptor−ligand pairs with

binding free energies less than -5 kcal/mol. The results showed that

only ACSF2, MTMR9 and NICLOSAMIDE could bind to each
FIGURE 7

Clinical characteristics and pathway differences between the high and low lipid metabolism-related prognostic gene score groups in the TCGA
dataset and their application across cancers. (A) Age difference between the high- and low-score groups in terms of prognostic genes related to
lipid metabolism; (B) The difference of tumor stage between the high- and low-lipid metabolism-related prognostic gene score groups;
(C) Difference in tumor status between the high- and low-lipid metabolism-related prognostic gene score groups; (D) Effect of LMPGS on the OS of
all tumors in the TCGA database.
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FIGURE 8

Transcriptomic differences between the high- and low-score groups of prognostic genes related to lipid metabolism in the TCGA-BRCA dataset.
(A) Genomic expression differences between the high- and low-score groups of prognostic genes related to lipid metabolism; (B) Differences in the
methylation levels of prognostic genes related to lipid metabolism; (C) Transcriptome level differences in LMPGS; (D) Correlation of ACSF2 with
BRCA OS; (E) Correlation of MTMR9 with BRCA OS; (F) Correlation of ACSL1 with BRCA OS. (ns stands for p value>0.05; * stands for 0.01< p value
<0.05; ** stands for 0.001< p value <0.01; *** stands for p value <0.001;**** stands for p value <0.0001).
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FIGURE 9

Differences in immune cell infiltration between the high- and low-lipid metabolism prognostic score groups in the TCGA-BRCA data (A) ESTIMATE
stromal score differences between high- and low-score groups of prognostic genes related to lipid metabolism in TCGA-BRCA data; (B) ESTIMATE
immunoscore differences between high- and low-score groups of prognostic genes related to lipid metabolism in TCGA-BRCA data;
(C) ESTIMATE score differences between high- and low-score groups of prognostic genes related to lipid metabolism in TCGA-BRCA data;
(D) ESTIMATE differences in tumor purity between high- and low-score groups of prognostic genes related to lipid metabolism in TCGA-BRCA data;
(E) Differences in immunogenic cell death-related genes between high- and low-lipid metabolism-related prognostic gene score groups in TCGA-
BRCA data; (F) Difference of ICI-related genes between high- and low- score groups of LMPGS in TCGA-BRCA data. (ns stands for p value>0.05; *
stands for 0.01< p value <0.05; ** stands for 0.001< p value <0.01; *** stands for p value <0.001;**** stands for p value <0.0001).
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other (Figures 11A–F). These findings may help elucidate the

interactions between drugs and target proteins and provide

important clues for further research and drug design.
3.11 Single-cell analysis

We performed quality control of the GSM545720 BRCA dataset

according to quality control standards and then performed

dimensionality reduction and clustering. We subsequently set a

resolution value of 0.8 as the clustering criterion and collected the

signature markers of each cluster from published single-cell studies.

Finally, we identified eight subpopulations: epithelial cells,

endotheliocytes, fibroblasts, NK cells, T cells, plasma cells, CD4

cells, and macrophages (Figure 12A).

We subsequently performed differential expression analysis via

the FindAllMarkers function using the Wilcoxon method and found

that among the 22 genes related to lipid metabolism and prognosis,

CPNE3 was upregulated in epithelial cells (Figures 12B, D). To

further analyze the changes in CPNE3 expression during tumor
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progression, we performed a pseudotime series analysis of epithelial

cells. In the initial stage, the expression of CPNE3 gradually decreased

over time (Figure 12C). These results contribute to our understanding

of the single-cell population and variations in gene expression

associated with lipid metabolism and prognosis at the cellular

level (Figure 12E).
3.12 Immunohistochemical staining of
key genes

To validate the disparities in the expression of crucial genes

between human BRCA tissues and normal tissues, we obtained

immunohistochemical profiles of key genes from the Human

Protein Atlas database. We detected marked differences in the

immunohistochemical staining of two key proteins, ACSF2 and

ACSL1, between tumor tissue samples and normal tissue samples.

As shown in the figure, the expression levels of ACSL1 and ACSF2

were higher in tumor tissues than in normal tissues (Figures 13A–D).
FIGURE 10

Chemotherapeutic and immunotherapy effects and drug prediction between high and low score groups of lipid metabolism prognostic genes in
TCGA-BRCA data (A) TIDE score difference between the high- and low-score groups of lipid metabolism prognostic genes; (B) The proportion of
patients who responded to immunotherapy in the high- and low-lipid metabolism prognosis related gene score groups; (C) Area under the drug-
time curve of punabulin between the high- and low-lipid metabolism-related prognostic gene score groups. The higher area under the drug-time
curve of the high rating group of lipid metabolism prognostic genes indicated that the group had better drug absorption of punabulim; (D) Drug
lollipop plot associated with the lipid metabolism prognostic gene score; (E) Violin plot of drugs with the area under the drug-time curve difference
between the high- and low-lipid metabolism prognostic gene score groups. (ns stands for p value>0.05; * stands for 0.01< p value <0.05; ** stands
for 0.001< p value <0.01; *** stands for p value <0.001;**** stands for p value <0.0001).
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3.13 Verification of the expression and
prognostic significance of hub genes

According to the qRT−PCR results, the mRNA expression of

MTMR9 and CPNE3 was greater in triple-negative breast cancer

(TNBC) cell lines (MDA-MB-231 and BT549) and ER-, PR-, and

HER2+ BRCA cell line (SUM149PT). However, ACSL1 and ACSF2

mRNA expression was greater in normal cell lines (nontumorigenic

breast cell line: MCF10A) (Figure 14A). The MCF10A cell line is

considered the baseline for evaluating changes in expression levels.

IHC demonstrated the upregulation of ACSF2, MTMR9, and CPNE3

in BRCA tissues, whereas ACSL1 expression was not significantly

different between tumor tissues and adjacent tissues (Figures 14B, C).

Furthermore, a correlation analysis between the positive areas of each

protein in tissue samples and progression-free survival (PFS) time

was performed among 42 patients whose complete follow-up data

were available. The results revealed that the expression levels of

MTMR9 and CPNE3 were negatively correlated with the survival of

BRCA patients. MTMR9, CPNE3 and Ki67 expression levels were

positively correlated, and the difference was statistically significant

(Figures 14D, E). However, no significant correlations were found

between ACSL1 or ACSF2 expression and survival.
Frontiers in Immunology 16
4 Discussion

Globally, BRCA is among the most prevalent cancers and ranks

as the fifth leading cause of cancer-related mortality (33). Fatty acid

metabolism profoundly influences the tumor immune

microenvironment in BRCA, impacting disease progression and

therapeutic responses (34–36). Despite advances in treatment

modalities, a subset of patients with poor outcomes remains (37),

highlighting the need for novel biomarkers to identify high-risk

individuals. Therefore, developing accurate prognostic tools and

increasing patient survival requires examining signals pertaining to

fatty acid metabolism in BRCA prediction and therapy response.

Omics approaches have become commonly utilized in cancer

research as a means of identifying prognostic or diagnostic features

and biomarkers (38). Specifically, omics-based risk stratification and

molecular profiling could inform personalized treatment strategies.

With advancements in medical technology and the evolution of data

science, the application of machine learning in cancer research and

treatment is garnering increasing attention and recognition (39).

Moreover, the integration of machine learning with omics data is

paving the way for new frontiers in cancer research. For instance,

research has shown that using machine learning to analyze omics
FIGURE 11

Molecular docking diagram (A) Molecular docking diagram between ACSF2 and niclosamide; (B) Structure of the ACSF2-encoded protein; (C) Ligand
structure of niclosamide (D) Molecular docking diagram between MTMR9 and niclosamide; (E) Protein structure encoded by MTMR9; (F) Ligand
structure of niclosamide.
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data can identify prognostic biomarkers for colorectal cancer (40).

Additionally, in TNBC, omics analysis revealed distinct metabolic

subtypes with varying responses to specific inhibitors, suggesting

potential targeted therapeutic approaches (41). However, the

application of machine learning combined with omics analysis to

determine the molecular characteristics of BRCA remains limited.

Our study aimed to develop a novel omics-based model for patient

prognostication and risk stratification in BRCA patients that could

advance personalized treatment. Additionally, our goal was to clarify

the molecular processes that underlie the correlation between BRCA

prognosis and treatment response.

To determine the important genes about fatty acid metabolism,

a cluster analysis on 1280 BRCA samples was conducted in this

research. GSVA revealed a strong correlation between fatty acid
Frontiers in Immunology 17
metabolism and the IL6-STAT3, PI3K-AKT-MTOR, E2F

TARGETS, and MYC TARGETS pathways, demonstrating the

strong connection between fatty acid metabolism and biological

processes related to BRCA. By employing nine machine learning

techniques and exploring their 184 combinations to screen feature

variables, an optimal prognostic model consisting of 21 genes was

developed. The algorithms we selected, such as LASSO, Ridge, and

Elastic Net, are excellent at handling high-dimensional data and

multicollinearity, and have wide applications in survival analysis

and prognostic modeling. By combining different types of machine

learning algorithms, we can improve the robustness and accuracy of

the model to capture the diverse interpretations of the data by each

algorithm. The LMPGS model may successfully stratify BRCA

patients according to risk and OS and may function as an
FIGURE 12

Grouping and differential analysis and pseudotime series analysis of single-cell data (A) When the resolution was 0.8, the GSM545720 dataset was
divided into eight cell populations; (B) The expression of CPNE3 in each cell population, the darker the color, the higher the expression in the cell
population; (C) Changes in the expression of CPNE3 over time. As time goes on, the red color gradually becomes lighter, representing a gradual
decrease in the expression amount; (D) DEGs among various cell populations, among which CPNE3, as one of the genes related to lipid metabolism
and prognosis, is highly expressed in epithelial cells; (E) Changes in the expression of genes related to lipid metabolism prognosis over time. The
color bar from red to blue represents the gene expression from high to low.
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independent prognostic factor, as shown by KM curve analysis and

multivariate analysis. Furthermore, the GSE88770 and GSE20711

datasets were utilized as validation datasets to confirm their efficacy.

These findings highlight the excellent predictive ability of the

proposed LMPGS model for assessing prognosis in BRCA

patients; notably, the model also has applicability across various

other cancers. Our results show that while the validation set

confirms the model’s effectiveness, its poor performance is still a

significant concern. Although Elastic Net combined with LASSO

performed best on the training set, it may overfit the specific noise

and features of that set, leading to weak generalization on new data.

As a result, the model’s performance on the validation set is

unsatisfactory. Additionally, variations in datasets—such as

differences in patient populations, disease subtypes, or data

collection methods—could impact the model, which includes 21

prognostic genes with varying effects across datasets. To address

these issues, we plan to expand our data and improve the model’s

generalizability and prediction accuracy through more rigorous

validation and tuning. Moreover, we found a high LMPGS score

was correlated with advanced stages of BRCA and higher tumor

grades. Our results illustrated that tumors in the high-score group

exhibited higher invasiveness. Therefore, this scoring system serves

as a valuable tool for the early identification of high-risk patients. By

accurately predicting disease progression, clinicians can implement

more targeted early interventions, potentially improving patient
Frontiers in Immunology 18
survival. To facilitate the prediction of BRCA prognosis in

individual patients, we created a nomogram that combines

clinical features with the LMPGS score. The C-index and ROC

curve showed that the nomogram had good discriminatory

capacity, indicating high predictive accuracy. Crucially, compared

with other clinical features, our nomogram exhibited superior net

benefit when applied in predicting survival outcomes for BRCA

patients, demonstrating its potential as a useful and promising

therapeutic tool.

This systematic exploration of the omics differences in low-

grade mucinous BRCA patients stratified by risk according to the

LMPGS model provides a comprehensive understanding of the

underlying regulatory mechanisms involved. Intratumoral

heterogeneity (ITH), characterized by the accumulation of gene

mutations (42), is a well-known genetic characteristic of cancer that

has been linked to malignancy and heightened treatment resistance

(43). In the high-LMPGS score group, significant amplification was

observed at 8q24.21, while significant deletion occurred at 8p21.3.

Previous studies have demonstrated that alterations in chromosome

8 are closely linked to BRCA prognosis and treatment response (44)

and serve as indicators of a poor prognosis (45); thus, these

alterations might contribute to unfavorable outcomes in patients

in the high-score group, which is consistent with our findings.

Furthermore, MYC is a powerful oncogene found at 8q24.21 (46),

which provides more evidence for the connection between the MYC
FIGURE 13

Immunohistochemical staining of key genes in human BRCA tumor tissues and normal tissues (A) IHC of ACSF2 in human normal tissues; (B) IHC of
ACSF2 in human BRCA tissue samples; (C) IHC of ACSL1 in human normal tissue samples; (D) IHC of ACSL1 in human BRCA tissue samples.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1470167
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Chen et al. 10.3389/fimmu.2024.1470167
pathway and fatty acid metabolism. As an epigenetic modification,

DNA methylation is essential for controlling gene transcription and

preserving the integrity of the genome (47). Research uncovered

that the methylation levels of ACSL1 and ACSF2 were notably

higher in the low-score group, so methylation of these genes may

contribute to the observed differences in prognosis among the

two groups.

In the last decade, ICI have emerged as crucial therapeutic

agents for solid tumors (48, 49). Our findings demonstrated

significant upregulation of immune checkpoint molecules,

including CD40 and TNFRSF9, in patients with low LMPGS

scores, whereas patients with high LMPGS scores presented
Frontiers in Immunology 19
higher levels of CD80 expression. Furthermore, the TIDE

algorithm is a widely acknowledged tool for predicting the

responsiveness of patients with tumors to ICI based on their

expression profiles (50). TIDE score analysis predicted a greater

immunotherapy response rate in patients with high LMPGS scores

and indicated that ICI efficacy may be compromised and the

immunological escape potential may be greater in the low-score

group. The TMB indirectly indicates the tumor’s ability and extent

of neoantigen production, thus predicting the effectiveness of

immunotherapy across various cancers (51). The higher TMB

observed in the high-rated group suggests a potentially more

favorable response to immunotherapy, reinforcing our analysis. In
FIGURE 14

Verification of LMPGS hub genes expression. (A) PCR verification of the expression levels of the hub genes. (B, C) IHC was used to verify the
expression of the hub genes in the cancer and adjacent tissues of 50 BRCA patients. (D, E) Correlation analysis of the hub gene expression levels
with PFS and Ki67 in BRCA. (ns stands for p value>0.05; * stands for 0.01< p value <0.05; ** stands for 0.001< p value <0.01; *** stands for
p value <0.001;**** stands for p value <0.0001).
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the low-rated group, genes associated with inflammation and

immune response, such as IFNAR2, CXCL10, and TLR1 (52–54),

showed heightened expression, promoting increased immune cell

infiltration. Our analysis revealed that this group exhibited a higher

immune score. However, there were also elevated levels of

immunosuppressive molecules such as PDCD1 and IDO1 (55,

56), potentially impairing immune cell function. This dual pattern

may explain the poor response to immunotherapy observed in these

cases. These findings indicate that while increased immune cell

presence is observed, it does not necessarily correlate with

heightened sensitivity to immunotherapy. The presence of

intricate immune microenvironments and immunosuppressive

mechanisms likely plays a crucial role in influencing treatment

outcomes. Furthermore, drug validation experiments confirmed

that the high-score group had superior efficacy of drug therapy.

These results imply that our LMPGS model could be useful for the

early identification of BRCA patients who will likely benefit from

first-line immunotherapy. Although this study revealed some

discoveries in the exploration of the relationships between the

LMPGS group and immune-related genes, several limitations

remain. First, our analysis focused on the correlation of gene

expression levels, and did not delve into the complex regulatory

mechanisms of genes at the transcriptional level, and did not

conduct coexpression network analysis, transcription factor

analysis, or epigenetic modification assessment. As a result, we

are unable to fully understand the complex interactions and

regulatory relationships between these genes. In addition,

limitations in sample size and data sources may affect the

generalizability of results. To overcome these limitations, future

studies should combine multilevel bioinformatic analyses and

functional experiments to fully understand the interactions and

regulatory mechanisms between LMPGS genes and immune-related

genes. These findings will provide a more reliable scientific basis for

clinical application.

Early identification of treatment-sensitive patients by clinicians

is necessary for personalized treatment. To further identify

potentially effective drugs, we integrated the CCLE and PRISM

databases and identified seven potential drugs. Molecular docking

technology was used to identify niclosamide as a drug candidate

that interacts with key genes associated with LMPGS and inhibits

STAT3 activation (57), which is aberrantly activated in BRCA.

STAT3 activation promotes angiogenesis, tumor invasion,

metastasis, and cell cycle progression. Previous studies have

shown that niclosamide can prevent adipocytes from undergoing

epithelial−mesenchymal transition via the paracrine IL-6/Stat3

signaling pathway, thereby suppressing the occurrence and

development of BRCA (58). Molecular docking analysis provides

preliminary clues that niclosamide can bind to the key lipid

metabolism prognostic genes ACSF2 and MTMR9, but there are

significant limitations. These limitations include limited model

training data, possible simulation errors, and a lack of

experimental data support. Our preliminary findings therefore

require more experimental validation to ensure their biological

relevance. In addition, molecular docking models focus mainly on

possible direct binding sites, but the actual action of drugs in the cell
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may involve more complex mechanisms, including indirect

regulatory effects and systemic effects, and these complexities are

often not fully reflected in docking models. For example, new

binding sites interact with known drug targets, and lipid genes

influence drug metabolism to achieve their biological effects, details

that have not been explored in depth via molecular docking.

Although we observed the antitumor effects of niclosamide on

BRCA cells and its effect on MTMR9 expression levels, these

experimental results are still preliminary and have not been

systematically replicated and validated. Therefore, in order to

fully understand the mechanism of action of the drug, further

validation in vivo models and clinical samples is needed and future

studies should focus on verifying the biological relevance of these

predicted results and examining how the drug affects lipid

metabolism and other biological processes through more complex

mechanisms. Additional clinical studies are required to validate the

extensive therapeutic potential of niclosamide in BRCA treatment.

However, further validation is warranted. After model selection

and careful study, key prognostic genes were identified. ACSL1, an

essential rate-limiting enzyme in lipid metabolism, catalyzes the

synthesis of phospholipids, cholesterol esters, triglycerides, and

energy-producing fatty acids (59) and participates in the

formation of lipid droplets. Low ACSL1 expression is associated

with a better prognosis in patients with IDH1-mutant glioma (60).

ACSL1 mediates ferroptosis and inhibits tumor growth in TNBC

(61). However, in MDA-231 cells, ACSL1 plays a crucial role in

regulating the excessive production of TNFa-mediated

inflammatory processes related to tumor growth. ACSL1

promotes the progression of ovarian cancer by regulating FSP1

myristoylation to increase antioxidant capacity and ferroptosis

resistance (62). Therefore, the current role of ACSL1 in cancer is

still controversial. In the present study, the expression of ACSL1 in

cell lines derived from TNBC, which has a worse prognosis, was

lower than that in non-TNBC cell lines, which was consistent with

the findings of the bioinformatics analysis in an earlier paper.

However, no significant correlation between clinical specimen

validation and prognosis was observed in this study and further

mechanistic study is needed. It is worth noting that the

immunohistochemical staining results of ACSL1 in HPA database

and clinical patients are different, and the different conclusions of

ACSL1 may be related to the specific characteristics of the samples

or experimental conditions and further mechanistic studies are

needed. Notably, the results of the immunohistochemical staining

of ACSL1 in the HPA database differ from those in clinical patients,

and the different conclusions regarding ACSL1 may be related to

the specific characteristics of the samples or experimental

conditions. This difference may be due to differences in

posttranscriptional regulation and translation efficiency. In

addition, the heterogeneity of sample sources may also lead to

differences in experimental results. ACSF2,an enzyme acyl-CoA

synthetase family member 2, controls the oxidation of fatty acids

and lipid metabolism. The expression of ACSF2 increases

synergistically after etoposide treatment, confirming that the

treatment induces ferroptosis in ER-positive BRCA cells (63).

Consistent with previous studies, this finding further verified the
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inhibitory effect of ACSF2 on tumors, but further functional

experiments are still needed for verification. MTMR9 belongs to

the myosin-related protein family and is mainly a bispecific

phosphatase. Some studies have shown that it is identified as lipid

phosphatase (64) MTMR9, which lacks a phosphatase domain, has

been demonstrated to improve the functionality of other MTMR

proteins, including MTMR6 and MTMR7 (65, 66). Research has

indicated a correlation between high MTMR9 expression and poor

outcomes in patients with esophageal cancer (67). However, no

association between MTMR9 and BRCA has been reported. This

study revealed, for the first time, that MTMR9, a gene involved in

fatty acid metabolism, is correlated with poor prognosis in BRCA

patients. At the single-cell level, we identified eight distinct cell

subgroups, with CPNE3 exhibiting high expression in epithelial

cells. Previous studies have demonstrated that CPNE3 triggers the

PI3K/AKT signaling pathway to regulate the proliferation and

apoptosis of human glioblastoma cells (68). Moreover, CPNE3

overexpression significantly increases the metastatic potential of

BRCA cells (69). Furthermore, single-cell pseudotime analysis

revealed robust upregulation of CPNE3 in early-stage BRCA,

suggesting its potential utility as an early diagnostic marker. In

addition, CPNE3 was highly expressed in IHC analyses of BRCA

patients and was significantly associated with prognosis. The key

genes we identified, MTMR9 and CPNE3, were significantly

different between patients with high and low lipid metabolism

scores, suggesting that they may play an important roles in the

biological behavior of BRCA. While our study highlights the

relevance of these genes to BRCA prognosis, direct functional

experiments to verify their biological role in tumor progression

are currently lacking. Future studies should focus on conducting in

vitro and in vivo experiments to clarify the specific mechanisms of

MTMR9 and CPNE3 in cell proliferation, migration, apoptosis and

other biological processes. For example, the role of these two genes

in BRCA cell lines can be evaluated through gene knockout or

overexpression experiments, combined with cell biology techniques.

In addition, our analysis shows that some mutation information

associated with these two genes can be found from public databases

such as the TCGA. The presence of these mutations may be related

to tumor biological characteristics, prognostic manifestations and

treatment outcomes, but more research is needed to support these

aspects. For example, the effects of different mutation types on

MTMR9 and CPNE3 expression levels can be analyzed to

understand how these mutations drive disease progression in the

tumor microenvironment. Moreover, niclosamide can inhibit

tumor proliferation and affect the expression of the target gene

MTMR9, which further reflects the correlation between MTMR9

and the occurrence and development of BRCA. In conclusion,

future studies should focus on functional validation and mutation

analysis of MTMR9 and CPNE3 to understand their biological

significance in the development of BRCA. These findings are

expected to provide new biomarkers and targets for the

development of personalized treatment strategies.

To mitigate the potential influence of personal preferences on

modeling methods, we employed a comprehensive approach by
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combining nine well-established machine learning algorithms into

184 combinations and selecting the optimal model on the basis of its

accuracy. Despite our rigorous efforts and promising results, it is

critical to recognize some of our study’s shortcomings. Research has

demonstrated that tumor heterogeneity can impact the efficacy of

immunotherapy or chemotherapy. A significant limitation concerns

the potential for intratumor or intrapatient tumor heterogeneity. The

study datasets are publicly available high-throughput sequencing

datasets based on different platforms and are prone to batch effects.

Although we have extensively assessed and validated the LMPGS

signatures, the limited sample size, incomplete data, and insufficient

clinical validation limit the applicability of our findings. Thus, to

further validate our findings, extensive multicenter prospective

investigations are necessary. Finally, although the sensitivity of

patients in different LMPGS risk categories to different small-

molecule medicines is anticipated, confirming this finding via in

vitro pharmacokinetic research and clinical trials is crucial.
5 Conclusion

Our research demonstrated the LMPGS model’s correlation

with immune infiltration features and immunotherapy response,

underscoring its potential as a valid prognostic indicator for BRCA.

In BRCA patients, the LMPGS model is a useful tool for

prognostication and therapeutic decision making. It can also be

used to identify patients who may benefit from chemotherapy or

anticancer immunotherapy. Our thorough examination of fatty acid

metabolism-related genes provides important new information

about their possible significance and function in BRCA. Through

in vitro experiments and clinical data validation, MTMR9 and

CPNE3 were screened as key markers for BRCA prognosis, and

niclosamide was identified as a potential target drug. Overall, our

findings enhance the understanding of lipid metabolic

reprogramming in BRCA and provide an attractive approach for

prognostic assessment, risk stratification, and personalized

treatment of patients with BRCA in clinical practice.
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