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signature to forecast head and
neck squamous cell carcinoma
prognosis and drug response
Sha-Zhou Li1†, Hai-Ying Sun1†, Yuan Tian2†, Liu-Qing Zhou1*

and Tao Zhou1*

1Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of
Science and Technology, Wuhan, Hubei, China, 2Department of Geriatrics, Union Hospital, Tongji
Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
Introduction: Head and neck squamous cell carcinoma (HNSCC), a highly

heterogeneous malignancy is often associated with unfavorable prognosis.

Due to its unique anatomical position and the absence of effective early

inspection methods, surgical intervention alone is frequently inadequate for

achieving complete remission. Therefore, the identification of reliable

biomarker is crucial to enhance the accuracy of screening and treatment

strategies for HNSCC.

Method: To develop and identify a machine learning-derived prognostic model

(MLDPM) for HNSCC, ten machine learning algorithms, namely CoxBoost, elastic

network (Enet), generalized boosted regression modeling (GBM), Lasso, Ridge,

partial least squares regression for Cox (plsRcox), random survival forest (RSF),

stepwise Cox, supervised principal components (SuperPC), and survival support

vector machine (survival-SVM), along with 81 algorithm combinations were

utilized. Time-dependent receiver operating characteristics (ROC) curves and

Kaplan-Meier analysis can effectively assess the model’s predictive performance.

Validation was performed through a nomogram, calibration curves, univariate and

multivariate Cox analysis. Further analyses included immunological profiling and

gene set enrichment analyses (GSEA). Additionally, the prediction of 50% inhibitory

concentration (IC50) of potential drugs between groups was determined.

Results: From analyses in the HNSCC tissues and normal tissues, we found 536

differentially expressed genes (DEGs). Subsequent univariate-cox regression

analysis narrowed this list to 18 genes. A robust risk model, outperforming

other clinical signatures, was then constructed using machine learning

techniques. The MLDPM indicated that high-risk scores showed a greater

propensity for immune escape and reduced survival rates. Dasatinib and 7

medicine showed the superior sensitivity to the high-risk NHSCC, which had

potential to the clinical.
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Conclusions: The construction of MLDPM effectively eliminated artificial bias by

utilizing 101 algorithm combinations. This model demonstrated high accuracy in

predicting HNSCC outcomes and has the potential to identify novel therapeutic

targets for HNSCC patients, thus offering significant advancements in

personalized treatment strategies.
KEYWORDS
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Introduction

HNSCC is the sixth common cancer globally. The incidence of

NHSCC continues to rise, with projections estimating 1.08 million

cases by 2030 (1, 2). Although there are advancements in

multimodality treatment, the five-year survival rate remains below

50% (3, 4). However, the heterogeneity of HNSCC, arising from

diverse etiologies and underlying molecular alterations, presents

significant challenges in tailoring precise treatments. This

heterogeneity can lead to both over-treatment and under-

treatment of patients (5).

Immunotherapy was a promising treatment modality for

HNSCC (6). But there was still a problem that only a few drugs

were used to treatment in this domain such as EGFR targeting

monoclonal antibody, anti-programmed death-1 (PD-1) inhibitors

and PD-L1 (5, 7). Most of them are aimed to recurrent or metastatic

HNSCC. And less than 20% of immune checkpoint inhibitors can

have effects in their patient (8, 9). Thus potential targets is urgently

needed for HNSCC immunotherapy in different stage.

In this study, we selected 18 remarkably prognostic genes and

constructed a prognostic model by 101 combinational algorithms.

Using this model, HNSCC patients were divided into two groups

based on their risk scores. It is expected to help doctors to predict

survival time of patients, choose better treatment strategies, provide

new gene targets for immunotherapy and apply more sensitive

drugs to patients between two groups. This study has significant
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benefits in terms of further immune research, precision treatment

and improvements of clinical outcomes.
Method

Collection of databases

The clinical characteristics, expression profiles and relevant data

for NHSCCs were obtained from The Cancer Genome Atlas (TCGA)

and Gene Expression Omnibus (GEO) datasets. Our study included

825 samples from two cohorts: TCGA-HNSC (n = 555) and

GSE65858 (n = 270). For each patient, RNA-sequencing and other

clinical information were collected. Detailed information is provided

in Supplementary Table 1. RNA-sequencing data underwent log-2

fold-change (log-2FC). Preprocessed of the data was conducted using

the robust multi-array averaging (RMA) algorithm, implemented in

the “affy” package. This preprocessing step included background

correction, normalization, and summarization to ensure the data

were suitable for downstream analyses.
Construction of MLDPM and Kaplan-Meier
survival analysis

To identify DEGs, we utilized the caret R package (R version

4.4.0) and Strawberry Perl to contrast the TCGA and GEO

databases, resulting in the identification of 536 DEGs. Univariate

Cox regression analysis was used to analyze these DEGs, yielding 18

risk genes that were subsequently incorporated into the risk model.

To construct a robust risk model, the expression profiles of the

prognostic gene were transformed into z-scores to enhance

comparability across different samples. The procedure was

followed to generate signatures:
a) 10 machine-learning algorithms were integrated, including

random survival forest (RSF), Ridge, Lasso, generalized

boosted regression modeling (GBM), supervised principal

components (SuperPC), CoxBoost, partial least squares

regression for Cox (plsRcox), elastic network (Enet),

Stepwise Cox and survival support vector machine
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Fron
(Survival-SVM). These algorithms were combined using

10-fold cross-validation approaches in a random manner,

producing a total of 101 combinational algorithms tailored

for enhanced predictive accuracy (10–12). Detailed

descriptions of each algorithm were outlined in previous

research by Hu et al (11, 13).

b) For every combinational algorithm, data from TCGA and

GEO were respectively used to construct and validate the

prognostic model. The first algorithm was applied to select

variables from 18 selected prognostic genes, and the last was

utilized construct the risk model based on variables.

c) For ensuring the most predictive and reliable model was

selected, average concordance index (C-index) was

calculated across TCGA-HNSC and GSE65858 cohorts to

select the greatest combinational algorithm.
Validation of the MLDPM

Univariate and multivariate Cox proportional hazard regression

analyses were carried out to validate the independent predictive

significance of clinical features for OS. ROC curve analysis was

conducted using the “timeROC” R package to evaluate the

predictive ability of the HNSCC prognostic model and other

clinicopathological signatures. Furthermore, the C-index of the

MLDPM was compared with that of other clinical factors to

assess the superiority of our prognostic model. The C-index

represents the discriminatory ability of the model, where a higher

value indicates better predictive performance.
Nomogram and calibration

The rms R package was employed to construct a nomogram for

predicting the 1-, 3-, and 5-year OS. A nomogram provided a

graphical representation of the predictive model, assigning points to

each variable, with the total points correspond to the predicted

outcome probability.

To evaluate the nomogram’s performance, calibration curves

were generated to compare the predicted probabilities with the

actual outcomes. These curves demonstrated the consistency

between the predicted and observed results.
Estimate and enrichment analysis

The tumor estimate scores (TME) were calculated by the

estimate R package. The tumor mutational burden (TMB) is

associated with the formation of neoantigens that can trigger an

immune response against tumors. The TMB was compared to

reflect the diverse immune environment in two groups.

Immunotherapeutic prediction was performed by calculating the

Tumor Immune Dysfunction and Exclusion (TIDE) prediction

score. The score was then employed to evaluate the degree of

immunotherapy responsiveness similarity among patients with
tiers in Immunology 03
HNSCC. Potential molecular mechanisms were identified through

GSEA. Following the DEGs analysis, all genes were ranked based on

log-2FC. To uncover the potential biological functions and

signaling pathways involved, Gene Ontology (GO) classification

and Kyoto Encyclopedia of Genes and Genomes (KEGG)

enrichment analysis were executed using the “clusterProfiler” tool.

The top five significant biological pathways were then chosen for

graphical representation.
The tumor immune microenvironment
(TIME) and immune subtypes

The analysis of immune cell factors in two risk groups, based on

GSEA results, was conducted using software such as TIMER,

XCELL, CIBERSORT, EPIC, MCPcounter, QUANTISEQ, and

CIBERSORT on TIMER 2.0. This comprehensive approach

provided detailed insights into the immune cell infiltration profiles.

The immune cell infiltration status within the HNSCC patient

population was quantified, and the tumor infiltration estimation

data derived from TCGA were retrieved from the appropriate

online platform for further analysis. Differences in immune

infiltrating cells between the two risk groups were analyzed using

Wilcoxon signed-rank test. Visualization of the results was done

using the “scales,” “limma,” “ggtext,” and “ggplot2” R packages,

with a bubble chart representation.

Additionally, the analysis of immune checkpoint activation and

TIME scores between the risk groups was carried out using the

“ggpubr” R package to compare and visualize the differences.
Checkpoints and prediction of
potential drugs

With the help of the “oncoPredict” package, the sensitivity

analysis of several drugs using the Genomics of Drug Sensitivity in

Cancer (GDSC) database was conducted. This analysis focused on

evaluating the response of cancer cells to different drugs based on

their genomic profiles and drug sensitivity data. Furthermore, the

IC50 difference between groups was explored through a differential

expression analysis. It revealed the significant differences associated

with the risk score in drug sensitivity.
Statistical analysis

Statistical data analysis in this study was conducted by

Bioconductor packages in R 4.4.0. HNSCC patients’ predictive

ability of prognostic signatures and clinicopathological

characteristics were assessed through the ROC curve, with the

“timeROC” R package being employed for this analysis. Univariate

and multivariate Cox analyses were performed to determine the

independent prognostic value of OS clinical characteristics in

HNSCC patients. The Kaplan-Meier method was used to evaluate

survival prediction in the patient cohort. The prediction for OS was

showed in the nomogram. Immune cell, immune function, subtypes,
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estimate scores, TMB, and TIDE drawn an integrated picture of

tumor microenvironment. Besides, GSEA enrichment explained it in

a microcosmic viewpoint. Lastly drug sensitivity analysis would

demonstrated a way to cure or stop the progression of the tumor.
Result

MLDPM construction and validation

Figure 1 shows the prognostic model construction process.

Initially, we obtained 59427 genes and 555 HNSCC symbols from

the TCGA database. By comparing the 555 TCGA symbols with 270

symbols from the GEO database, we identified a total of 536 DEGs.
Frontiers in Immunology 04
536 candidate genes are screened by univariate Cox regression

analysis to identify significant prognostic risk-related genes, with a

threshold p-value less than 0.001. This analysis led to the selection

of 18 prognostic genes, including 11 upregulated genes and 7

downregulated genes (Figure 2A).

Subsequently, based on the expression levels of these 18 selected

features, along with survival time and status as input data, a total of

101 algorithm patterns were applied using 10 machine learning

methods on the TCGA-HNSC cohort as the training set and the

GSE65858 cohort as the test set (Figure 2B). By assessing the

average C-index of the different algorithm patterns, the RSF

+CoxBoost combination was identified as having the highest

average C-index of 0.621, indicating its effectiveness in predicting

patient outcomes.
FIGURE 1

Study design overview. The samples from TCGA and GEO (total n = 825) were used to obtain 18 prognostic genes matrix expression data. The
MLDPM was constructed through 101 combinational algorithms consisted of 10 machine-learning algorithms. Subsequently, Kaplan-Meier analysis
and univariate/multivariate Cox analyses were applied to assess its prediction ability, and the model was verified by a nomogram and calibration
curves. Furthermore, immune analysis, and GSEA were performed, and the IC50 prediction in the risk groups was calculated.
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This RSF+CoxBoost model facilitated the identification of key

prognostic features among the 18 selected genes. Using the median

risk value, the HNSCC samples were classified into two groups, the

low-risk and the high-risk group. Kaplan-Meier survival analyses

demonstrated that the survival outcomes in HNSCC is intimately

connected with the risk score, with low-risk patients showing higher

overall survival rates (Figures 2C, D).
Frontiers in Immunology 05
Verification of the MLDPM accuracy

Univariate and multivariate Cox regression analysis were

carried out to assess the prognostic significance of the MLDPM

(HRs were 4.053, 95% CI: 2.664–6,168, p< 0.001 and 3.647, 95% CI:

2.367–5.619, p< 0.001, respectively), incorporating immune-related

genes, age, and stage (Figures 3A, B). These analyses revealed that
FIGURE 2

Construction of MLDPM. (A) 101 algorithm combinations were used to identify the MLDPM. The average C-index of two cohorts (TCGA-HNSC and
GSE65858) was calculated. (B) The forest plot exhibited the results of the univariate-cox regression analysis. (C) Overall survival in the different risk
groups of TCGA. (D) Overall survival in the different risk groups of GEO.
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the MLDPM indeed had a significant predictive value for NHSCC

patients, suggesting its association with their risk profile. The risk

score consistently exhibited a higher concordance index compared

to individual clinical components over time. This finding suggests

that the overall risk grade based on the MLDPM is a more reliable

indicator for predicting the prognosis, potentially outperforming

traditional clinical variables (Figure 3C). AUC values of 1-, 3-, and

5-year survival outcomes were 0.694, 0.731, and 0.656, respectively

(Figure 3D). Furthermore, for the risk grade, determined by the

MLDPM, the value surpassed those of other clinicopathological

factors like age, gender, stage, and grade. This result highlights the

robustness and reliability of the MLDPM in terms of differentiating

HNSCC patient outcomes, as it provides a more discriminative tool

for prognosis prediction compared to these conventional

parameters (Figure 3E).
Prognostic nomogram development
and evaluation

In this study, a nomogram was developed for individuals with

HNSCC based on gender, age, stage, and risk score. Doctors could

roughly predict patients’ OS using their clinical information

(Figure 4A). Additionally, the calibration curves demonstrated a

high C-index (0.658,95% CI: 0.615-0.701), indicating the superior

performance of the nomogram (Figure 4B). This suggests that the

personalized OS prediction model incorporating these clinical and

molecular variables could be a valuable tool for prognostic

assessment in HNSCC patients.
Frontiers in Immunology 06
Tumor immune microenvironment analysis

The immune scores in the low-risk group were significantly

higher (p< 0.001), and it was the immune factors that played a role

of the main character (p< 0.001) (Figure 5A). The results of TIDE

can illustrate this from another side (Figure 5B). The TMB scores

were computed according to the TCGA somatic mutation data. It

was positively associated with high-risk scores, but the difference

between groups was not big enough (Figures 5C, D). Above all, the

difference between two groups was mainly due to their immune

function in the TIME. Thus, we needed to analyze it in

more details.

Initially, we used GSEA enrichment analysis to select the top 5

ways of two groups. Several pathways like intestinal immune

network for IgA production and primary immunodeficiency were

associated with the low-risk group, while ECM-receptor interaction,

focal adhesion, pathways in cancer and TGF-b signaling pathway

were found in the high-risk group (Figures 5E, F). And compared

with high expression of collagen fibril organization, extracellular

matrix structural constituent in the high-risk group, B cell mediated

immunity, antigen binding, T cell receptor complex as well as

immunoglobulin complex produced more in the low-risk group

(Figures 5G, H).
Cell analysis

A correlation analysis with seven different algorithms revealed a

strong connection between the MLDPM and the expression levels of
FIGURE 3

Validation of MLDPM. (A) Univariate-cox regression analysis and (B) Multivariate-cox regression analysis indicated the MLDPM as an independent risk
factor for HNSCC combined with other clinical features. (C) C-index of the MLDPM and clinical factors for evaluating treatment outcome. (D) Time-
ROC analysis for predicting prognosis. (E) ROC analysis of the risk score and clinically relevant pathological factors.
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various immune cell populations. In the bubble chart, most immune

cells had a higher expression in the low-risk group, and only CD4+ T

cell and macrophage expressed higher in the high-risk group

(Figure 6A). To further discover the immune microenvironment, we

estimated the immune function by “ssGSEA” package. The result

supported that only macrophages have a higher enrichment in the

high-risk tumor tissue (Figure 6B). And HNSCC symbols were divided

into different immune subtypes which are based on the consensus

clustering of cell type proportions (C1-C6). Through Chi-squared test,

it was discovered that there were statistical differences between groups

in immune subtypes. The Immune subtype C2 (INF-gamma

dominant) was more in the high-risk group and C1 (wound healing)

was more in the low-risk group (Figure 6C).
Frontiers in Immunology 07
Predictive value of drug sensitivity

For evaluate the responsiveness to immunotherapy more

accurately, the study delved into 47 immune checkpoint

molecules of two groups, encompassing the B7/CD28 family,

which regulates T-cell activation, and the TNF superfamily,

known for their involvement in immune cell signaling. The result

illustrated that a higher risk score was associated with lower

expression of TIGIT, IDO1, TMIGD2, CTLA4, BTNL2, LGALS9,

CD160, PDCD1, CD200R1, CD28, CD40LG, TNFRSF18,

TNFRSF9, TNFRSF14, TNFRSF8, IDO2, TNFSF14, ICOS, LAG3,

ADORA2A, CD244, CD274, KIR3DL1, CD48, TNFRSF4, BTLA,

CD27, TNFSF18, TNFRSF25; and higher expression of CD44,
FIGURE 5

Tumor components analyses of HNSCC. (A–C) The difference of the (A) TME score, (B) TIDE and (C) TMB between two groups. (D) The correlation
between the TMB and the risk score. (E, F) GSEA based on the KEGG analysis in two groups. (G, H) GSEA based on the GO analysis in two groups.
***p < 0.001.
FIGURE 4

A prognostic nomogram. (A) Nomogram model presenting the MLDPM and clinicopathological factors. (B) Nomogram model predicting overall
survival using calibration curves.
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TNFSF9, VTCN1, NRP1 and CD276 (Figure 7A). Therefore,

patients’ risk score can play a role in the selection of potential

checkpoint agonist. In the drug sensitivity analyses, high-risk group

was more resistant to the immunotherapy. There were only 8

medicines had a better performance in the high-risk group

(Figures 7B–I).
Discussion

The complex and heterogeneous nature of HNSCCs poses

significant challenges for current diagnostic and prognostic tools,

leading to many misdiagnoses, undertreatment, or overtreatment

(14). Given its unique anatomical location and the absence of

effective early detection screening methods, HNSCC are often

unresectable or diagnosed with early metastasis (15, 16).

Immunotherapy has emerged as an essential component of

treatment (14, 16). however, suitable treatment is contingent on

accurate diagnosis. Consequently, there is an urgent need to develop

a more precise method to provide guidelines for clinicians. The

selection of appropriate algorithms and determining the optimal

one require careful consideration, as individual preferences often

dominate research choices. Therefore, establishing reliable

prognostic biomarkers using optimal integrative machine learning

algorithms is crucial.

In this study, we selected 18 remarkably different genes as a

prognostic feature. For construct a MLDPM, TCGA database is

used to train and GSE65858 is utilized to test via 101 machine

learning algorithms (17). The risk assessment based on the validated
Frontiers in Immunology 08
model revealed that individuals classified as low-risk had

significantly prolonged survival and superior prognosis. The ROC

curve validated the signature’s reliability and stability, showcasing

its commendable predictive accuracy. Notably, stage, age, and the

risk score emerged as significant predictors, affirming the

signature’s standalone value in forecasting HNSCC outcomes.

Further analysis through ROC and C-index confirmed the

exceptional performance of the MLDPM across various cohorts,

suggesting its strong potential for practical implementation in

clinical scenarios. Consequently, our findings suggest that

MLDPM can effectively contribute to the assessment of prognosis

for Head and Neck Squamous Cell Carcinomas in real-world

medical settings, providing valuable guidance for treatment

planning and patient management.

By compare differences between groups, we found that the low-

risk group had lower TIDE scores and higher estimate scores.

However, the difference in TMB between the two groups was

minimal. GSEA enrichment analysis and immune function

analysis indicate the immunological silence of the high-risk group

(14). In the low-risk group, the tumor tissue has a bigger proportion

immune subtype C1 (wound healing) than the high-risk group. On

the contrast, immune subtype C2 (IFN-gDominant) has accounted

for 80 percent of the tissue in the high-risk group. The immune

response may lose control of tumors comprising C2, or tumors in

C2 are those that have already been remodeled by the existing

robust Type I infiltrate and have escaped immune recognition (18).

The result indicates that HNSCC is a cancer which have adequate

blood supply (18). Based on the analysis in the tumor immune

microenvironment, fibroblasts and CD4+ T cell, especially naive
FIGURE 6

Immune analyses. (A) Multiple algorithms were applied to assess the relationship between MLDPM and immune cell subtypes. (B) Immune cell
populations and functions were determined using ssGSEA. (C) chi-square test of different immune subtypes in two groups. ***p < 0.001; **p < 0.01;
*p < 0.05.
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CD4+ T cells, showed their positive relationship with the risk score.

It was already well known that CD4+ T cell plays a vital role in anti-

tumor effector cells. So high naive or resting T cells could be a

response of high malignancy. Tumors might suppresses T cells to

keep them rest or naive (19). It not only reduced the amount and

function of CD8+ T cells and cytotoxic T lymphocytes, but also

marred the immune function of CD4+ T cells (19, 20). Enough

nutrition and silently immune response may be the reasons that

high-risk patients have shorter survival time.

Immunotherapy holds immense promise for HNSCC therapy,

yet its efficacy remains limited, with a reported response rate

hovering around 20% or lower. Currently, only PD1 and PD-L1

have been validated as predictive biomarkers of immune checkpoint

inhibitor response in HNSCC (21, 22). While bevacizumab, a

monoclonal antibody targeting VEGF, did not improve OS, it did
Frontiers in Immunology 09
improve the response rate and progression-free survival, albeit with

increased toxicities (23). This study marks the beginning of

immunotherapy in NHSCC, aiming to investigate novel

approaches to enhance the immunotherapy response rate and

provide new possibilities for drug development.

Through drug sensitivity analysis, we found that 8 chemotherapeutics

were more sensitive for the high-risk group. Three of them, ERK6604,

SCH772984, as well as VX-11e, are extracellular regulated protein

kinase (ERK) inhibitors. Raf-MEK-ERK pathway governs varied

biological activities, including cell proliferation, migration,

differentiation, and apoptosis (24). ERK 1/2 promotes cancer cell

proliferation via angiogenesis, cell cycle entry, and enhanced survival

(25). Therefore, ERK inhibitors can be a key of HNSCC treatment.

And there are 102 chemotherapeutics were more suitable for the low-

risk group, such as Afatinib, Afuresertib, Alisertib and so on. Those
FIGURE 7

Exploration for the potential therapeutic strategies. (A) Expression of immune checkpoint genes. (B–I) The difference of the IC50 of (B) dasatinib for
src/bcr-abl inhibitor, (C) AZD1332 for TRKA antagonist, (D) AZD7762 for checkpoint kinase inhibitor, (E) BI-2536 for PLK1 inhibitor, (F) SB505124 for
ALK inhibitor, (G) ERK-6604, (H) SCH772984, and (I) VX-11e for ERK inhibitor. ***p < 0.001; **p < 0.01; *p < 0.05.
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FDA‐approved drugs may be potential candidate agents for HNSCC.

Upregulated genes like INHBA, PSMD2 and OLR1 play a crucial role

in breast cancer (BC) which may bring us some similarities between

HNSCC and BC (26–29). The high expression of CD44, TNFSF9,

VTCN1, NR1, and CD276 in the high-risk group may show us

specific molecular mechanism.

By using this model, we can divide HNSCC patients into different

risk groups with their risk scores. And their degree of malignancy and

survival time can be prognosticated by doctors to some extent. This is

benefit for patients and doctors to take proactive cure measures or

conservative treatment. From the study, Raf-MEK-ERK pathway

might be an effective target for the research of HNSCC treatment.

And it could reveal some physiological mechanisms in the cancer cell

to help scientists prevent the progression and proliferation. And for

immunotherapy, there are some possible drug and potential targets to

provide new research directions for HNSCC treatment.

In conclusion, the present study highlights the transformative

potential of the MLDPM in the clinical management of HNSCC

patients. By offering a more nuanced understanding of patients’

immunophenotypes and delving deeper into the immune molecular

mechanisms of the disease, MLDPM can help stratify patients more

accurately, predicting response to immunotherapy and guiding

personalized treatment plans. This novel approach has the

potential to significantly improve patient outcomes and bridge the

gap in immunotherapy response rates, making it a valuable addition

to current diagnostic and therapeutic strategies in HNSCC care.

While MLDPM is a promising comprehensively prognostic model,

this study has some limitations. Firstly, the data of our study is

limited. It only contained 270 samples from GEO database and 555

samples from TCGA-HNSC. And statistical bias, personal equation

and lack of data might have bad influence on the result due to the

different origins of profiles. There is a need to further validation on

other data sets and larger clinical samples. Secondly, this model was

not verified by clinical samples and experiment. There are certain

limitations to clinical application. Thirdly, the study only explored

the difference of drug sensitivity between two risk groups. But the

effectiveness of drugs did not be validated. Finally, HNSCC is a

general term of several cancers (22, 30, 31). Detailed analysis is

needed to perform in the subtypes (22, 30, 31).
Conclusion

In conclusion, we conducted a MLDPM through 101 algorithms

combinations. In addition to the expression of immune genes,

immune cells and checkpoints were explored between the high

and low risk groups of the MLDPM. Meanwhile, the prediction and

selection of individual and personalized immunotherapeutic can be

facilitated by the MLDPM.
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