
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Allen Jay Rosenspire,
Wayne State University, United States

REVIEWED BY

Krzysztof Sitko,
University of Gdansk, Poland
Christoph Hudemann,
Philipps-University Marburg, Germany

*CORRESPONDENCE

Yuying Liu

Yuying.Liu@uth.tmc.edu

RECEIVED 23 July 2024
ACCEPTED 20 September 2024

PUBLISHED 10 October 2024

CITATION

Liu Y, Freeborn J, Okeugo B, Armbrister SA,
Saleh ZM, Fadhel Alvarez AB, Hoang TK,
Park ES, Lindsey JW, Rapini RP, Glazer S,
Rubin K and Rhoads JM (2024) Intranasal
sensitization model of alopecia areata using
pertussis toxin as adjuvant.
Front. Immunol. 15:1469424.
doi: 10.3389/fimmu.2024.1469424

COPYRIGHT

© 2024 Liu, Freeborn, Okeugo, Armbrister,
Saleh, Fadhel Alvarez, Hoang, Park, Lindsey,
Rapini, Glazer, Rubin and Rhoads. This is an
open-access article distributed under the terms
of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction
in other forums is permitted, provided the
original author(s) and the copyright owner(s)
are credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 10 October 2024

DOI 10.3389/fimmu.2024.1469424
Intranasal sensitization model of
alopecia areata using pertussis
toxin as adjuvant
Yuying Liu1*, Jasmin Freeborn1, Beanna Okeugo1,
Shabba A. Armbrister1, Zeina M. Saleh1,
Ana Beatriz Fadhel Alvarez1, Thomas K. Hoang1, Evelyn S. Park1,
John William Lindsey2, Ronald P. Rapini3, Steven Glazer4,
Keith Rubin4 and Jon Marc Rhoads1

1Division of Pediatric Gastroenterology, Department of Pediatrics, McGovern Medical School, The
University of Texas Health Science Center at Houston, Houston, TX, United States, 2Department of
Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston,
Houston, TX, United States, 3Departments of Dermatology and Pathology, McGovern Medical School,
The University of Texas Health Science Center at Houston, Houston, TX, United States, 4ILiAD
Biotechnologies, Weston, FL, United States
Background: Nasopharyngeal Bordetella pertussis (BP) colonization is common,

with about 5% of individuals having PCR evidence of subclinical BP infection on

nasal swab, even in countries with high vaccination rates. BP secretes pertussis

toxin (PTx). PTx is an adjuvant commonly used to induce autoimmunity in

multiple animal models of human disease. Colocalization of PTx and myelin

from myelinated nerves in the nasopharynx may lead to host sensitization to

myelin with subsequent autoimmune pathology.

Methods: C57BL/6J female adult mice were given varied doses and schedules of

intranasal PTx, MOG35-55 antigen, or controls to test whether intranasal

administration of PTx and myelin oligodendrocyte peptide (MOG35-55) could

induce experimental autoimmune encephalomyelitis (EAE) in mice. While we

observed systemic cell-mediated immunity against MOG35-55, we did not

observe EAE. Unexpectedly, many mice developed alopecia. We systematically

investigated this finding.

Results: Patchy alopecia developed in 36.4% of mice with the optimized

protocol. Pathology consistent with alopecia areata was confirmed

histologically by documenting concomitant reduced anagen phase and

increased telogen phase hair follicles (HFs) in biopsies from patches of hair loss

in mice with alopecia. We also found reduced CD200 staining and increased

CD3+T cells surrounding the HFs of mice with alopecia compared to the mice

without alopecia, indicating HF Immune Privilege (HFIP) collapse. Systemic

immune responses were also found, with increased proportions of activated T

cells and B cells, as well as MHCII+ dendritic cells in peripheral blood and/or

splenocytes. Finally, in mice initially exposed to intranasal MOG35-55 and PTx in

combination, but not to either agent alone, splenocytes were shown to

proliferate after in vitro stimulation by MOG35-55. Consistent with prior

investigations, PTx exhibited a dose-response effect on immune cell induction

and phenotype, with the lowest PTx dose failing to induce autoimmunity, the

highest PTx dose suppressing autoimmunity, and intermediate doses

optimizing autoimmunity.
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Conclusions:We propose that this is the first report of an autoimmune disease in

an animal model triggered by colocalization of intranasal PTx and autoantigen.

This model parallels a natural exposure and potential intranasal sensitization-to-

pathology paradigm and supports the plausibility that nasopharyngeal subclinical

BP colonization is a cause of alopecia areata.
KEYWORDS

Bordetella pertussis, immunization, autoimmunity, myelin oligodendrocyte peptide,
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1 Introduction

Animal models provide a platform to explore pathophysiology,

prevention, and treatment of human autoimmune disease.

Autoimmune models may be spontaneous, requiring genetic

manipulation, with some requiring additional antigenic exposure.

Alternatively, induced models of autoimmunity are diverse, and

include adoptive transfer of immune cells or autoantibodies, viral

infection, exposure to autoantigens with or without adjuvant, and

exposure to adjuvant alone (1). Models that more closely replicate

natural conditions may provide insight into environmental

contributions to human autoimmune disease.

Two of this study’s authors previously proposed that

autoimmune diseases might be caused by subclinical Bordetella

pertussis (BP) colonization of the human nasopharynx (2–4).

Subclinical BP infections are vastly more prevalent than reported

cases of whooping cough (5). In multiple countries with high BP

vaccination rates, evidence of mucosal subclinical BP infection is

demonstrated in 4.8 – 7.1% of asymptomatic individuals by nasal

swab polymerase chain reaction (PCR) or culture (6–8), and in 6.6 –

14.1% by serology (9–11). In this paradigm of autoimmunity,

subclinical nasopharyngeal colonizing BP infections secrete

pertussis toxin (PTx), a potent adjuvant administered by injection

in many animal models of human autoimmune disease. As

proposed, once PTx is colocalized with autoantigens, antigen

sensitization occurs with subsequent pathology upon antigen re-

exposure and host autoimmune responses (2–4).

PTx affects immunity through the innate and adaptive immune

systems. PTx activates antigen presenting cells (APCs) (12, 13),

enhances immunoglobulin (IgG1 and IgE) responses (14) and

heightens T helper cell cytokine production (15, 16). PTx-

mediated autoimmune disease models have been published in

thousands of papers, including models of experimental

autoimmune encephalomyelitis (EAE) — the animal model of

multiple sclerosis (17, 18), experimental autoimmune uveoretinitis

(EAU) (19–21), experimental autoimmune neuritis (EAN) (22),

and others (23). The adjuvant effect of PTx autoimmunity is dose

dependent. Lower doses may not provide sufficient adjuvant-

mediated antigen sensitization, while higher and repeated doses of

PTx may reduce or inhibit autoimmune disease by multiple
02
mechanisms, including upregulation of regulatory cytokines such

as IL-10 and TGF-b and by expansion of CD4+CD25+ T regulatory

(Treg) cells (23–29). PTx-mediated pathology thus requires an

intermediate dose and exposure frequency to optimize antigen

sensitization, immune activation, and autoimmune pathology.

Alopecia areata (AA) is an autoimmune disease characterized

by inflammation of hair follicles (HFs), reduced anagen (growth

phase) HFs, and nonscarring hair loss. It affects nearly 2% of the

population without gender bias, with symptoms ranging from

patchy to complete hair loss (30). While the causes of AA are not

fully understood, risk factors include specific genetic loci and the

development of other illnesses, particularly allergic and

autoimmune diseases. In this study, we hypothesized that

colocalization of PTx (derived from BP) and myelin

oligodendrocyte glycoprotein (MOG) peptide 35-55 (MOG35-55)

at the nasopharyngeal mucosa would facilitate host sensitization

and lead to an autoimmune phenotype. While initially targeting the

induction of EAE-like pathology by colocalizing intranasal PTx

with MOG35-55 to reproduce colocalization of subclinical BP and

myelinated nerves of the nasopharynx (e.g., A-delta fibers) (31), we

were surprised to elicit PTx-MOG35-55-initiated and immune-

mediated alopecia. We note that previously, in a murine model of

CD8+ clonal T-lymphocyte mediated AA, a T cell receptor was

identified with dual targets: one for MOG antigen and one for the

hair follicle. Nearly all transgenic mice expressing this T cell

receptor developed AA (32).

To our knowledge, the experiments and evidence presented

herein are the first report of autoimmune disease triggered by

colocalization of intranasal autoantigen and PTx adjuvant. This

model supports the plausibility that nasopharyngeal subclinical BP

colonization is a potential cause of AA.
2 Materials and methods

2.1 Animals

Female wild-type (WT) C57BL/6J (10-week-old) mice (#

000664) were purchased from Jackson Laboratories (Bar Harbor,

ME) and allowed to acclimatize for 2 weeks before experimentation.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1469424
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Liu et al. 10.3389/fimmu.2024.1469424
Mice were housed in groups in polycarbonate cages with free access

to a standard diet and water in the specific pathogen free (SPF)

animal facility at the University of Texas Health Science Center at

Houston. This study was carried out in accordance with the

recommendations of the Guide for the Care and Use of

Laboratory Animals (NIH) and the Institutional Animal Care and

Use Committee (IACUC) of The University of Texas Health Science

Center at Houston. The protocol was approved by the IACUC

(protocol numbers: AWC-18-0051 and AWC-21-0110).
2.2 Intranasal administration of MOG35-55
and PTx

2.2.1 Mouse handling for
intranasal administration

The handling procedure for intranasal administration of

MOG35-55 and PTx in PBS solution to non-anesthetized mice was

based on a previously described protocol (33) with modification.

Two research investigators coordinated intranasal administration,

with one holding the mouse and the other delivering the agent,

instead of using a more immobilizing grip by a single operator who

also administered the reagents. By doing so, our procedure reduced

the weeks of acclimation needed for mouse immobilization and

reduced the amount of stress to which the mice were exposed.

2.2.2 Reagent sources, preparation, and
intranasal delivery volume

MOG35-55 purchased from AnaSpec Inc. (Fremont, CA) was

dissolved in PBS with the stock concentration of 10 mg/mL. PTx

was purchased from Sigma (St. Louis, MO) with the stock

concentration of 0.2 mg/mL. The working concentrations of

MOG35-55 or PTx were adjusted based on the experimental design

in the expected volumes. The volume for intranasal delivery was 10

mL per nostril by using a 20 mL pipettor and gel loading pipette tip.

The use of PTx in the experiments was approved by Chemical Safety

Committee (protocol numbers: CSC-15-021, and CSC-21-045) of

the University of Texas Health Science Center at Houston.
2.3 Experimental design and
treatment protocol

We administered different dosages of PTx and varied the

number of intranasal administrations to test the ability of PTx to

promote autoimmunity, initially intended to induce EAE, as

indicated in Supplementary Figure 1. In Experiment I, each

mouse was intranasally administered an initial (1st) dose of a

mixture of PTx (100 ng or 200 ng or 400 ng) and MOG35-55 (250

mg) on d1. At d2 (post-16h of 1st dosage), each mouse was

intranasally administrated a 2nd dose of PTx alone (100 ng or 200

ng or 400 ng, respectively, without MOG35-55). For the PTx dosage

of 200 ng × 1, each mouse was intranasally administered only one

dosage of a mixture of PTx (200 ng) and MOG35-55 (250 µg). In

Experiment II, each mouse was administered a mixture of intranasal

PTx (200 ng) andMOG35-55 (250 mg) at d1, d7, d14, and d21 (×4) or
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at d1, d4, d7, d10, d14, d17, d21, d24 (×8). In Experiment III

(Figure 1A), each mouse was initially administered intranasal PTx

(5 ng, 25 ng, 100 ng, respectively), and 2 hours later mice were

administered intranasal MOG35-55 (100 mg) at d1, d7, d14, and

d21 (×4).

For each experiment, after the last intranasal administration,

the mice were observed daily for at least 3 weeks. No EAE

phenotype was observed in any experimental designs by the end

of the experiment. However, we recorded the incidence of alopecia,

and collected skin biopsies for histological evaluation the same day

that we observed the onset of alopecia. At the end of the experiment,

we collected blood and spleen samples, isolated splenocytes for in

vitro MOG35-55 stimulation, and analyzed immune cell markers.
2.4 Splenocyte isolation and in vitro cell
proliferation assay

Single cell suspensions from the spleen were prepared by gently

fragmenting and filtering the tissues through 40 mm cell strainers

(BD Bioscience, San Jose, CA) into RPMI 1640 complete medium

(Sigma-Aldrich, St. Louis, MO) followed by removal of red blood

cells with ACK lysis buffer (Quality Biologicals, Gaithersburg, MD).

For in vitro stimulation, splenic lymphocytes isolated from each

mouse were performed in triplicate with a total n = 5 – 15 mice per

group. Briefly, 5 × 105 cells were plated into 24-well cell culture

plates, and cells from each mouse were stimulated with 10 mM of

MOG35-55 (+MOG) or PBS (-MOG) for 3 days, followed by

colorimetric measurement for cell proliferation using the

tetrazolium dye, 2,3-bis (2-methoxy-4-nitro-5-sulfophenyl)-5-

[(phenylamino) carbonyl]-2H-tetrazolium hydroxide (XTT)

according to the manufacturer’s protocol (TACS™ XTT Cell

Proliferation/Viability Assay, R & D System, Minneapolis, MN)

(34), as described previously (35). We calculated the percentage of

cells proliferating as follows: [(OD+MOG-OD-MOG)/OD-MOG] × 100.
2.5 Histopathology and
immunohistochemistry staining to evaluate
autoimmune alopecia in skin biopsies

2.5.1 Skin biopsies
Skin biopsies were performed using a sterile Integra Miltex 1.5

mm disposable punch biopsy (Integra Life Science Production

Corporation, Mansfield, MA) while the mouse was anesthetized

with isoflurane in the presence of oxygen in an induction chamber

for 3 – 4 minutes before moving the mouse to a nose cone attached

to isoflurane and an oxygen source. In addition, bupivacaine

(0.25%) was injected subcutaneously (< 1 mg/kg, 20 – 30 mL)
around the biopsy site before the skin biopsy.

2.5.2 H&E and IHC for CD3 and CD200
The skin tissues were fixed in formalin, processed, and stained with

hematoxylin and eosin (H&E). IHC staining of CD3+ T cells was

performed with a Dako Omnis system (Agilent, Santa Clara, CA) and

Agilent CD3 polyclonal antibody with high pH antigen retrieval. CD3+
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1469424
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Liu et al. 10.3389/fimmu.2024.1469424
T cell staining was performed by the Histology Laboratory of the

Department of Pathology and LaboratoryMedicine of the University of

Texas Health Science Center at Houston. C57BL/6J mouse thymus

tissue was used as positive staining control for CD3 staining. For IHC

of CD200, proteinase K (Abcam AB64220, Waltham, MA) was used
Frontiers in Immunology 04
for enzymatic antigen retrieval, followed by blocking endogenous

peroxidase by 3% H2O2 (Sigma-Aldrich) and non-specific binding by

2.5% goat serum (Vector Laboratories, Newark, CA). Rabbit

monoclonal anti-mouse antibody CD200/OX2 (AbCam AB314662)

was used for staining at 1:500 dilution overnight at 4°C; secondary
FIGURE 1

Development of autoimmune alopecia in mice after repeated intranasal administration of PTx and MOG35-55. (A) Experimental protocol for inducing
alopecia. (B) The onset of alopecia and % developing alopecia during the observation period. Mouse numbers in each group are as follows: MOG35-

55/PTx, intranasal, 5 ng × 4, n = 55; MOG35-55/PTx, intranasal, 25 ng × 4, n = 14; MOG35-55/PTx, intranasal, 100 ng × 4, n = 10; PTx, intranasal, 5 ng ×
4, n=17; PTx, intranasal, 25 ng × 4, n = 5; MOG35-55, intranasal, 100 mg × 4, n = 17. Each dot represents several mice with or without alopecia on the
observed indicated dates. (C) Representative images are shown for mice with alopecia areata.
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antibody treatment was with ImmPRESS HRP Goat Anti-Rabbit IgG

Polymer Detection Kit (Vector Laboratories MP-745) for 30 min at

room temperature (RT), followed by addition of DAB Substrate

(Vector Laboratories, SK-4105) and counterstaining with hematoxylin.

2.5.3 Analysis and quantification
For H&E staining sections, we analyzed the numbers of telogen

and anagen phase follicles and quantified counts at 100×

magnification at 3-5 image fields for each tissue section with

ImageJ (FIJI) (36) software (NIH). We calculated the % of anagen

or telogen phase follicles among all HFs in each field and calculated

the mean ± SD (%) for mice with alopecia compared to mice with

no alopecia. For IHC CD3 and CD200, we compared positively

stained cells in skin biopsies of mice with alopecia compared with

mice without alopecia. We also analyzed the numbers of HFs with

CD200+stained in the epithelium and quantified counts at 200×

magnification in at least 5 image fields to calculate the % of HFs

with CD200+stained epithelium among all HFs in each field and

calculated the mean ± SD (%) for mice with alopecia compared to

mice with no alopecia.
2.6 Staining immune cells for
flow cytometry

To evaluate the activated T cells and B cells in the mice, as well

as MHCII+ APCs in the splenocytes and circulating peripheral

blood mononuclear cells (PBMCs), cells were surface-stained by

fluorochrome-conjugated mouse antibodies. Specifically, we used

antibodies including CD3 (17A2) conjugated with brilliant violet

(BV)421, CD19 (6D5) conjugated with fluorescein isothiocyanate

(FITC), GL-7 (GL7) antigen (also called Ly77, a T cell and B cell

activation marker) conjugated with phycoerythrin/Cyanine7 (PE/

Cy7), CD11c (N418) conjugated with Alexa Fluor 700 (AF700),

CD11b (M1/70) conjugated with peridinin-chlorophyll proteins/

Cyanine5.5 (PerCP/Cy5.5), and MHCII (10-3.6) conjugated with

PE. All conjugated antibodies were purchased from BioLegend (San

Diego, CA). MACS buffer consisting of phosphate-buffered saline,

0.5% bovine serum albumin (Hyclone GE Life Science, Logan, UT),

and 2 mM EDTA (Lonza, Bethesda, MD) was used for washing the

cells. Prepared samples were analyzed by flow cytometry using a BD

LSRFortessa Flow Cytometer (BD Bioscience, San Jose CA), and

data were analyzed with FlowJo software (FlowJo, BD,

Ashland, OR).
2.7 Statistical analysis

Significance was determined using one-way ANOVA for

multiple comparisons with Tukey post-hoc tests. An unpaired t-

test was used to determine significance between the means of two

groups. The statistical analysis was performed using GraphPad

Prism version 9.4.1 (GraphPad Software, San Diego, CA). Data

are represented as means ± SD. Values with p < 0.05 were

considered statistically significant.
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3 Results

3.1 Alopecia was induced by intranasal
administration of MOG35-55 and PTx

Mice with intranasal administration of lower dosage ranges of

PTx including 5ng, 25ng, and 100ng, respectively, in combination

with intranasal administration of MOG35-55 at 100 µg, dosed once a

week for 4 weeks were observed for alopecia (Figure 1A,

Supplementary Figure 1 Experiment III). The incidence of alopecia

was 36.4% (20/55) for the mice that received MOG35-55/PTx 5 ng × 4

and 24.2% (3/14) for the mice that received MOG35-55/PTx 25 ng × 4;

while mice that received MOG35-55/PTx at 100 ng × 4, as well as PTx

only or MOG35-55 only did not develop alopecia (Figure 1B). It was

noted that in the PTx only group, one mouse showed hair loss on d40

post-initial (1st) intranasal administration, but, unlike all other mice

that developed alopecia, hair growth resumed just one week

later (Figure 1B).

During the trials of different dosages and treatment protocols

for intranasal MOG35-55/PTx (Supplementary Figure 1), we

observed that lower dosages of PTx (5 ng × 4, and 25 ng × 4)

induced hair loss as early as d14 following the initial (1st) intranasal

administration (Figures 1B, C). At the end of the observation

period, 25% (5/20) of mice with alopecia demonstrated mild-

moderate hair regrowth (Supplementary Figure 2).
3.2 Increased telogen and reduced anagen
phase hair follicles in skin biopsies were
observed in mice with alopecia

One of the features of AA in human and other mouse models

has been a shift from anagen to telogen phase and anagen-like

nanogen type HFs with no central hair shaft (37, 38). We evaluated

the anagen and telogen HFs in the histological biopsies stained by

H&E (Figure 2A). The results showed significantly increased

telogen and reduced anagen phase follicles (Figures 2A, B) in

mice with alopecia compared to mice with no alopecia. The

percentage of telogen phase follicles in the microscopic field at

100× magnification increased from 2.2 ± 1.0% in no alopecia mice

to 34.5 ± 5.4% in mice with alopecia; while the percentage of anagen

phase follicles was reduced from 97.8 ± 1.1% in those without

alopecia to 65.5 ± 5.5% in mice with alopecia (all p <

0.001, Figure 2B).
3.3 Mice with induced alopecia
demonstrated altered hair follicle immune
privilege markers

HFIP is a dynamic process maintained by several mechanisms

resulting in immune tolerance and suppression of immune-

mediated inflammation. Among several mechanisms believed to

support HFIP, a CD200-CD200R interaction is thought to promote

tolerance and prevent autoimmunity within the epidermis and
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dermis around the HFs, which is often associated with fewer T cells.

The connective tissue sheath is thought to guard against immune

cell infiltration by generating a proteoglycan barrier during the

anagen phase (39). Previous studies showed CD200 expressed on

the epithelial cells on murine HFs as an indicator of tissue-specific

tolerance (40). Therefore, we performed immunohistochemistry
Frontiers in Immunology 06
staining of skin biopsies with anti-CD3 and anti-CD200

antibodies. We observed increased CD3+ T cell infiltration

around HFs in skin biopsies of mice with alopecia (Figure 3B)

but not in mice without alopecia (Figure 3A). In addition, we found

CD200+staining on epithelium of HFs and around HFs in the mice

with no alopecia (Figure 3C) and diminished CD200+staining of
FIGURE 3

Skin biopsies: CD3 and CD200 expression. (A, B) Images show increased CD3+ T lymphocytes around the hair follicles (HFs, Red Circles) in mice
with alopecia (B) compared to normal skin biopsies (A). (C-E) Images show CD200 is highly expressed hair follicle epithelium and dermis around HFs
in normal mice without alopecia (C) but diminished in those with alopecia (D). (E) % of # of HFs with CD200+stained epithelium in mice with
alopecia compared to those without alopecia. 200 × magnification. Significant p values indicated in the figure.
FIGURE 2

Histological evaluation of autoimmune alopecia with mouse skin biopsies. (A) Representative H&E-stained images. Images in the left panel are from
mice with no alopecia, the arrows indicate anagens. Images in the right panel are from mice with alopecia; the arrows indicate telogens. 100 ×
magnification. (B) % of anagen and % of telogen follicles in mice with alopecia compared to those without alopecia. Significant p values indicated in
the figure.
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epithelium of HFs and around HFs in the mice with alopecia

(Figure 3D). The percentage of HFs with CD200+stained

epithelium in the mice with no alopecia (49.1 ± 20.1%) was

significantly higher than that in the mice with alopecia (1.8 ±

1.0%) (p < 0.0001, Figure 3E). The results support HFIP collapse in

mice with induced alopecia, consistent with findings in

alopecia areata.
3.4 Mice with induced alopecia
demonstrated systemic immune activation

3.4.1 Circulating activated T lymphocytes
To assess immune cell activation, we focused on GL7 expression

on T (CD3+) cells. GL7 is a marker for polyclonally activated T and

B cells in mice (41, 42). We counted the activated GL7+CD3+ T cells

in the spleen and circulating blood by flow cytometric analysis.

CD3+ T cell populations were first gated from the defined

lymphocyte population, and GL7+ activated T cells were further

defined within the CD3+ T cell population (Supplementary

Figure 3). We found an increased proportion of activated CD3+ T

cells in the spleen and circulating blood of mice with alopecia

compared to groups of mice without alopecia (Figure 4A).

3.4.2 Immune cell responsiveness to MOG35-55 in
vitro stimulation

To assess systemic sensitization to MOG35-55, we exposed

splenocytes from mice in nine experimental groups to MOG35-55

and measured proliferation by optical density. Prior exposure

conditions of these groups were those to PBS alone, MOG35-55

and PTx at doses of 5, 25, 100, 200 and 400 ng × 4, PTx at 5 and 25

ng × 4, and MOG35-55 alone (Supplementary Figure 1). We found

that cell proliferation was significantly increased in the groups

initially sensitized with the intranasal administration of combined

MOG35-55 and PTx, compared to the control mice with no

intranasal administration of PTx or MOG35-55, but not in the

groups treated with intranasal administration of either MOG35-55

or PTx alone. We noted that in vitro cell proliferation in response to

MOG35-55 was maximal in the groups initially sensitized with

intranasal administration of the combination of MOG35-55/PTx

with PTx at total 400 ng (200ng × 2), with reduced responses to

PTx at a total of 800 ng (400ng × 2) (Figure 4B).

3.4.3 Circulating APCs and activated B cells
MHC class II molecules are primarily expressed by APCs, such

as monocytes, macrophages, dendritic cells, and B lymphocytes

(43). These cells are involved in external antigen processing via

MHC II with antigenic peptide presentation to CD4+ T helper cells.

Most APCs also express CD11b and CD11c (44). Among non-T

non-B cell populations, we identified CD11c+ and CD11b+CD11c+

cells and characterized the percentage of cells expressing MHC II

(Supplementary Figure 2). We found a significant increase of MHC

II-expressing CD11b+CD11c+ cells in the circulating blood, but not

in the spleen of mice with alopecia (Figure 4C). Activated CD19+ B

cells were also defined by GL7+ cells among CD19+ B cells

(Supplementary Figure 3), and we found that the percentage of
Frontiers in Immunology 07
activated CD19+ B cells was significantly increased in the spleen of

mice that developed alopecia. However, we also saw an increased

proportion of activated B cells in the blood of mice that had received

intranasal MOG35-55/PTx, regardless of the presence of alopecia.

Intranasal PTx alone, but not MOG35-55 alone, promoted B cell

activation in circulating blood (Figure 4D).
4 Discussion

In this study, we hypothesized that nasopharyngeal

colocalization of the potent adjuvant PTx and a myelin

component MOG35-55 would facilitate host sensitization to

MOG35-55 with subsequent autoimmune pathology. We tested

intranasal delivery of different dosages and treatment protocols

of PTx with MOG35-55 and found that at a low dosage of PTx (5

ng), the combination induced large patches of alopecia. Onset

occurred as early as 2 weeks following the first intranasal

administration. Alopecia was maintained without hair regrowth

in 75% of mice with alopecia, while 25% of alopecia mice showed

hair regrowth at 12 weeks (84 days), the maximum period of

observation after intranasal administration. Skin biopsies

demonstrated cardinal features for AA with a phase shift from

anagen to telogen follicles, increased T cells, and reduced CD200

positive staining of epithelial cells on and around the HFs. We

propose that these experiments represent the first animal model of

an autoimmune disease induced by intranasal sensitization to an

autoantigen, with PTx acting as the sole adjuvant. We further

propose that colocalization of PTx and myelin may occur naturally

in humans, given the high rate of subclinical colonizing BP

infections, their ability to secrete PTx into local mucosa, and the

subsequent colocalization of PTx and myelin from myelinated

nasopharyngeal nerves (such as A-delta fibers) (31, 45).

AA in humans is characterized by non-scarring hair loss on the

scalp or any hair-bearing surface (46, 47). Its etiology is complex

and multifactorial, with contributions from genetic and

environmental factors. A genetic contribution is evident in that a

family history of AA is noted in 0-8% of adults and 10-51% of

children (30). A 55% concordance rate is observed in identical twins

(48, 49). The balance of the risk is likely due to environmental

factors. We propose that one such factor may be nasopharyngeal

subclinical BP colonization with secretion of the potent adjuvant

PTx at the local mucosa.

Alopecia can be categorized as scarring or non-scarring.

Lymphocytic or neutrophilic scarring alopecia includes chronic

cutaneous lupus, lichen planopilaris, and folliculitis decalvans,

conditions characterized by destroyed HFs replaced by fibrous

tissue. PTX/MOG35-55-induced alopecia in our study did not

reveal fibrous tissue replacing HFs and would be categorized as

non-scarring. Other non-scaring alopecias demonstrate pathology

distinct from what was demonstrated in the present study.

Androgenic alopecia is associated with HF miniaturization and

variation in HF size, which were not seen in our study. Telogen

effluvium generally shows a normal number of HFs, increased

telogen phase follicles, HF miniaturization and perifollicular

collagen. Trichotillomania is manifested by distortion of HF
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anatomy, perifollicular and intrafollicular hemorrhage, but no

lymphocyte infiltration (38).

The evolution of AA is tied to the collapse of HF immune

privilege (HFIP). Many potential components supporting HFIP
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have been proposed, including physical barriers, CD200 protective

signaling, local generation of immunosuppressant cytokines (TGF-

b, IL-10), downregulated MHC I-related molecules (b2-
microglobulin), and low numbers of normal T cells (both CD4+
FIGURE 4

Systemic immune activation. (A) The percentage of GL7+CD3+ T cells (indicating activated T cells) among lymphocytes in the spleen and blood of
mice with different intranasal exposures. (B) XTT spectrophotometric absorbance, representing cell proliferation after splenocytes were stimulated in
vitro with 10 mM MOG35-55 for 72h. Splenic lymphocytes isolated from each mouse were studied in triplicate from n = 5-15 mice per group. Only
groups with significant differences are shown; a-d indicates the significance of difference with group comparisons: a, groups vs. MOG35-55/PTx,
intranasal, 25 ng × 4; b, groups vs. MOG35-55/PTx, intranasal, 100 ng × 4; c, groups vs. MOG35-55/PTx, intranasal, 200 ng × 2; and d, groups vs.
MOG35-55/PTx, intranasal, 400 ng × 2. (C) The percentage of MHCII-expressing cells among CD11b+CD11c+ antigen-presenting cells in the spleen
and blood of mice with different intranasal treatment protocols. (D) The percentage of GL7+CD19+ B cells (indicating activated B cells) from the
lymphocyte population in the spleen and blood of mice with different intranasal treatment protocols. N = 5-15 mice per group, *p < 0.05, **p <
0.01, ***p < 0.001, ****p<0.0001, and ns, no significant difference.
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and CD8+) and natural killer cells (39, 50). We observed reduced

CD200 positivity and increased T cells around HFs in mice with

alopecia, indicating the collapse of HFIP, and a HF phase shift from

anagen to telogen (51–54).

In human AA, scalp histology in early disease is characterized

by a peribulbar immune cell infiltrate, predominately T

lymphocytes and other immune cells (APCs and mast cells) (38).

However, the histological features of murine AA are different.

Instead of a largely peribulbar lymphocytic infiltration (38), other

groups have shown that mice have a more generalized lymphocytic

infiltration that extends to the distal follicle between the hair bulb

and sebaceous gland (55), as observed in our study. In addition,

using intranasal PTx as adjuvant, we observed diffuse CD3+ T cell

infiltration in skin tissues of mice with alopecia. This finding is

consistent with human AA, in which the presence of CD3+ T-cells

in the dermis, subcutis, and empty follicular fibrous tracts are

diagnostically supportive of AA (56, 57).

Genomic regions associated with AA include those encoding

IFN-g-mediated cytotoxicity, and others encoding T cell activation

and proliferation (58–60). We observed that in addition to

increased T lymphocyte dermal infiltration in alopecia-affected

mice, there were increased numbers of circulating activated T and

B cells associated with intranasal PTx. A recent study reported that

IFN-a-producing plasmacytoid dendritic cells (pDCs) may

contribute to autoimmune alopecia in mice (61). In the current

study, we likewise identified a significant increase in the percentage

of circulating MHCII+CD11b+CD11c+ dendritic cells in mice with

alopecia that were sensitized with PTx and MOG35-55.

To investigate how MOG35-55 peptide may be a casual factor in

autoimmune alopecia, we performed a homology search by entering

its amino acid sequence into the SMARTBLAST tool provided by

National Center for Biotechnology Information (NCBI). We noted

that the MOG35-55 amino acid sequence has 52.4–57.1% homology

to selection and upkeep of intraepithelial T-cells protein isoforms and

precursors (SKINT genes), and 57.1–66.7% homology to

butyrophilin-like protein isoforms (BTN genes). BTN genes have

similar functions to SKINT genes, promoting gd T cell formation in

the fetal thymus, T cell migration to skin, T cell receptor activation,

and activating inflammatory signaling (62, 63). It has been shown

that BTN3A targets promote T cell cytotoxicity (64), and BTN2A is

a normal ligand for the DC-Sign receptor on immature monocyte-

derived DCs that promote DC maturation (65). There may

therefore be cross reactivity between MOG35-55 and these

follicular proteins, with AA pathology possibly resulting from

intranasal sensitization to MOG35-55 and subsequent epithelial

and follicular pathology due to molecular mimicry leading to a

hyperimmune response at the hair follicle. A MOG-associated

model of alopecia has previously been described (32). Rag1-/-

mice were transplanted with a 1MOG244.1 T cell receptor into

CD8+T progenitor cells that had dual specificity for myelin and hair

follicles, in this model, all mice developed alopecia (32).

To date, there have been no reports of intranasal administration

of PTx and/or MOG35-55 as promoters of alopecia. Like many

biological systems that manifest an optimal response within a range

of exposures, we demonstrated a “Goldilocks” dose-dependent

effect of PTx, as has been seen previously in autoimmune
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modeling. Specifically, PTx exhibited a dose-response effect on

immune cell induction and phenotype, with the lowest (absent)

PTx doses failing to induce autoimmunity, the highest PTx doses

suppressing autoimmunity, and intermediate doses optimizing

autoimmunity. Interestingly, in EAE mouse models, higher PTx

dosing increases Treg cell numbers and upregulates neuronal

vascular endothelial growth factor (VEGF) which may protect

neurons, reduce lymphocyte infiltration, and decrease microglia

activation (24–26, 66–68). Furthermore, in other labs higher doses

of PTx (1000 ng) significantly attenuated EAE (26), and chronic

repetitive dosing (300 ng weekly for 6 months) prevented EAE (25).

Others established that low dose PTx (25 ng) results in reduced EAE

clinical scores (66), while moderate dosing (200 – 400 ng of

intraperitoneal PTx) with MOG35-55 induces severe EAE. This

well-documented Goldilocks dosing effect in EAE is consistent

with findings in the current study. While EAE was not

demonstrated in this intranasal PTx-mediated sensitization

model, we have not ruled out that further alterations in PTx and

MOG35-55 dosing and timing could lead to EAE, given that systemic

sensitization to MOG35-55 was observed.

In the current intranasal sensitization model, 36% of mice

developed alopecia. Several factors may account for this incidence.

Theremay be variability of intranasally administered PTX orMOG35-

55 in an individual mouse, as reagents may have been expelled by

mice after administration or met with varying intranasal conditions

such as the amount of mucus. We may have performed our

experiment on mice with suboptimal characteristics or under

suboptimal conditions to evidence an autoimmune phenotype. In

humans, the concordance rate of AA in monozygotic twins raised in

the same household was reported at 40-50%, indicating that both

genetic and environmental factors are involved in the etiology of AA

(49). Differential susceptibility to disease among the same strain of

mice may be partially related to epigenetic factors. For example, two

genetically identical mice grown in identical conditions may have

different epigenomes, such as their degree of CpG methylation,

altering susceptibility to disease (69, 70).

In conclusion, our study is the first to report that colocalized

intranasal PTx and MOG35-55 can induce an AA-like disease in

mice. There are at least 20 preclinical models for psoriasis, 19 for

atopic dermatitis, and 11 for vitiligo, but there are few models for

AA (55, 71). Our observations support the hypothesis that

colocalization of PTx and MOG35-55 at the nasopharyngeal

mucosa may facilitate host sensitization, leading to autoimmune

AA. Given the frequency of human nasopharyngeal BP

colonization, the ability of PTx to act as an adjuvant, and the

presence of myelinated nerves in the nasopharynx, we suggest that

our intranasal model parallels a paradigm that occurs naturally in

humans and could lead to human disease. This model may also

provide a useful platform to further unravel the complexities of AA.
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