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Galectin-9 – ligand axis:
an emerging therapeutic
target for multiple myeloma
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International University, Miami, FL, United States, 2The Ronald O. Perelman Department of
Dermatology, NYU Grossman School of Medicine, New York, NY, United States, 3Department of
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Galectin-9 (Gal-9) is a tandem-repeat galectin with diverse roles in immune

homeostasis, inflammation, malignancy, and autoimmune diseases. In cancer,

Gal-9 displays variable expression patterns across different tumor types. Its

interactions with multiple binding partners, both intracellularly and extracellularly,

influence key cellular processes, including immune cell modulation and tumor

microenvironment dynamics. Notably, Gal-9 binding to cell-specific

glycoconjugate ligands has been implicated in both promoting and suppressing

tumor progression. Here, we provide insights into Gal-9 and its involvement in

immune homeostasis and cancer biology with an emphasis on multiple myeloma

(MM) pathophysiology, highlighting its complex and context-dependent dual

functions as a pro- and anti-tumorigenic molecule and its potential implications

for therapy in MM patients.
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1 Introduction

Galectins are a family of 15 b-galactoside-binding lectins widely expressed by a wide

range of mammalian cells, including immune cells (1). Galectins have been categorized into

three main groups based on their molecular structures (Figure 1) (2). These groups include

proto-type galectins (galectin (Gal)-1, -2, -5, -7, -10, -11, -13, -14, and -15), characterized by

a single carbohydrate-recognition domain (CRD) that can form homodimers; chimera-type

galectins (Gal-3), featuring a single CRD and an amino-terminal polypeptide tail rich in

proline, glycine, and tyrosine residues for oligomer formation; and tandem-repeat galectins

(Gal-4, -6, -8, -9, and -12), consisting of two CRDs connected by a peptide linker of variable

length, ranging from 5 to over 50 amino acids (3, 4).

Extensive research has established galectins as important regulators of immune

homeostasis (5), inflammation (6), malignancy (7–9), and autoimmune diseases (10).

Considerable advancements have been achieved in understanding how galectins influence
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both arms of the immune response (11). In the realm of innate

immunity, galectins regulate granulocyte chemotaxis, dendritic cell

maturation, mast cell activation, and many other activities (6). In

adaptive immunity, galectins are widely recognized for their effects

on T cell function, where they differentially modulate T cell

development, activation, differentiation, and effector function (6,

12, 13). However, their roles in B cell development and activation

have been receiving more attention as galectins appear to have

profound effects on B cell responses (11). To date, Gal-1, -3, -8, and

-9 have been identified as regulators of B cell signaling (11, 14–17).

Gal-9 has been observed to exhibit both tumor-promoting and

tumor-suppressing roles across various cancer types, includingmultiple

myeloma (MM) (18, 19). This dual functionality underscores the

necessity for a thorough examination of current research on Gal-9

involvement in cancer progression. In this review, we present the latest

insights on this topic with particular emphasis on the role of Gal-9 in

driving MM progression and its potential therapeutic implications. We

urge for a more comprehensive understanding of the precise

mechanisms through which Gal-9 influences MM to guide the

development of future therapeutic strategies.
2 Galectin-9 (Gal-9)

2.1 Gal-9 structure, expression,
and secretion

Gal-9, a tandem-repeat galectin with a molecular weight of 34 to

39 kDa, has emerged as a multifaceted molecule with substantial

implications in various physiological and pathological processes (20,

21). In humans, Gal-9 consists of two distinct CRDs connected by a

linker peptide (Figure 2) (20, 22). Depending on the length of the

peptide, this lectin is categorized into three types: long form (58

amino acids), medium form (26 amino acids), and short form (14

amino acids) (20). Gal-9 shows widespread distribution across
Frontiers in Immunology 02
multiple organs, including the liver, small intestine, thymus, kidney,

spleen, lung, cardiac, and skeletal muscles, with minimal detectability

in reticulocytes and brain tissues (23). Gal-9 is primarily expressed by

various immune cells including T cells, B cells, macrophages, and

mast cells (24, 25). Moreover, under both normal and

pathophysiological conditions, Gal-9 can also be detected in

endothelial cells, fibroblasts, and astrocytes (14, 17, 26–28).

Gal-9 can be found either extracellularly or intracellularly

within the nucleus (29–31) as well as in the cytoplasm (21, 29,

32). While cell surface Gal-9 plays various roles in different cellular

processes such as cell aggregation and apoptosis, its cytoplasmic

functions are still not fully understood (31, 32). Gal-9 secretion into

the extracellular space does not follow the classical secretory

pathway due to the absence of the signal secretion peptide

essential for its transport into the endoplasmic reticulum (33, 34).

The exact mechanism by which Gal-9 is secreted is not fully

understood; however, it is proposed to be released from the cell

via non-classical secretory pathways involving matrix-

metalloproteinases and protein kinase C (PKC) (20). These

pathways may include translocation directly across the plasma

membrane, release via exosome packaging, or export via

lysosomes, endosomes, and microvesicles (35–37).
2.2 Gal-9 and its glycoconjugate ligands

Gal-9 binds to b-galactoside-bearing glycoconjugates on the cell

surface through its CRDs, influencing diverse cellular functions and

signaling pathways (38–43). The N- and C-terminal CRDs of Gal-9

exhibit only 39% amino acid similarity and interact with distinct sets

of carbohydrate ligands (28, 44). The varying specificity and affinity

of both the N- and C-terminal CRDs for specific glycoconjugates

directly influence Gal-9 affinity toward its binding partners (45, 46).

For instance, the N-terminal CRD is suggested to play a predominant
FIGURE 1

Galectin classification. Galectin members are categorized into three main groups: proto-type, chimera-type, and tandem repeat based on the
number, structures, and orientation of carbohydrate recognition domains (CRDs). They specifically recognize and bind to b-galactoside on
glycoconjugates (proteins, lipids, or other molecules) through these CRDs. Proto-type Gal-1, -2, -5, -7, -10, -11, -13, -14, and -15, are characterized
by a single CRD which can form homodimers; chimera-type Gal-3, is composed of one CRD and an amino-terminal polypeptide tail rich in proline,
glycine, and tyrosine residues for oligomer formation; and tandem-repeat Gal-4, -6, -8, -9, and -12, consist of two distinct CRDs connected by a
peptide linker of variable length, ranging from 5 to over 50 amino acids.
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role in activating dendritic cell function, while the C-terminal CRD is

mainly involved in triggering T-cell death (47). Moreover, variations

in the length of the linker domain between the two CRDs affect their

rotational flexibility, facilitating the formation of higher-order

multimers and increasing Gal-9 valency (48, 49). Earl et al.

experimentally demonstrated that incorporating the linker region

from Gal-9 into constructs of Gal-1 dimer alters their potency in

killing T cells, while the glycan-binding specificity of the CRD

remains unchanged compared to the wild-type galectin (49). The

broad range of functions carried out by Gal-9 stems from its ability to

interact with multiple partners (Table 1). These binding partners

range from intracellular cytosolic/nuclear proteins to canonical

membrane glycoproteins uniquely expressed in a cell- or tissue-

specific manner (30, 43, 62). Moreover, glycosylation of these Gal-9

glycoprotein ligands is often contextualized in relation to the

coordinated expression of glycosyltransferases associated with cell

differentiation or a malignant or metastatic cell transition (15, 72).
FIGURE 2

Gal-9 isoforms. Gal-9 is a tandem-repeat galectin with a molecular
weight of 34 to 39 kDa. It consists of two distinct CRDs linked by a
peptide of variable lengths. Humans have three natural isoforms of
this lectin, which differ in the length of this interdomain peptide.
These isoforms are termed i) long form Gal-9 (58 amino acids), ii)
medium form Gal-9 (26 amino acids), and short form Gal-9 (14
amino acids).
TABLE 1 Gal-9 binding partners.

Binding partner Biological function Reference

Lipid rafts Induction of osteoblast differentiation (50, 51)

Forssman glycosphingolipid (FGL) Maintenance of epithelial polarity (52)

Latent membrane protein 1 Not Determined (53)

Poly-b-galactosyl epitope (Galb1–3)n Promote Leishmania major and host interaction (54)

T cell immunoglobulin mucin-3 (Tim-3) Maturation, promotion, and cytokine secretion of dendritic cells, monocytes
Exhaustion or apoptosis of T cells

(55, 56)
(57, 58)

Thrombin Cleavage of Gal-9 and decrease of eosinophil attraction (59)

Gal-3 Hetero/multimerization and increased valency (60)

Gal-8 Hetero/multimerization and increased valency (60)

Gal-9 Homo/multimerization and increased valency (60)

CD40 Suppressing T cell proliferation and inducing cell death (61)

CD44 Suppression of CD44-hyaluronic acid binding
Induces differentiation and maintenance of adaptive regulatory T cells.
Osteoblast differentiation through the CD44/Smad signaling pathway

(62)
(63)
(50)

CD45 Regulating B cell activation (15)

CD206 Driving angiogenesis and producing chemokines to support tumor growth
by macrophages

(64)

Immunoglobulin E (IgE) Prevention of mast cell degranulation and suppression of the allergic response (39)

Immunoglobulin M (IgM) Regulating B cell signaling (16)

Protein disulfide isomerase (PDI) Regulating T cell migration (40)

Programmed cell death protein 1 (PD-1) Attenuate Gal-9/TIM-3-induced T cell apoptosis (65)

Dectin-1 Tolerogenic macrophage programming and adaptive immune suppression (66)

Vascular cell adhesion molecule-1 (VCAM-1) Suppression of VLA-4/VCAM-1 binding (67)

V-domain Ig-containing suppressor of T cell
activation (VISTA)

Apoptosis of cytotoxic T cells (68)

Glucose transporter 2 (GLUT- 2) Maintenance of blood glucose homeostasis and suppression of type 2 diabetes onset (41)

Glucagon receptor (Gcgr) Promoting hyperglycemia (38)

(Continued)
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2.3 Gal-9 role in immune homeostasis

Galectins are now well-recognized for playing critical roles in

both innate and adaptive immune responses (73). Gal-9 initiates

innate immunity by promoting the maturation of dendritic cells, as

evidenced by the increased expression of Th1 cytokines and co-

stimulatory molecules, including HLA-DR, CD83, CD80, CD54,

and CD40. Subsequently, these matured dendritic cells migrate to

lymph nodes, where they trigger the activation of T cells (55). In

addition, Gal-9 acts as a chemoattractant for eosinophils, modulates

signal-dependent chemotaxis of neutrophils, and enhances

phagocytosis (27, 74). In monocytes, intracellular Gal-9 induces

the transcription of the proinflammatory cytokines IL-1a, IL-1b,
and IFN-g (30). Conversely, Gal-9 also promotes the expansion of

immunosuppressive macrophages (75).

In adaptive T cell-mediated immune responses, Gal-9 plays a

crucial role in regulating T cell development and homeostasis (76).

It has diverse immunomodulatory effects depending on the

concentration, receptors, and skewing signals available for the

interactions (77). At high concentrations, Gal-9 induces apoptosis

of activated T cells (CD8+ and CD4+), while it increases cytokine

production by activated T cells at low concentrations (77, 78).

Additionally, Gal-9 facilitates the differentiation of naïve T cells into

regulatory T cells (Tregs) by amplifying Foxp3 expression,

nevertheless inhibiting the production of Th17 cells, thus

participating in Th17/Treg immune regulatory functions (79).

Similarly, galectins are also crucial in signal transduction and the

regulation of B cell development, differentiation, activation, and

antibody production (14). In particular, Gal-9 can compromise B

cell activation transmitted via the B cell receptor (15, 16). In humans,

the interaction between Gal-9 and appropriated glycosylated CD45

on human naïve/memory B cells inhibits calcium signaling through a

Lyn-CD22-SHP-1 pathway, ultimately reducing B cell activation (15).

Additionally, both recombinant and mesenchymal stem cell-derived

Gal-9 can attenuate B cell proliferation and the formation of

antibody-secreting cells in a dose-dependent fashion (80). These

findings are further solidified by studies from Hu et al. that show

human cord blood-derived stem cells directly modulate activated B

cells through a Gal-9-mediated mechanism, resulting in significant

suppression of B cell proliferation and noticeable phenotypic changes

(81). In addition, Gal-9 can bridge human circulating and naive B

cells to vascular endothelial cells, coordinating their pace of

transendothelial migration (17). Furthermore, these interactions

induce a global transcriptional response in gene families associated

with the regulation of naive B cell signaling and membrane/
Frontiers in Immunology 04
cytoskeletal dynamics (17). Among the key immunoregulators

elevated by Gal-9 binding is the signaling lymphocytic activation

molecule family member 7 (SLAMF7), while its cytosolic adapter

EAT-2 necessary for cell activation is unaffected (17). Moreover, Gal-

9 can encourage the survival traits of human naïve and circulating B

cells by inducing the phosphorylation of the pro-survival factor,

pERK (17).
3 Gal-9 involvement in malignancy

Central to the development of effective therapies for eliminating

cancer is the exploration of malignancy-associated molecules and

their role in driving tumor development, metastasis, and relapse

(82). The patterns of Gal-9 expression and its roles in various types

of cancer have emerged as a compelling area of research, aiming to

deepen our comprehension of mechanisms underlying cancer

initiation and progression and identify novel therapeutic targets

(83, 84). Gal-9 exhibits substantial variability in its expression levels

across different types of cancer (83). Compared to healthy tissues,

Gal-9 is upregulated in pancreatic carcinoma, breast cancer,

glioblastoma multiforme, cervical carcinoma, chronic lymphocytic

leukemia, acute myeloid leukemia (AML), and cutaneous T cell

lymphoma (CTCL) (85–91). In B-cell acute lymphoblastic leukemia

(B-ALL) patients, while serum Gal-9 levels remain unchanged

compared to healthy controls, Lee et al. demonstrated that

adipocyte-secreted factors in obese patients upregulate Gal-9

surface expression on B-ALL cells (91, 92). Conversely, Gal-9

expression is notably downregulated in esophageal carcinoma,

renal cell carcinoma, hepatocellular carcinoma, colon cancer,

gastric cancer, prostate cancer, lung cancer, melanoma, and

adrenal carcinoma compared to healthy counterparts (31, 93–97).

Additionally, there has been a growing interest in exploring the

prognostic value of Gal-9 expression levels in patients with cancer

(83). Many studies suggest an inverse relationship between Gal-9

expression levels and cancer progression for many solid tumors,

including esophageal carcinoma, gastric cancer, hepatocellular

carcinoma, colorectal cancer, lung cancer, breast cancer, and

melanoma (93, 98–105). In these instances, administering

exogenous Gal-9 can effectively impede the growth of these

tumors, representing a promising anti-cancer treatment (83).

However, contradictory findings exist where a few studies

associate high tissue and plasma Gal-9 with poor survival and

clinical outcomes (90, 106). Indeed, Gal-9 and its binding partner, T
TABLE 1 Continued

Binding partner Biological function Reference

4-1BB (CD137) Facilitate signaling and functional activity in T cells, dendritic cells, and natural
killer cells

(69)

NF-IL6 (C/EBP b) Inflammatory cytokine production in monocytes (30)

DR3 Promoting Treg function that dampen inflammatory disease (70)

Toll-like receptor-4 (TLR-4) Alleviating brain injury and promoting neuronal restoration by microglial activation (71)
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cell immunoglobulin mucin-3 (Tim-3), have been implicated in

negatively regulating the cellular immune response by inducing T

cell apoptosis and exhaustion, fostering an immunosuppressive

tumor microenvironment (TME) (18, 43). Interestingly, in non-

small cell lung carcinoma, high Gal-9 expression on cancer cells is

associated with longer overall survival, whereas elevated Gal-9 levels

on tumor-infiltrating lymphocytes predict shorter recurrence-free

survival (101). Hence, these opposing effects are likely reflected by

context-dependent roles of Gal-9 in cancer, influenced by its

localization within the TME, by cancer-specific responses, by

tumor heterogeneity, by variability in the expression profiles of

Gal-9 glycoconjugates ligands, and by diversity of experimental

results driven by differing methods of analysis and inadequate

clinical sample sizes (107). These variabilities of Gal-9 expression

not only influence tumor development and progression, but also

patient prognosis (Table 2).
3.1 Gal-9 and multiple myeloma (MM)

3.1.1 Characteristics and diagnosis of MM
MM is a clonal B cell malignancy, accounting for approximately

1% of all cancers and 10% of hematologic malignancies (127). It is

characterized by abnormal accumulation of ≥10% malignant clonal

plasma cells in the bone marrow (128–132). MM is commonly

diagnosed in elderly individuals, with a median age at diagnosis

around 66 years (133). There is a clear sex disparity in MM

incidence across all ages and racial/ethnic groups, with males

showing higher incidence and mortality rates compared to

females. However, the underlying mechanisms and the impact of

sex on patient outcomes remain poorly understood and

underexplored (134, 135). Data from a recent study suggest that

individuals with MM have a median survival rate of about 7.5 years

(136). Most individuals with MM exhibit the production of a

monoclonal immunoglobulin protein, also termed M-protein,

generated by aberrant clonal plasma cells. Nonetheless, in 15–20%

of cases, MM cells exclusively release monoclonal free light chains,

and in fewer than 3% of patients, these cells do not secrete any

monoclonal protein (133, 137).

The malignant clonal plasma cells in MM cause typical end-

organ damage, such as hypercalcemia, renal failure, anemia, and

lytic bone lesions referred to as “CRAB” symptoms (138–140). The

presence of one or more of the CRAB symptoms sets MM apart

from other plasma cell disorders, such as smoldering multiple

myeloma (SMM) and monoclonal gammopathy of undetermined

significance (MGUS) (138). SMM is identified by 10-60% bone

marrow plasma cell proliferation and/or elevated M-protein ≥3 g/

dL, without CRAB symptoms (141), while MGUS is characterized

by a clonal bone marrow plasma cells <10% and a serum M-protein

level <3 g/dL in asymptomatic patients (142). Both SMM and

MGUS are recognized as precursors to MM, with an annual

progression risk of 10% and 1%, respectively (143).

The surface antigens CD138, CD38, CD45, CD19, CD56,

CD117, CD20, CD28, CD27, and CD81 are the most widely used

markers for characterizing normal and malignant plasma cells

(144). BM-derived myeloma cells are typically defined by their
Frontiers in Immunology 05
high expression of CD38, CD138, and CD56, low expression of

CD45, and absence of CD19 (145). In addition to its crucial role in

establishing MM diagnosis, numerous studies have reported the

prognostic and therapeutic significance of plasma cell

immunophenotypic features in MM patients (146). For instance,

the upregulation of CD19 and its regulatory partner CD81 are

linked to poorly differentiated plasma cell clones associated with

poor outcomes in MM patients (147). Similarly, the expression of

CD45 on clonal plasma cells is associated with an aggressive

phenotype of MM (148). B cell maturation antigen (BCMA/

CD269) is another surface marker that is primarily expressed by

plasma cells and mature B lymphocytes (149, 150), and is

upregulated on malignant plasma cells in MM (151, 152). BCMA
TABLE 2 Gal-9 expression in cancer and its prognostic value.

Gal-9 as Promoter of Tumorigenicity

Cancer Type Putative mechanism Reference

Pancreatic
carcinoma

Immunosuppression via
macrophage reprogramming

(66, 87, 108)

Cervical
carcinoma

Tumor immune evasion (86, 109)

Glioma Tumor immune evasion (88, 110)

Leukemia Tumor immune evasion (91,
111, 112)

Lymphoma Decreases CD8+ T cell infiltration (89)

Gal-9 as a Tumor Suppressor

Cancer Type Putative mechanism Reference

Esophageal
carcinoma

Promotes tumor cell apoptosis (97,
102, 113)

Colorectal cancer Promotes tumor cell apoptosis, immune
surveillance, autophagy, and
suppresses proliferation

(93,
114–116)

Gastric cancer Promotes tumor cell apoptosis (100, 117)

Lung cancer Inhibits tumor cell adhesion and invasion
while activating NK cells

(67,
101, 118)

Gal-9 with Both Tumorigenic and Tumor
Suppression Activity

Cancer Type Putative mechanism Reference

Breast cancer Pro-Tumor – Inhibits immune surveillance
Anti-Tumor – Decrease metastasis

(85,
103, 119)

Multiple
myeloma

Pro-Tumor – Promotes tumor immune
evasion
Anti-Tumor – Suppresses tumor cell
proliferation and induces tumor
cell apoptosis

(18, 19, 120)

Hepatocellular
carcinoma

Pro-Tumor – Promotes tumor growth and
metastasis Anti-Tumor – Induces tumor
cell apoptosis

(95, 98,
121–124)

Melanoma Pro-Tumor – Promotes M2 macrophages-
mediated angiogenesis
Anti-Tumor – Suppresses tumor cell
invasion and metastasis and induces tumor
cell apoptosis

(31, 64, 67,
125, 126)
f
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is a target antigen for the FDA approved chimeric antigen receptor-

T (CAR-T) cell therapies for MM (153).

3.1.2 Mechanistic roles of Gal-9 across
diverse malignancies

In breast cancer, Gal-9 overexpression enhances cancer cell

adhesion and invasion through Focal Adhesion Kinase activation,

which upregulates the pro-invasive protein S100A4, and facilitates

immune evasion via the Tim-3-Gal-9 pathway by transferring Gal-9

to the cell surface (85, 154–156). In contrast, recombinant protease-

resistant Gal-9 (rGal-9) exerts anti-proliferative effects in gastric

cancer by inducing apoptosis, reducing the phosphorylation of

VEGFR-3 and IGF-1R, and altering miRNA expression (100). In

colorectal cancer, Gal-9 promotes extensive intra-tumoral NK cell

infiltration through Rho/ROCK1 signaling, correlating with

improved prognosis (93, 157, 158). Similarly, in mice with lung

cancer, Gal-9 induces macrophage differentiation into plasmacytoid

dendritic cell-like macrophages, potentially enhancing NK cell

activation, and extending longevity (118). Gal-9 also inhibits

tumor growth in hepatocellular carcinoma by inducing apoptosis

via MicroRNAs mediated miR-1246-DYRK1A-caspase-9 axis

(121), and suppresses esophageal squamous cell carcinoma

proliferation both in vitro and in vivo through Jun NH2-terminal

kinase (JNK) and p38 MAPK pathways (113). However, Gal-9 may

support tumor immunosuppression in glioblastoma by promoting

M2 tumor-associated macrophage activity (88). In contrast, in

pancreatic ductal adenocarcinoma, Gal-9’s binding to Dectin-1-

expressing macrophages fosters immunosuppression and tumor

progression, though exogenous rGal-9 can induce apoptosis by

promoting cytochrome release and altering miRNAs expression in

this context (66, 159). In cervical cancer, the Tim-3-Gal-9 pathway

facilitates immune escape by promoting regulatory T cell activity,

with epigenetic regulation through the H3K9me3-specific histone

methyltransferase (SUV39H1) - DNA methyltransferase 3 alpha

(DNMT3A) axis (86, 109). While serum Gal-9 levels are elevated in

patients with advanced cutaneous T-cell lymphoma, the exogenous

administration of rGal-9 induces apoptosis by Tim-3 independent

activation of caspase-3 and caspase-9, and suppresses in vivo tumor

growth (89). Finally, in AML, the Tim-3-Gal-9 autocrine loop

promotes leukemic stem cell self-renewal and disease progression

through the NF-kB, b-catenin, and PKC/mTOR pathways (91,

111). These findings underscore the complex and context-

dependent roles of Gal-9 in cancer biology, highlighting its

potential therapeutic importance in MM.

3.1.3 The BM microenvironment in MM
The BM consists of a heterogeneous population of cells,

including hematopoietic stem cells and their myeloid and

lymphoid progeny, along with endothelial cells and cells derived

from mesenchymal stromal cells, such as adipocytes, chondrocytes

and osteoblasts, all of which are embedded in the extracellular

matrix (ECM) (160). In MM, the crosstalk between MM cells and

the surrounding BM microenvironment activates intracellular

signaling pathways that impact tumor behavior, including tumor

growth, progression, angiogenesis, immune evasion, and drug

resistance (161, 162). This crosstalk is facilitated by direct cell-cell
Frontiers in Immunology 06
contact through surface adhesion molecules, secreted soluble

cytokines and growth factors, and exosome-mediated intercellular

communication (163).

Different molecular complexes on MM cells interact with ECM

proteins, such as syndecan-1 (CD138) with collagen type 1 (164) and

very late antigen-4 (VLA-4) with fibronectin (165), or with their

binding partners on various non-tumor cells, such as VLA-4 with

vascular cell adhesion molecule-1 (VCAM-1) and lymphocyte

function-associated antigen-1 (LFA-1) with intercellular adhesion

molecule-1 (ICAM-1) (166). These interactions activate various

downstream signaling pathways associated with tumor progression

and poor outcomes in MM patients such as NF-kB, ERK, and
phosphoinositide 3-kinases (PI3K)/Akt pathways (163). Cytokines

and growth factors, synthesized and released by bonemarrow stromal

cells (BMSCs) orMM cells, are also implicated in triggering the major

signaling pathways that promote the survival and dissemination of

MM cells and mediate drug resistance (166). Key MM-associated

cytokines include interleukin-6 (IL-6), IL-10, IL-17a, insulin-like

growth factor-1 (IGF1), vascular endothelial growth factor (VEGF),

fibroblast growth factor (FGF), transforming growth factor-b (TGF-

b), and B cell-activating factor (BAFF) (167–169). Cytokines are also

involved in disrupting normal bone remodeling in MM, leading to

increased bone resorption and formation of osteolytic lesions, which

are present in approximately 80% ofMMpatients (170). Both BMSCs

and MM cells contribute to the pathogenesis of myeloma osteolytic

lesions through secretion of osteoclast activating factors, such as

receptor activator of nuclear factor-kB (RANKL), tumor necrosis

factor-a (TNF-a), macrophage inflammatory protein-1a (MIP-1a),
macrophage colony-stimulating factor (MCSF), IL-3, and IL-6 (171)

as well as osteoblast inhibitory factors such as the Wnt antagonists

Dickkopf-1 (DKK1), secreted frizzled-related protein-2 (sFRP-2),

Runt-related transcription factor 2 (Runx2), and TGF-b (172).

Characteristically, MM cells foster an immunosuppressive bone

marrow environment not only by inhibiting antitumor effector cells

and disrupting antigen presentation, but also by encouraging the

expansion of regulatory immune cells (173), such as myeloid-

derived suppressor cells (174, 175), Tregs (176, 177), and

regulatory B cells (178, 179). The myeloma microenvironment

also shows a significant increase in Th17 T cells, probably due to

the myeloma cell-derived IL-6 and TGF-b production (180).

Increased IL-17 production by Th17 T cells has been

demonstrated to suppress cytotoxic T cell activity, promote

myeloma cell growth in vitro and in vivo through IL-17 receptors

(IL17R), and play a crucial role in MM-associated bone disease

(180, 181). Moreover, dendritic cells (DCs) exhibit functional

impairment in MM patients, characterized by the inability to

upregulate CD80 expression in response to stimulation by human

CD40LT and IL-2, possibly due to their inhibition by the elevated

levels of TGFb1 and IL-10 in the myeloma microenvironment (182,

183). Importantly, studies have demonstrated an upregulated

programmed death ligand-1 (PD-L1) on malignant plasma cells is

reported to increase as MGUS progresses to MM (184), combined

with elevated expression of its receptor programmed death 1 (PD-1)

on several MM-associated immune cell subsets, including T cells, B

cells, NK cells, and DCs (185). The interaction between PD-L1 and

PD-1 represents a major contributor to the immunosuppressive
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characteristics observed in the MM microenvironment and is

shown to be counteracted by PD-L1 or PD-1 blockade (186, 187).

3.1.4 Dual role of Gal-9 in MM
Data from MM studies on the role of Gal-9 are sparse and

controversial, with evidence documenting both pro-tumorigenic

and anti-tumorigenic activities (Figure 3) (18, 19). Investigations

conducted by Lee et al. on BM aspirate samples obtained from 109

newly diagnosed MM patients indicate that Gal-9 expression is an

independent predictor of poor survival in patients who exhibit

elevated PD-L1 levels (107). In a recent study performed on blood

samples from 60 newly diagnosed MM patients and 40 healthy

controls, Zhang et al. have revealed upregulated expression levels of

Tim-3 on CD4+ T cell surfaces, elevated Gal-9 mRNA in peripheral

blood mononuclear cells, and increased serum levels of Gal-9 in

MM patients compared to healthy donors (18). The researchers

have demonstrated that Tim-3, upon binding with Gal-9, disrupts

the balance between CD4+ T cell subsets (Th1, Th2, Th17, and Treg

cells) and impacts secretion of their cytokines, leading to inhibition

of the cytotoxic function of Th1 cells and promotion of Th2 and

Th17 cells involvement in the immune escape of MM (18).

On the other hand, earlier studies led by Kobayashi et al. report

that rGal-9 effectively suppresses the proliferation of various human

B-lymphoblast myeloma cell lines (HMCL), namely IM9, AMO-1,

KMS-12-BM, NCI-H929, and RPMI8226, and its effectiveness is

directly associated with the binding affinity of Gal-9 to each HMCL
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(19). Their data also demonstrate that Gal-9 exerts a dose-dependent

pro-apoptotic effect on primary myeloma cells derived from 10 MM

patients, including cells from treatment-resistant patients with poor

prognosis and chromosomal abnormalities (19). Mechanistically, the

authors suggest that Gal-9 induces apoptosis through the activation

of caspase-8, -9, and -3, associated with the activation of JNK and p38

MAPK signaling pathways, while inhibiting JNK or p38 MAPK

pathways result in attenuated the anti-proliferative effect of Gal-9,

highlighting the crucial role of these pathways in mediating the anti-

myeloma cell effect of Gal-9 (19). In contrast, data from another study

reveal that Gal-9 induces T cell apoptosis with no effect on MM cells

(120). The dual role of Gal-9 extends beyond MM; for instance, in

hepatocellular carcinoma, its downregulation in hepatocytes

promotes tumor growth and metastasis, while its overexpression in

Kupffer cells and endothelial cells suppresses the anti-tumor immune

response by inducing T cell apoptosis or senescence (98, 121–123).

This duality may be due to the loss of Gal-9 expression during tumor

progression after its initial upregulation helps establish a tumorigenic

environment (122). In malignant melanoma, high Gal-9 expression

suppresses the invasion and metastasis by blocking adhesion to

endothelium and ECM (67). However, in metastatic malignant

melanoma patients, Gal-9 binding to CD206 expressing M2

macrophages promotes tumor growth by increased angiogenesis

and chemokine production (64). Further research is required to

explore how Gal-9 contributes to each of the cancer hallmarks in

MMpatients, considering its cellular and subcellular localizations and
FIGURE 3

The dual role of Gal-9 in MM and potential therapeutic strategies. The left panel depicts the pro-tumorigenic effect of Gal-9, showing its binding to
Tim-3 on CD4+ T cells, which leads to disrupted T cell subset balance by inhibiting Th1 and enhancing the immune response of Th2 and Th17 cells.
The right panel illustrates the anti-tumorigenic effect of Gal-9, demonstrating its binding to myeloma cells and subsequent activation of apoptotic
pathways through caspases and JNK/p38 MAPK signaling. Thick black arrows indicate activation and bar-ended red lines represent inhibition.
Potential therapeutic strategies are shown within green frames.
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its interacting partners within the TME. Additionally, the potential

significance of individual Gal-9 splice variants in regulating MM

progression needs to be elucidated.

3.1.5 Clinical implications of Gal-9 in MM
The standard treatment for MM involves a variety of drug

combinations aiming to enhance patient survival and quality of life

(188, 189). These include alkylating agents (melphalan,

cyclophosphamide), corticosteroids (dexamethasone, prednisone),

anthracyclines (doxorubicin and liposomal doxorubicin),

proteasome inhibitors (PIs; bortezomib, carfilzomib, ixazomib),

immunomodulatory drugs (IMiDs; thalidomide, lenalidomide,

pomalidomide), monoclonal antibodies (mAbs; Daratumumab,

isatuximab, elotuzumab), CAR-T cell therapies, nuclear export

inhibitors, histone deacetylase inhibitors (iHDACs), and

autologous stem cell transplantation (ASCT) (190–192). The

selection of therapy throughout the disease course is influenced

by factors such as age, performance status, comorbidities, eligibility

for stem cell transplantation, and the risk stratification of MM

patients (189). The strategic use of these treatment modalities has

significantly enhanced the overall survival rates in MM patients

(193–195). However, challenges, such as drug intolerability, drug

resistance, and disease-relapse remain prevalent, necessitating the

ongoing development of novel therapeutic strategies (196).

Prior studies have underscored the critical role of Gal-9 and its

binding partner Tim-3 on CD4+ T cell surfaces in the development

of treatment resistance in both hematologic and solid malignancies

(197). In AML, patients who failed to respond to chemotherapy

exhibited elevated expression levels of Gal-9 and Tim-3, suggesting

that targeting the Gal-9/Tim-3 axis could potentially enhance the

effectiveness of induction chemotherapy and improve remission

rates in AML patients (198). Furthermore, a growing body of

evidence from both preclinical studies and clinical trials indicates

that combination therapy targeting Gal-9/Tim-3 alongside anti-PD-

1/PD-L1 treatment produces superior outcomes in cancer patients

compared to either approach alone (83).

These promising results in various cancer types spark interest in

exploring the potential of Gal-9/Tim-3 targeting in MM. While

comprehensive studies specifically examining the combination of

Gal-9 inhibitors with standard anti-MM therapies are currently

lacking, the substantial evidence of Gal-9 contribution to an

immunosuppressive TME in MM strongly suggests the potential

for synergistic therapeutic effects (18). For instance, blocking Gal-9/

TIM-3 interactions could potentially enhance the efficacy of FDA-

approved BCMA-targeted CAR-T cell therapies by prolonging their

survival and activity within the TME, resulting in a more effective

elimination of MM cells (199). This approach could be particularly

beneficial in MM, where maintaining CAR-T cell function in the

hostile TME remains a significant challenge (200). Likewise,

combining Gal-9 inhibition with the lenalidomide, a standard

anti-MM therapy that enhances the cytotoxic activities of T-cells

and NK-cells against tumor cells, could potentially augment the

immune response against MM (201). However, this combination

strategy warrants further investigation.
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In this regard, blocking Tim-3 using mAbs or small molecules

has shown promise in preclinical studies (202–204). Similarly, a-
Lactose and its derivatives have been used for targeting Gal-9 (205,

206). However, concerns about their non-selective inhibition of

galectins and widespread presence in food and pharmaceutical

preparations emphasize the need for alternative Gal-9 inhibitors

(206). Recently, researchers have developed novel Gal-9-

neutralizing antibodies that protect T cells from Gal-9-induced

cell death and enhance T cell-mediated tumor cell killing (207).

On the other hand, considering the pro-apoptotic effect of rGal-

9 on MM cells, there is a possibility of targeting MM through the

development of stable rGal-9 formulations for delivery to myeloma

cells (19). Indeed, Kobayashi et al. have demonstrated significant

efficacy and relative safety of Gal-9 as a tumor growth inhibitor in

MM xenograft models, suggesting its potential as a therapeutic

approach for MM (19). Notably, exogenous administration of Gal-9

has been shown to effectively induce tumor cell apoptosis in other

types of cancer, such as esophageal cancer (113), hepatocellular

carcinoma (121), gastric cancer (100), chronic myeloid leukemia

(208), and CTCL (89). Furthermore, rGal-9 administration has

been shown to inhibit tumor progression by impeding the in vivo

metastasis of highly metastatic melanoma and colon cancer cells

(67). Prior studies have also demonstrated that exogenous Gal-9

treatment significantly increases the expression of the B cell

immunoregulatory factor SLAMF7, which represents a promising

immunotherapeutic target for MM (17). Accordingly, combining

rGal-9 with anti-SLAMF7 therapy holds the potential for

synergistically enhancing the targeting of MM cells (209, 210).

However, alterations in the cell glycome during the transition from

normal plasma cells to myeloma cells likely impact Gal-9 binding

affinity and modify intracellular signaling activation, highlighting

the necessity for thorough investigation of this hypothesis (211,

212). Additionally, combining rGal-9 with proteasome inhibitors,

which disrupts protein degradation in myeloma cells, could yield

synergistic effects in inducing apoptosis through the simultaneous

targeting of complementary cell death pathways (213). Further

research is needed to fully elucidate the potential of Gal-9-based

therapy, identify patients who would benefit most, and develop

novel combination strategies for MM patients to overcome current

treatment challenges and improve patient outcomes.
4 Conclusions

Gal-9 is a ubiquitous molecule predominately expressed by

immune and stromal cells of tissues in the immune system. It

interacts with a diverse array of intracellular, cell membrane and

extracellular ligands, influencing numerous cellular processes that

govern development/regulation of immune responses and

development/progression of a malignancy. A growing body of

evidence, in fact, indicates that the Gal-9 - ligand axis considerably

contributes to the pathophysiology of many cancer types. In MM, the

Gal-9 ligand-binding activity causes both tumor-promoting and

tumor-suppressive properties depending on the appropriately
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glycosylated ligands on discrete cell types in the TME. Further

research is warranted to elucidate the precise mechanisms

underlying the dual role of Gal-9 in MM, paving the way for

targeting Gal-9 in combination with currently available anti-MM

therapies to enhance the treatment efficacy. Translating

these findings into clinical applications holds promise for

improving patient care and outcomes of this challenging

hematologic malignancy.
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94. Lahm H, André S, Hoeflich A, Fischer JR, Sordat B, Kaltner H, et al.
Comprehensive galectin fingerprinting in a panel of 61 human tumor cell lines by
Frontiers in Immunology 11
RT-PCR and its implications for diagnostic and therapeutic procedures. J Cancer Res
Clin Oncol. (2001) 127:375–86. doi: 10.1007/s004320000207

95. Chen S, Pu J, Bai J, Yin Y, Wu K, Wang J, et al. EZH2 promotes hepatocellular
carcinoma progression through modulating miR-22/galectin-9 axis. J Exp Clin Cancer
Res. (2018) 37:1–12. doi: 10.1186/s13046-017-0670-6

96. Yang J, Zhu L, Cai Y, Suo J, Jin J. Role of downregulation of galectin-9 in the
tumorigenesis of gastric cancer. Int J Oncol. (2014) 45:1313–20. doi: 10.3892/
ijo.2014.2494

97. Hou N, Ma J, Li W, Zhao L, Gao Q, Mai L. T−cell immunoglobulin and mucin
domain−containing protein−3 and galectin−9 protein expression: Potential prognostic
significance in esophageal squamous cell carcinoma for Chinese patients. Oncol Lett.
(2017) 14:8007–13. doi: 10.3892/ol.2017.7188

98. Zhang Z-Y, Dong J-H, Chen Y-W, Wang X-Q, Li C-H, Wang J, et al. Galectin-9
acts as a prognostic factor with antimetastatic potential in hepatocellular carcinoma.
Asian Pacific J Cancer Prev. (2012) 13:2503–9. doi: 10.7314/APJCP.2012.13.6.2503

99. Jiang J, Jin M-S, Kong F, Cao D, Ma H-X, Jia Z, et al. Decreased galectin-9 and
increased Tim-3 expression are related to poor prognosis in gastric cancer. PloS One.
(2013) 8:e81799. doi: 10.1371/journal.pone.0081799

100. Takano J, Morishita A, Fujihara S, Iwama H, Kokado F, Fujikawa K, et al.
Galectin-9 suppresses the proliferation of gastric cancer cells in vitro. Oncol Rep. (2016)
35:851–60. doi: 10.3892/or.2015.4452

101. He Y, Jia K, Dziadziuszko R, Zhao S, Zhang X, Deng J, et al. Galectin-9 in non-
small cel l lung cancer. Lung Cancer . (2019) 136:80–5. doi : 10.1016/
j.lungcan.2019.08.014

102. Akashi E, Fujihara S, Morishita A, Tadokoro T, Chiyo T, Fujikawa K, et al.
Effects of galectin-9 on apoptosis, cell cycle and autophagy in human esophageal
adenocarcinoma cells. Oncol Rep. (2017) 38:506–14. doi: 10.3892/or.2017.5689

103. Irie A, Yamauchi A, Kontani K, Kihara M, Liu D, Shirato Y, et al. Galectin-9 as
a prognostic factor with antimetastatic potential in breast cancer. Clin Cancer Res.
(2005) 11:2962–8. doi: 10.1158/1078-0432.CCR-04-0861

104. Wang K, Chen Z, Wu R, Yin J, Fan M, Xu X. Prognostic role of high gal-9
expression in solid tumours: a meta-analysis. Karger S, Basel AG, editors. Basel,
Switzerland: Karger (2018) p. 993–1002.

105. Zhou X, Sun L, Jing D, Xu G, Zhang J, Lin L, et al. Galectin-9 expression
predicts favorable clinical outcome in solid tumors: a systematic review and meta-
analysis. Front Physiol. (2018) 9:452. doi: 10.3389/fphys.2018.00452

106. Labrie M, De Araujo LOF, Communal L, Mes-Masson A-M, St-Pierre Y. Tissue
and plasma levels of galectins in patients with high grade serous ovarian carcinoma as
new predictive biomarkers. Sci Rep. (2017) 7:13244. doi: 10.1038/s41598-017-13802-5

107. Lee B-H, Park Y, Kim J-H, Kang K-W, Lee S-J, Kim SJ, et al. Prognostic value of
galectin-9 relates to programmed death-ligand 1 in patients with multiple myeloma.
Front Oncol. (2021) 11:669817. doi: 10.3389/fonc.2021.669817

108. Mondragón L, Kroemer G, Galluzzi L. Immunosuppressive gd T cells foster
pancreatic carcinogenesis. In: OncoImmunology. United Kingdom: Taylor & Francis
(2016).

109. Zhang L, Tian S, Zhao M, Yang T, Quan S, Yang Q, et al. SUV39H1-DNMT3A-
mediated epigenetic regulation of Tim-3 and galectin-9 in the cervical cancer. Cancer
Cell Int. (2020) 20:1–15. doi: 10.1186/s12935-020-01380-y

110. Liu Z, Han H, He X, Li S, Wu C, Yu C, et al. Expression of the galectin-9−Tim-3
pathway in glioma tissues is associated with the clinical manifestations of glioma. Oncol
Lett. (2016) 11:1829–34. doi: 10.3892/ol.2016.4142

111. Silva IG, Yasinska IM, Sakhnevych SS, Fiedler W, Wellbrock J, Bardelli M, et al.
The Tim-3-galectin-9 secretory pathway is involved in the immune escape of human acute
myeloid leukemia cells. EBioMedicine. (2017) 22:44–57. doi: 10.1016/j.ebiom.2017.07.018

112. Pang N, Alimu X, Chen R, Muhashi M, Ma J, Chen G, et al. Activated Galectin-
9/Tim3 promotes Treg and suppresses Th1 effector function in chronic lymphocytic
leukemia. FASEB J. (2021) 35:e21556. doi: 10.1096/fj.202100013R

113. Chiyo T, Fujita K, Iwama H, Fujihara S, Tadokoro T, Ohura K, et al. Galectin-9
induces mitochondria-mediated apoptosis of esophageal cancer in vitro and in vivo in a
xenograft mouse model. Int J Mol Sci. (2019) 20:2634. doi: 10.3390/ijms20112634

114. Yang Q, Hou C, Huang D, Zhuang C, Jiang W, Geng Z, et al. miR−455−5p
functions as a potential oncogene by targeting galectin−9 in colon cancer. Oncol Lett.
(2017) 13:1958–64. doi: 10.3892/ol.2017.5608

115. Sakhnevych SS, Yasinska IM, Fasler-Kan E, Sumbayev VV. Mitochondrial
defunctionalization supresses Tim-3-Galectin-9 secretory pathway in human colorectal
Cancer cells and thus can possibly affect tumor immune escape. Front Pharmacol.
(2019) 10:342. doi: 10.3389/fphar.2019.00342

116. Wiersma VR, de Bruyn M, Wei Y, van Ginkel RJ, Hirashima M, Niki T, et al.
The epithelial polarity regulator LGALS9/galectin-9 induces fatal frustrated autophagy
in KRAS mutant colon carcinoma that depends on elevated basal autophagic flux.
Autophagy. (2015) 11:1373–88. doi: 10.1080/15548627.2015.1063767

117. Long B, Yu Z, Zhou H, Ma Z, Ren Y, Zhan H, et al. Clinical characteristics and
prognostic significance of galectins for patients with gastric cancer: a meta-analysis. Int
J Surg. (2018) 56:242–9. doi: 10.1016/j.ijsu.2018.06.033

118. Kadowaki T, Arikawa T, Shinonaga R, Oomizu S, Inagawa H, Soma G, et al.
Galectin-9 signaling prolongs survival in murine lung-cancer by inducing macrophages
to differentiate into plasmacytoid dendritic cell-like macrophages. Clin Immunol.
frontiersin.o
rg

https://doi.org/10.1007/s12017-020-08611-5
https://doi.org/10.1016/j.trecan.2020.04.002
https://doi.org/10.1016/j.trecan.2020.04.002
https://doi.org/10.3389/fimmu.2012.00199
https://doi.org/10.3389/fimmu.2019.01762
https://doi.org/10.1002/eji.200939886
https://doi.org/10.1002/med.2013.33.issue-S1
https://doi.org/10.1002/med.2013.33.issue-S1
https://doi.org/10.1371/journal.pone.0065616
https://doi.org/10.4049/jimmunol.170.7.3631
https://doi.org/10.1016/j.clim.2008.01.006
https://doi.org/10.1089/scd.2013.0335
https://doi.org/10.3390/ijms25031830
https://doi.org/10.1111/joim.2015.278.issue-6
https://doi.org/10.1016/j.gendis.2022.05.020
https://doi.org/10.1016/j.gendis.2022.05.020
https://doi.org/10.1016/j.ijbiomac.2023.127768
https://doi.org/10.3389/fimmu.2019.01594
https://doi.org/10.3389/fimmu.2019.01594
https://doi.org/10.1096/fj.202000528RR
https://doi.org/10.1038/s41388-020-1186-7
https://doi.org/10.1002/jcp.v235.5
https://doi.org/10.1016/j.jdermsci.2019.09.004
https://doi.org/10.3892/ol.2018.9656
https://doi.org/10.1016/j.stem.2015.07.011
https://doi.org/10.1038/s41467-022-28839-y
https://doi.org/10.1371/journal.pone.0152599
https://doi.org/10.1007/s004320000207
https://doi.org/10.1186/s13046-017-0670-6
https://doi.org/10.3892/ijo.2014.2494
https://doi.org/10.3892/ijo.2014.2494
https://doi.org/10.3892/ol.2017.7188
https://doi.org/10.7314/APJCP.2012.13.6.2503
https://doi.org/10.1371/journal.pone.0081799
https://doi.org/10.3892/or.2015.4452
https://doi.org/10.1016/j.lungcan.2019.08.014
https://doi.org/10.1016/j.lungcan.2019.08.014
https://doi.org/10.3892/or.2017.5689
https://doi.org/10.1158/1078-0432.CCR-04-0861
https://doi.org/10.3389/fphys.2018.00452
https://doi.org/10.1038/s41598-017-13802-5
https://doi.org/10.3389/fonc.2021.669817
https://doi.org/10.1186/s12935-020-01380-y
https://doi.org/10.3892/ol.2016.4142
https://doi.org/10.1016/j.ebiom.2017.07.018
https://doi.org/10.1096/fj.202100013R
https://doi.org/10.3390/ijms20112634
https://doi.org/10.3892/ol.2017.5608
https://doi.org/10.3389/fphar.2019.00342
https://doi.org/10.1080/15548627.2015.1063767
https://doi.org/10.1016/j.ijsu.2018.06.033
https://doi.org/10.3389/fimmu.2024.1469794
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Shil et al. 10.3389/fimmu.2024.1469794
(2012) 142:296–307. doi: 10.1016/j.clim.2011.11.006

119. Yamauchi A, Kontani K, Kihara M, Nishi N, Yokomise H, Hirashima M.
Galectin-9, a novel prognostic factor with antimetastatic potential in breast cancer.
Breast J. (2006) 12:S196–200. doi: 10.1111/j.1075-122X.2006.00334.x

120. An G, Acharya C, Feng X, Wen K, Zhong M, Zhang L, et al. Osteoclasts
promote immune suppressive microenvironment in multiple myeloma: therapeutic
implication. Blood. (2016) 128:1590–603. doi: 10.1182/blood-2016-03-707547

121. Fujita K, Iwama H, Sakamoto T, Okura R, Kobayashi K, Takano J, et al.
Galectin-9 suppresses the growth of hepatocellular carcinoma via apoptosis in vitro and
in vivo. Int J Oncol. (2015) 46:2419–30. doi: 10.3892/ijo.2015.2941

122. Golden-Mason L, Rosen HR. Galectin-9: Diverse roles in hepatic immune
homeostasis and inflammation. Hepatology. (2017) 66:271–9. doi: 10.1002/hep.29106

123. Yang Q, Jiang W, Zhuang C, Geng Z, Hou C, Huang D, et al. microRNA-22
downregulation of galectin-9 influences lymphocyte apoptosis and tumor cell
proliferation in liver cancer. Oncol Rep. (2015) 34:1771–8. doi: 10.3892/or.2015.4167

124. Sideras K, Biermann K, Verheij J, Takkenberg BR, Mancham S, Hansen BE,
et al. PD-L1, Galectin-9 and CD8+ tumor-infiltrating lymphocytes are associated with
survival in hepatocellular carcinoma. Oncoimmunology. (2017) 6:e1273309.
doi: 10.1080/2162402X.2016.1273309

125. Holderried TA, de Vos L, Bawden EG, Vogt TJ, Dietrich J, Zarbl R, et al.
Molecular and immune correlates of TIM-3 (HAVCR2) and galectin 9 (LGALS9)
mRNA expression and DNA methylation in melanoma. Clin Epigenet. (2019) 11:1–15.
doi: 10.1186/s13148-019-0752-8

126. Wiersma VR, De Bruyn M, Van Ginkel RJ, Sigar E, Hirashima M, Niki T, et al.
The glycan-binding protein galectin-9 has direct apoptotic activity toward melanoma
cells. J Invest Dermatol. (2012) 132:2302. doi: 10.1038/jid.2012.133

127. Rajkumar SV. Multiple myeloma: 2022 update on diagnosis, risk stratification,
and management. Am J Hematol. (2022) 97:1086–107. doi: 10.1002/ajh.26590

128. Waxman AJ, Mink PJ, Devesa SS, Anderson WF, Weiss BM, Kristinsson SY,
et al. Racial disparities in incidence and outcome in multiple myeloma: a population-
based study. Blood. (2010) 116:5501–6. doi: 10.1182/blood-2010-07-298760

129. Buadi F, Hsing AW, Katzmann JA, Pfeiffer RM, Waxman A, Yeboah ED, et al.
High prevalence of polyclonal hypergamma-globulinemia in adult males in Ghana,
Africa. Am J Hematol. (2011) 86:554–8. doi: 10.1002/ajh.22040

130. Kazandjian D, Hill E, Hultcrantz M, Rustad EH, Yellapantula V, Akhlaghi T,
et al. Molecular underpinnings of clinical disparity patterns in African American vs.
Caucasian American multiple myeloma patients. Blood Cancer J. (2019) 9:15.
doi: 10.1038/s41408-019-0177-9
131. Landgren O, Graubard BI, Katzmann JA, Kyle RA, Ahmadizadeh I, Clark R,

et al. Racial disparities in the prevalence of monoclonal gammopathies: a population-
based study of 12,482 persons from the National Health and Nutritional Examination
Survey. Leukemia. (2014) 28:1537–42. doi: 10.1038/leu.2014.34

132. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2021. CA Cancer J
Clin. (2021) 71:7–33. doi: 10.3322/caac.21654

133. Kyle RA, Gertz MA, Witzig TE, Lust JA, Lacy MQ, Dispenzieri A, et al. Review
of 1027 patients with newly diagnosed multiple myeloma. In:Mayo Clinic Proceedings.
Amsterdam, Netherlands: Elsevier (2003).
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