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Introduction: Systemic sclerosis (SSc) is an autoimmune disease characterized

by antinuclear antibody production, which has been linked to an excess of

apoptotic cells, normally eliminated by macrophages through efferocytosis.

Additionally, circulating levels of CXCL4, a novel SSc biomarker, correlate with

more severe fibrotic manifestations of the disease. Considering the defective

efferocytosis of macrophages in SSc and the CXCL4-related M4 macrophage

phenotype, we hypothesized that CXCL4 could be involved in the alteration of

phagocytic functions of macrophages in SSc, including LC3-associated

phagocytosis (LAP), another phagocytic process requiring autophagy proteins

and contributing to immune silencing.

Methods: In this study, CXCL4 levels were measured by ELISA in vitro in the

serum of SSc patients, and also in vivo in the serum and lungs of C57BL/6J SSc

mice induced by intradermal injections of hypochloric acid (HOCl) or Bleomycin

(BLM), with evaluation of M4 markers. Circulating monocytes from healthy

donors were also differentiated in vitro into M4 monocytes-derived

macrophages (MDMs) in the presence of recombinant CXCL4. In M4-MDMs,

phagocytosis of fluorescent beads and expression level of efferocytic receptors

were evaluated by flow cytometry in vitro, while efferocytosis of pHrodo-stained

apoptotic Jurkat cells was evaluated by real-time fluorescence microscopy. LAP

quantification was made by fluorescence microscopy in M4-MDMs exposed to

IgG-coated beads as well as apoptotic Jurkat cells.

Results: Our results demonstrated that efferocytosis was significantly reduced in

M0-MDMs from healthy donors exposed to the CXCL4-rich plasma of SSc

patients. In vivo, CXCL4 expression was increased in the lungs of both SSc-

mousemodels, along with elevatedM4markers, while efferocytosis of BLM-mice
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alveolar macrophages was decreased. In vitro, M4-MDMs exhibited reduced

efferocytosis compared to M0-MDMs, notably attributable to lower CD36

receptor expression and impaired phagocytosis capacities, despite enhanced

LAP. Autophagic gene expression was increased both in vitro in SSc MDMs and in

vivo in BLM mice, thus acting as a potential compensatory mechanism.

Discussion: Altogether, our results support the role of CXCL4 on the impaired

efferocytosis capacities of human macrophages from SSc patients and in

SSc mice.
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1 Introduction

Systemic sclerosis (SSc) is a chronic and irreversible systemic

autoimmune disorder characterized by progressive and irreversible

skin and lung fibrosis, associated with microvascular dysfunction. In

SSc, antinuclear autoantibodies may, in part, arise from a defect of the

efferocytosis function of macrophages (1). This defect impairs the

clearance of apoptotic cells containing intracellular autoantigens and

danger signals, participating in the onset of systemic autoimmunity

(2). LC3-associated phagocytosis (LAP) is another macrophage

mechanism involved in the clearance of apoptotic cells, which

utilizes the autophagy machinery to link LC3 to phagosomal and

autophagic vesicle membranes, thus contributing to the maturation

of LC3-II vesicles (LAPosomes) and enhancing lysosomal fusion (3).

While there is currently limited data on autophagy in SSc, LAP has

never been studied in this disease. We previously demonstrated an

impaired efferocytosis in macrophages from SSc patients (4).

Macrophages play a pivotal role in SSc’s pathogenesis and

participate in the progression of the fibrotic manifestations of the

disease (5). Macrophages can exhibit diverse and heterogeneous

phenotypes or polar izat ion states depending on the

microenvironment (6). While macrophages are commonly

categorized as classically activated M1 pro-inflammatory

macrophages and alternatively activated M2 macrophages, some of

which display pro-fibrotic properties (7), recent research supports the

idea of a mixed macrophage signature in SSc beyond this binary

classification (8–10). Moreover, macrophage efferocytosis is

modulated by their environment (11), and we have previously

observed varying efferocytosis capacities in SSc macrophages

derived from monocytes, suggesting the influence of SSc serum on

monocytes before in vitro differentiation (4). Notably, elevated levels
leomycin; LAP, LC3-
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of the platelet chemokine CXCL4, a novel biomarker of systemic

sclerosis (12), have been linked to the fibrotic complications of the

disease (13). Additionally, CXCL4 has been shown to inhibit

monocyte apoptosis (14) and to induce their differentiation into a

distinct and specific M4 macrophage phenotype (15). Therefore, we

hypothesized that the overexpression of CXCL4 in SSc may induce a

M4 phenotype of macrophages with defective efferocytosis.
2 Materials and methods

2.1 Chemicals and reagents

Human recombinant cytokine CXCL4 was purchased from

Peprotech (Neuilly sur Seine, France). Human recombinant GM-

CSF and M-CSF were obtained from Sanofi-Aventis (Montrouge,

France) and Miltenyi Biotec SAS (Paris, France), respectively.

Bleomycin sulfate (BLM), camptothecin, and cytochalasin D

(CytoD) were purchased from Sigma-Aldrich (St-Quentin

Fallavier, France).
2.2 Human blood samples

Patients with SSc satisfied the 2013 ACR/EULAR classification

criteria for SSc (16), and their clinical presentation was defined

according to LeRoy et al. (17). They were consecutively included

after written informed consent. This study was approved by the

local ethics committees (Committees for Protection of Persons

(CPP) Ouest-V France, CPP approval N°: 2019-A02611-56).

Information regarding patients is resumed in Supplementary

Tables 1 and 2. Blood samples (PBMCs and sera) were collected

from SSc patients at the Department of Internal Medicine and

Clinical Immunology, Rennes Hospital, France, and those from

healthy donors (HD) from Etablissement Français du Sang,

Rennes, France.
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2.3 Primary cultures of human macrophage

Human macrophages were differentiated from peripheral blood

monocytes. Buffy coats of healthy donors were provided by

Etablissement Français du Sang (Rennes, France) and obtained after

the written consent for the use of blood samples for experimental

research. Peripheral bloodmononuclear cells were obtained from blood

buffy coats of HD or the blood of SSc patients through Ficoll gradient

centrifugation. The monocytes, selected after a 1h adhesion step, were

differentiated into macrophages (M0) during 6 days in RPMI 1640

medium GlutaMAX (Gibco, Life Technologies), containing 10% heat-

inactivated fetal bovine serum (FBS, Lonza, Levallois-Perret, France), 2

mM L-glutamine, 20 IU/mL penicillin, 20 mg/mL streptomycin

(ThermoFisher Scientific, Courtaboeuf, France) and 50 ng/ml of M-

CSF or 400 IU/ml GM-CSF. The medium was replaced on day 4 and

day 6. From day -6 to day 8, cells were maintained in a fresh medium

containing 5% FBS either without GM-CSF (GM-M0) either 10 ng/ml

M-CSF (M-M0) or supplemented with 1 µM CXCL4 for

M4 polarization.
2.4 Mouse model of BLM-induced
systemic sclerosis

Male C57BL/6J mice weighing between 18 and 20 gr, used at 8

weeks of age, were acquired from Janvier Labs (Le Genest Saint Isle,

France). The animals were all housed in similar autoclaved cages

and fed food and water with identical housing conditions. They

were maintained under a 12/12h light/dark cycle, with controlled

room temperature and humidity. Experimental scleroderma-

associated ILD was induced by daily intradermal injections of

BLM solution (0.4 mg/kg in 100 µl) into the shaved back of mice

(5 days a week) for 4 weeks. Serum and tissue biopsies were

collected at the end of the experiment at day 28. Mice were

randomly divided into 2 groups: intradermal injections of NaCl

(n = 6), and intradermal injections of BLM dissolved in NaCl (n =

6). The number of groups and mice per group was pre-calculated

depending on statistical power considerations based on the

expected results on skin involvement and data from the literature.

Animal studies were reviewed and approved by the Committee on

the Ethics of Animal Experiments under the French Ministry of

Higher Education and Research (#17011-2018100812449655). The

study was carried out in str ict accordance with the

recommendations in the Guide for the Care and Use of

Laboratory Animals, EEC Council Directive 2010/63/EU.
2.5 Mouse model of HOCl-induced
systemic sclerosis

Female C57BL/6J mice weighing between 18 and 20 gr, used at 8

weeks of age and purchased from Janvier Labs (Le Genest Saint Isle,

France) were randomly divided into 2 groups: daily intradermal

injections of 100 µl of PBS (n = 9) or HOCl (n = 8, one loss due to

biopsy sample at week 3) as previously described (18). Serum and
Frontiers in Immunology 03
tissue biopsies were collected at the end of the experiment at day 42.

Animal studies were reviewed and approved by the Committee on

the Ethics of Animal Experiments under the French Ministry of

Higher Education and Research (#17011–2018100812449655).
2.6 Phagocytosis assays by flux cytometry

MDMs were treated for 1 h with 5 mM of cytochalasin D

(CytoD), an actin polymerization inhibitor that prevents

cytoskeletal remodeling, and serves as a negative control for

phagocytosis. The cells were incubated in the presence of

fluorescent latex microspheres (ratio 10:1) (Fluoresbrite™ Plain

YG 1.0 Micron Microsphere, Polysciences, Warrington, USA) for

45 min at 37°C or at 4°C (negative control). After several washing

with PBS to eliminate the non-phagocytosed beads, MDMs were

detached in the presence of Accutase® cell detachment solution.

The fluorescence emitted at 525 nm by the cells having achieved

phagocytosis was quantified by flow cytometry on an LSR II

cytometer with FACSDiva software (BD Biosciences). The results

were expressed in % of phagocytosis, calculated as follows: % cells

fluorescent (37°C) - % cells fluorescent (4°C).
2.7 Induction of apoptosis in Jurkat cells
and quantification of efferocytosis in
human and lung murine macrophages

2.7.1 Induction of apoptosis
The human Jurkat T CD4 lymphocyte cell line was cultured in

RPMI 1640 Glutamax medium supplemented with 10% heat-

inactivated FCS and antibiotics. Apoptosis induced in Jurkat cells

(Japo) through exposure to 10 mM camptothecin for 4 h, was

confirmed with FITC-Annexin V/iodide propidium staining by

flow cytometry on an LSR II cytometer as previously described (4).

2.7.2 Quantification of efferocytosis in
human macrophages

Apoptotic Jurkat cells (Japo) were stained for 15 min with 250

ng/ml pHrodo (IncuCyte® pHrodo® Red Cell Labeling Kit,

Sartorius, Ann Arbor, USA), washed and added to MDMs plated

in 96-well-tissue culture plates, in 10:1 ratio (apoptotic cells/MDM)

at 37°C in a 5% CO2 humidified incubator. Engulfment efficiency of

apoptotic cells by MDMs was quantified by real-time fluorescence

microscopy (IncuCyte® live-cells Analysis system, Sartorius),

measuring total integrated red intensity (ex:560nm/em:585nm) of

labeled Jurkat cells when entering the acidic phagosome every

15 min for 3 h. The average fluorescence intensity (expressed as

RCU x µm2/image) at 90 min was used to compare the level of

efferocytosis between the different conditions.

2.7.3 Quantification of efferocytosis in BLM
mouse model

After staining for 15 min with 100 ng/ml CellTrace™CFSE

(Invitrogen, ThermoFisher scientific), Jurkat cells were washed and
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then exposed to 10 µM of campothecin for 4h to induce apoptosis.

An oropharyngeal instillation of 5.106 cells/50 µl CFSE-stained

apoptotic cells was then performed in anesthetized mice. The

bronchoalveolar lavages (BAL) were performed 2 h after the

instillation of apoptotic cells, to evaluate the efferocytosis

capacities of alveolar macrophages (AM) (38). Cells from BAL

were re-suspended in PBS supplemented with 2% FCS solution

containing Fc-block and then stained with mouse anti-CD11b-PE-

Cy7 (BD Biosciences, San Jose, CA, USA) and anti-Gr1-V450

(eBiosciences SAS, Paris) antibodies. The efferocytosis capacities

were measured in AM (Gr1Int and CD11bInt). The engulfment

efficiency was measured by flow cytometry.
2.8 LC3-associated phagocytosis
quantitative analysis of
immunofluorescence images

2.8.1 Labeling of human Jurkat lymphocytes
by PKH67

Jurkat cells were labeled for 5 min with the fluorescent probe

PKH67 (Sigma-Aldrich), exhibiting a high affinity for membrane

lipids. After washing with RPMI medium, apoptosis of PKH67-

stained Jurkat cells (Japo PKH67+) was induced by treatment with

camptothecin (see paragraph 2.6.1).

2.8.2 Induction of efferocytosis
Macrophage plated in Merck Millipore Millicell™ EZ Slides 8-

well glass (Thermo Fisher Scientific, Courtaboeuf, France) were

exposed to apoptotic Jurkat cells stained by PKH67 (Sigma Aldrich,

Saint Quentin Fallavier, France) in 10:1 ratio for 45 min at 37°C in a

5% CO2 humidified incubator.

2.8.3 LAP immunostaining
After several washing MDMs with PBS to eliminate the non-

phagocytosed Jurkat, MDMs were fixed with a solution of 4%

paraformaldehyde (Santa Cruz Biotechnology, Dallas, USA) for

10 min at room temperature, then permeabilized in 0.05% Triton X-

100 (Eurobio Scientific, Les Ullis, France) in PBS for 1 h at room

temperature before blocking with 2% bovine-serum-albumin (BSA)

(Eurobio Scientific) in PBS for 1 h at room temperature to avoid

nonspecific binding. M0-MDMswere then stained with 1 µg/mL rabbit

anti-LC3B primary antibody (Novus Biologicals, Centennial, USA) in

2% BSA-PBS overnight at 4°C. Cells were finally stained with 2 µg/mL

DAPI and 1 µg/mL goat anti-rabbit-Alexa647 secondary antibody

(Thermo Fischer Scientific) for 1 h at room temperature. After

washings, coverslips were mounted with Dako Fluorescence

mounting medium (Dako North America, Carpinteria, USA).

Fluorescent-labeled cells were captured with a fluorescence

microscope (ZEISS AxioImager M1). LAPosomes are identified as

fluorescence recruitment of LC3 around phagosomes containing

apoptotic Jurkat cells. At least 10 random quantifications per

condition were performed manually and blindly by two independent

investigators with the Fiji software and averaged for each condition.
Frontiers in Immunology 04
2.9 Cell surface receptor analyses by
flow cytometry

After cell washing and detachment using Accutase® cell

detachment solution (BioLegend, Paris, France), MDMs were

stained with Fixable Viability Stain 780 (BD Biosciences, Le Pont

de Claix, France) for 10 min at room temperature. MDMs were first

blocked in PBS supplemented with 2% FBS solution containing FcR

blocking reagent (Miltenyi Biotec SAS) for 10 min at room

temperature to avoid nonspecific binding, and then re-suspended

and incubated with specific antibodies or appropriate isotype

controls for 30 min at 4°C. Cells were washed with PBS, collected

by centrifugation (2500 rpm for 5 min) and then analyzed on a LSR

II cytometer and FlowLogicTM software (Miltenyi Biotec SAS). The

quantification of efferocytosis receptors was performed using the

following antibodies: FITC anti-CD36, FITC anti-ITGb5, PE anti-

MERTK (BioLegend), APC anti-CD36L1/SR-B1 (Miltenyi Biotec

SAS), and their respective isotype control, as recommended by BD

Biosciences (Le Pont de Claix, France). Results were expressed as

the mean ratio of median fluorescence intensity (MFI) calculated as

follows: MFI (mAb of interest)/MFI (isotype control mAb).
2.10 Reverse transcription-quantitative
polymerase chain reaction

Total RNA was extracted from human cells and mouse tissue

with a Nucleospin RNA extraction Kit (Macherey-Nagel, Hoerdt,

France) according to the manufacturer’s instructions. RNA

concentrations were measured by spectrofluorimetry using a

NanoDrop 1000 (Thermo Fisher Scientific) and reverse

transcribed using the High-Capacity cDNA Reverse Transcription

Kit (Thermo Fisher Scientific). Quantitative PCR (qPCR) assays

were next performed using the fluorescent dye SYBR Green

methodology and a CFX384 Real-Time PCR detector (Bio-Rad

Laboratories, Marnes-la-Coquette, France). Human and mouse

predesigned KiCqStart® SYBR® Green primers for gene

expression analysis were purchased from Sigma-Aldrich. The

specificity of amplified genes was evaluated using the comparative

cycle threshold method (CFX Manager Software). The Mean of Cq

values was used to normalize the expression of the steady-state

target mRNA levels to those of the 18S ribosomal protein, using the

2(−DDCq) method.
2.11 Quantification of cytokine
secretion levels

Levels of IL-6, TNFa, CCL18, and CCL22 secreted in MDM

culture media were quantified using specific Duoset ELISA kits

from R&D Systems, Bio-Techne, France: IL-6: DY206; for TNFa:
DY210; for CCL18: DY394; and for CCL22: DY336). Levels of

S100A8 in mouse lung extract were also quantified by ELISA (R&D

Systems, DY8596-05). Levels of mouse sera or human plasmatic
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1468821
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Le Tallec et al. 10.3389/fimmu.2024.1468821
CXCL4 were also quantified by ELISA (R&D Systems, human:

DY795, mouse: DY595).
2.12 Statistical analysis

Data were presented as means ± standard error on the mean

(SEM). Comparison between more than 2 groups was performed by

repeated measure analysis of variance (ANOVA) followed by

Dunnett’s or Newman–Keuls multiple comparison post hoc test.

Depending on the conditions, Student’s paired-or unpaired t-tests

were used to compare two groups. A p-value < 0.05 was considered

significant. Data analyses were performed with GraphPad Prism 5.0

software (GraphPad Software, La Jolla, CA, USA).
3 Results

3.1 CXCL4-rich plasma may contribute to
the lower efferocytosis capacities of
human monocyte-derived macrophages

As we previously described, MDMs from patients with SSc have

significantly decreased capacities to eliminate apoptotic cells (n=19)

when compared to MDMs from healthy donors (HD) (n=27)

(Figure 1A) (4). We also confirmed that CXCL4 serum levels were

significantly higher in SSc patients (n=150) than those of HD (n=42)

(Figure 1B) (12). The clinical characteristics of patients with SSc in

Figures 1A and B are reported in Supplementary Tables 1 and 2,

respectively. To evaluate the impact of soluble factors from the serum

of SSc patients on the efferocytosis capacities of macrophages, we

exposed human MDMs isolated from HD to plasma from HD or SSc

patients and then exposed MDMs to CFSE+ apoptotic Jurkat cells to

compare their phagocytic index. MDMs exposed to HD and SSc

plasma showed a significant decrease in efferocytosis when compared

to MDMs exposed to a control medium and MDM exposed to SSc

plasma patients exhibited a significant decrease in efferocytosis
Frontiers in Immunology 05
properties when compared to MDM exposed to HD plasma

(Figure 1C). Altogether, these data strongly suggested that serum

elements like soluble CXCL4may contribute to defect of efferocytosis.
3.2 SSc-ILD mouse models induced by
either BLM and HOCl exhibit CXCL4-MDMs
markers, a phenotype associated with
defective efferocytosis function in vivo

As the expression of the chemokine CXCL4 was previously

correlated with the fibrotic complications of the disease (12), we

explored its expression in two mouse models of SSc-ILD induced by

intradermal injections of repeated BLM or HOCl in which lung

fibrosis has been validated (18, 19). In the HOCl model, serum

levels of CXCL4 were significantly elevated when compared to the

saline (NaCl) group, while in the BLMmodel, CXCL4 levels showed

a moderate increase that did not reach statistical significance

(Figure 2A). The mRNA expressions of CXCL4 in lung tissues

were significantly increased in both BLM- and HOCl-treated mice.

Such inductions were accompanied by a significant overexpression

of some M4 macrophagic markers such as S100A8 andMMP7, with

a greater induction in the lung of BLM-mice as MMP7 mRNA

overexpression was not significant in HOCl-treated mice

(Figure 2B). Protein expression of S100A8 in the lung was also

significantly increased in BLM-exposed mice (Figure 2C). To

evaluate whether the presence of an M4 macrophage phenotype

was associated with an efferocytosis defect, we administered CFSE+

apoptotic Jurkat cells to NaCl- or BLM-treated mice. Our results

demonstrated that the percentage of AMs (Gr1Int and CD11bInt)

that ingested CFSE+ apoptotic Jurkat cells and the fluorescence

intensity of CFSE per macrophage were both significantly decreased

in the BAL of BLM-induced SSc mice when compared to the control

group (Figure 2D). Altogether, these results strongly suggested that

SSc-ILD mice presented at the systemic and the lung tissue levels a

M4 phenotype and demonstrated that AMs have a defect

of efferocytosis.
FIGURE 1

Role of CXCL4-rich plasma on efferocytosis capacities of human monocyte-derived macrophages (MDMs) (A) Evaluation of efferocytosis capacities
of CFSE+ apoptotic Jurkat cells by M0-MDMs from healthy donors (HD) and SSc patients by flow cytometry. The efferocytic index represents the
mean ± SEM of HD (n=27) and patients with SSc (n=19). Student unpaired t-test, ***p< 0.001. (B) Evaluation of CXCL4 levels (µg/ml) in the serum of
HD (n=42) and patients with SSc (n=150). Student unpaired t-test, *p< 0.05. (C) Evaluation of efferocytosis capacities of M0-MDMs exposed to HD or
SSc plasma. The engulfment of CFSE+ apoptotic Jurkat cells by MDMs was expressed as a % of MDMs by flow cytometry after matching on age and
sex for both HD and SSc. Data are expressed as mean ± SEM. ANOVA Newman-Keuls multiple comparison post hoc test, *p< 0.05; **p< 0.01.
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3.3 CXCL4-induced M4-MDMs exhibit a
mixed polarized phenotype and a defect of
phagocytosis and efferocytosis capacities

To better understand the effects of CXCL4 on MDM efferocytosis

capacities, we characterized humanM4-MDMs functions in vitro and

explored their phenotype as compared to previous descriptions (15)

(Figure 3A). Microscopic observation of MDMs in culture revealed

that M4-MDMs had less spindles than M0-MDMs and they were

rounded, showing similarities with GM-CSF-differentiated MDMs

(GM-MDMs) (Figure 3B). Among the M4 markers previously

identified (20), we found a significant increase of MMP7 mRNA

expression in comparison to M0-MDMs, whereas CD163 mRNA

expression was reduced in M4-MDMs, without reaching statistical

significance. The mRNA expression of S100A8 and the M2a/M4

markers, CCL18 and CCL22 were found unchanged when compared

to M0-MDMs (Figure 3C). Flow cytometry analysis of membrane

markers showed that M4-MDMs tend to have reduced expression of
Frontiers in Immunology 06
CD163, that was previously found downregulated in M4

macrophages (21), and of CD86, an M1-marker when compared to

M0-MDMs whereas the expression of CD206, a M2a marker, was

found unchanged (Supplementary Figure 1). M4-MDMs also showed

a pro-inflammatory phenotype with a high secretion of cytokines

such as IL-6 and TNF-a as compared to M0-MDMs. Interestingly,

M4-MDMs also secreted higher levels of the pro-fibrotic M2 markers

CCL18 and CCL22 as compared to M0-MDMs (Figure 3D).

Altogether, our results suggest a specific phenotype of CXCL4-

induced M4-MDMs, with mixed pro-inflammatory and pro-

fibrotic features.

We secondly evaluated the phagocytic and efferocytic functions

of M4-MDMs. The capacities of M4-MDMs to phagocyte

fluorescent pHrodo+ apoptotic cells, determined by real-time

fluorescence microscopy, were significantly reduced. GM-MDMs

and M0-MDMs pretreated with cytochalasin D (cytoD), a

drug inhibiting phagocytosis via the impairment of actin

depolymerization and cytoskeleton remodeling (22), also showed
FIGURE 2

SSc-ILD mouse models induced by either HOCl or BLM exhibit CXCL4-MDM markers, a phenotype associated with defective efferocytosis function
in vivo. (A) Evaluation of CXCL4 secretion levels (pg/ml) by ELISA in the sera of HOCl and BLM mouse models in comparison with the saline (NaCl)
control group. All experiments are the results of duplicate experiments and are expressed as means ± SEM (n = 5 mice per group). Student unpaired
t-test, **p < 0.01. (B) Evaluation of M4 signature in the lung of HOCl and BLM mouse models. The mRNA relative expressions are expressed as
means ± SEM with saline group (NaCl) arbitrarily set to 1 (n=4 to 9 mice). Student unpaired t-test, *p< 0.05; **p< 0.01; ***p<0.001. (C) Evaluation of
S100A8 secretion levels (pg/ml) in lung extracts of BLM mice in comparison with the saline (NaCl) control group by ELISA. The results are expressed
as means ± SEM (n = 5 mice per group). Student unpaired t-test, *p< 0.05. (D) Evaluation of efferocytosis capacities of murine alveolar macrophages
(AM) in BLM mouse model. The percentage of AM (Gr1Int and CD11bInt) that have engulfed CFSE+ apoptotic Jurkat cells and the median fluorescence
intensity (MFI) of CFSE+ AM were presented as the means ± SEM (n = 6 mice per group). Student unpaired t-test, ***p<0.001.
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decreased efferocytosis capacities (Figure 3E). By flow cytometry, we

showed that M4-MDMs were also less efficient in engulfing FITC-

beads than M0-MDMs and that their phagocytic abilities were

similar to those of GM-MDMs and MDMs exposed to cytoD

(Figure 3F). To better understand such an alteration of

efferocytosis in CXCL4-induced MDMs, we evaluated by flow

cytometry the membrane expression of several receptors involved
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in the recognition of apoptotic cells. As previously described (23),

the expression of CD36 was significantly reduced in M4-MDMs in

comparison to M0-MDMs. The expression of the CD36L1 and

MERTK also tended to decrease in M4-MDMs but without

reaching statistical significance whereas ITGb5 expression did not

differ between M4-MDMs and M0-MDMs (Figure 3G). Altogether,

these results suggested that the moderate decrease in CD36
FIGURE 3

Phenotype and functions of CXCL4-induced M4-MDMs. (A) Simplified schema summarizing the steps to follow to obtain polarized human MDMs
from healthy donors (HD). (B) Morphology of human MDMs (M0, M4, and GM) observed by light microscopy at x20 magnification. (C) Evaluation of
mRNA expression by RT-qPCR in M4-MDMs relative to control resting M0-MDMs, arbitrarily set to 1 unit (dashed line). All experiments are the results
of duplicate experiments conducted in MDMs from n = 4 to 6 independent HDs and are expressed as means ± SEM. Student paired t-test, *p< 0.05.
(D) Evaluation of cytokine secretion levels (pg/ml) in the culture medium of M4-MDMs relative to control resting M0-MDMs by ELISA. All
experiments are the results of duplicate experiments conducted in MDMs from n = 4 to 6 independent HDs and are expressed as means ± SEM.
Student paired t-test, *p< 0.05. (F) Evaluation of phagocytic capacities of M4 by flow cytometry (see methods) relative to control resting M0-MDMs.
Data are expressed as mean % of phagocytosis (ratio of median fluorescence intensity (MFI) at 37°C/MFI at 4°C) ± SEM from 4 independent HDs,
ANOVA Dunnett’s post hoc test compared to resting M0-MDMs, * p< 0.05. (E) Evaluation of efferocytosis capacities of pHrodo+ apoptotic Jurkat
cells by M4-MDMs compared to resting M0-MDMs pre-treated or not with CytoD. Data are expressed as mean pHrodo fluorescence intensity ±
SEM of 4 independent experiences in duplicate, ANOVA Dunnett’s post hoc test compared to resting M0-MDMs. *p< 0.05; ***p< 0.001.
(G) Expression of cell surface receptor involved in efferocytosis in M4-MDMs by flow cytometry relative to control resting M0-MDMs. Data are
expressed as mean fluorescence intensity (MFI) relative to isotype control (ratio) ± SEM, from 5 independent HDs, Student paired t-test, *p< 0.05.
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expression could not fully explain the reduced efferocytosis

capacities of M4-MDMs and that other mechanisms could

be involved.
3.4 CXCL4-induced M4-MDMs show
enhanced LC3-associated phagocytosis

To explain the lower abilities of M4-MDMs to accumulate

apoptotic cells in phagolysosomes (Figure 3E), we explored the

LC3-associated phagocytosis (LAP), an internalization process

utilizing some proteins of the autophagy machinery. LC3

recruitment and conversion are involved in the canonical and

non-classical autophagy pathways. It is well known that the

recruitment of LC3 relies on the formation and elongation of the

phagophore which is slow during autophagy unlike the LAP process

characterized by a quick LC3 recruitment that is performed in less

than 15 min after apoptotic cell exposure and that reaches a

maximum after one hour (24, 25). M4-MDMs were thus exposed

to PKH67+ apoptotic Jurkat cells for 45 min before cellular

immunostaining of LC3, and LAPosome quantification by

fluorescence microscopy. LAPosomes are characterized by

circular recruitment of the LC3 protein surrounding the apoptotic
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Jurkat cells (Figure 4A), or IgG-beads (Figure 4B), as opposed to

phagosomes without peri-phagosomal reinforcement of LC3

staining. While we confirmed the decreased phagocytic capacities

of CXCL4-induced MDMs to engulf apoptotic Jurkat cells

(Figure 4C) and IgG-beads (Figure 4D) in comparison to resting

M0-MDMs, LAPosome proportion among phagosomes was found

to be higher in M4-MDMs as compared to M0-MDMs after a 45-

minute efferocytosis of apoptotic Jurkat cells (Figure 4E) or of IgG-

beads (Figure 4F). LAPosomes only represented a moderate

proportion of the total number of phagosomes, LAP being a

dynamic and fleeting process. MDMs also showed a diffuse

cytoplasmic and nuclear fluorescence of LC3, the protein being

mainly in its soluble form LC3-I with a nuclear reservoir (26).

To explain the higher LAPosome proportion in M4-MDMs, we

next evaluated the expression of autophagy-associated proteins

involved in LAP both in vivo and in vitro. We analyzed Rubicon

and NOX2 mRNA expression, both known to promote LAP. These

proteins are part of a complex that also includes BECLIN1.

Additionally, we analyzed the mRNA expression of the ATG

(autophagy-related) proteins ATG4 participating in the

conversion of LC3-I to its conjugated form LC3-II, and ATG5

involved in LC3-II integration into the phagosome to form

LAPosomes. mRNA expression of LC3A, ATG4, ATG5, BECLIN1,
FIGURE 4

LAPosome quantification in polarized MDM from healthy donors (HD). (A, B) M0 and M4 were primarily exposed to either PKH67-stained (green)
apoptotic Jurkat cells (PKH67+ apoJ) (white arrow, A), or IgG-coated beads (dotted arrows, B) for 45 min. Nuclei were then stained with DAPI (blue),
and LC3 stained with rabbit anti-LC3B primary antibody targeted with goat anti-rabbit Alexa647 secondary antibody (red). LC3+ phagosomes
(LAPosomes) are characterized by circular red fluorescence recruitment around phagosomes (yellow arrows). (C, D) Evaluation of phagocytosis
capacities of M4-MDMs relative to M0-MDMs were obtained from 5 independent HDs, and not 4. (C) or IgG-coated beads (D) after 45 min of
phagocytosis. Phagocytosis data represent the mean ± SEM of the percentage of MDMs that have phagocytosed either at least one PKH67+
apoptotic Jurkat cells (apoJ) (C), or at least one IgG-coated bead (D), from 4 independent HDs. Ten random quantifications per condition were
performed manually and blindly by two independent investigators with the Fiji software and averaged for each condition. Student paired t-test, *p <
0.05. (E, F) Evaluation of LC3-associated phagocytosis (LAP) capacities of M4-MDMs relative to M0-MDMs. LAPosomes are identified as fluorescence
recruitment of LC3 around phagosomes in cells containing either PKH67+ apoptotic Jurkat cells (apoJ) (E) or IgG-coated beads (F) after 45 min of
phagocytosis, as described in (A, B), respectively. LAP data represent the mean ± SEM of the percentage of MDMs showing at least one LC3+
phagosome, among MDMs that have phagocytosed either PKH67+ apoJ (E) or IgG-coated beads (F), from 5 independent HDs. Ten random
quantifications per condition were performed manually and blindly by two independent investigators with the Fiji software and averaged for each
condition. Student paired t-test, *p < 0.05.
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NOX2, Rubicon, and p62 were all significantly increased in the lung

of BLM-SSc mice in comparison to controls (Figure 5A). By

contrast, only BECLIN1 and ATG4 mRNA expression were

upregulated in SSc-MDMs when compared to HD-MDMs

(Figure 5B), and only BECLIN1 in M4-MDMs compared to M0-

MDMs (Figure 5C). The clinical characteristics of patients with SSc

of Figure 5B are reported in Supplementary Table 1. Altogether, our

data suggest that, while phagocytosis was less efficient, LAP seemed

increased in vivo in the fibrotic lungs of BLM-mice as well as in vitro

in SSc-MDMs, with enhanced LAP in M4-MDMs in vitro.
4 Discussion

In this study, we demonstrated that CXCL4 participates in the

alteration of efferocytosis in SSc through the induction of a specific

M4macrophage phenotype. To our knowledge, this is the first study

investigating the role of this particular macrophage subtype in SSc

pathogenesis in human and in SSc mouse models.

In vivo, our results are consistent with those of Affandi et al.,

who observed increased CXCL4 serum levels and mRNA expression

in the skin of a BLM-mice model of fibrosis, correlating CXCL4

expression with skin and lung fibrosis (27). In our study, we

demonstrated that efferocytosis alteration of AMs in the BLM-

mice model could be associated with the upregulation of both

CXCL4 and the two key M4 macrophage markers MMP7 and

S100A8 (28) in the lungs. This finding is supported by Zuo et al.,

who previously identified MMP7 as a mediator of pulmonary

fibrosis in response to BLM (29). Furthermore, we confirmed the
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potential implications of CXCL4-driven macrophages in fibrotic

lungs using a second SSc mouse model induced by repeated

injection of HOCl. Interestingly, previous reports have also

described elevated expression of MMP7 (30) and S100A8 (31) in

patients with SSc, both of which were correlated with the severity of

pulmonary fibrosis. Additionally, Piguet et al. demonstrated that

BLM instillation in mice increased both collagen deposition and

platelet trapping within alveolar capillaries (32). Heparin treatment

significantly reduced BLM-induced lung fibrosis without decreasing

the number of platelets, suggesting a potential role of platelets

mediators such as CXCL4, while it has been described that heparin

specifically binds and inhibits CXCL4 effects on monocytes (21, 33).

In vitro, we demonstrated that M4-MDMs expressed some pro-

fibrotic markers associated with the M2 polarization profile (CCL18

and CCL22 secretions), but also had a pro-inflammatory phenotype

with impaired phagocytosis and efferocytosis capacities similar to

GM-MDMs. This dual pro-inflammatory and pro-fibrotic

phenotype aligns with the concept of a mixed signature of

macrophages involved in SSc, beyond the M1/M2 dichotomy (9,

10). M4-MDMs markers in our study are consistent with those

from previous studies (15, 20, 23). However, variations in the

expression of some markers can be explained by differences in

experimental conditions. For example, the loss of the CD163

receptor at the membrane, reported as M4 specific by some

authors (21), was only moderate in our study; such discrepancies

could be explained by lower concentrations of CXCL4 used in our

study and a shorter exposure time (2 days versus 6 days), which

were chosen to facilitate comparison between different MDM

profiles. The co-exposure to CXCL4 and M-CSF may have also
FIGURE 5

mRNA expression of genes involved in LAP. (A) mRNA expression in the lung of BLM-exposed mice (n=6 mice) compared to saline group (n=4 to 6).
Student unpaired t-test, *p< 0.05; **p< 0.01; ***p<0.001. (B) mRNA expression in SSc-MDMs compared to HD-MDMs. All experiments are the
results of duplicate experiments conducted in MDMs from independent HDs (n=8 to 14) and SSc patients (n=19 to 27). Student unpaired t-test,
*p< 0.05. (C) mRNA expression in M4-MDM compared to M0-MDMs. All experiments are the results of duplicate experiments conducted in MDMs
from n = 6 to 8 independent HDs and are expressed as means ± SEM. Student paired t-test, *p< 0.05.
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influenced the polarization of M4-MDM. However, another work

using a polarization protocol similar to ours also reported minor

differences between the transcriptomes of M0- and M4-

MDMs (34).

Despite these few phenotypic differences, a moderate exposure

to CXCL4 significantly impaired MDM functions, with significantly

reduced phagocytosis and efferocytosis capacities. Atherosclerosis,

another fibroproliferative and inflammatory disease, is also

characterized by impaired efferocytosis linked to a reduced

expression of efferocytosis-related receptors such as MERTK and

CD36 (35, 36). Additionally, the genetic deletion of CXCL4 has been

shown to decrease atherosclerosis (37) and exogenous CXCL4 has

been observed to diminish the phagocytic capacities of

macrophages involved in myocardial infarction by reducing the

expression of CD36, a dual receptor involved in both the

engulfment of apoptotic cells and the uptake of modified lipids

(23). In our study, CD36 receptor expression was also decreased,

although such moderate decrease could not explain the major

efferocytosis defect of M4-MDMs. However, altered efferocytosis

in M4-MDMs could be attributed to a significant reduction in

phagocytic function. The dysfunction of this process could be

explained by the activation of the RhoA/ROCK signaling

pathway, which is involved in cytoskeletal remodeling and

phagocytosis (38). This signaling pathway is activated by

exposure to crystalline silica, an environmental risk factor of SSc,

and is implicated in the phenotypic changes of SSc-MDMs (39).

Additionally, in the pro-inflammatory GM-MDM phenotype,

which is morphologically similar to M4-MDMs, the RhoA/ROCK

pathway is also activated (40). Therefore, their round shape

observed under optical microscopy, in contrast to the fusiform

aspect of M0- and M2-MDMs, may reflect reduced deformability of

the cellular cytoskeleton, limiting phagocytic capacities.

While M4-MDMs exhibited low phagocytosis capacities in

vitro, we found an increase in LAPosomes proportion among

phagosomes compared to resting M0-MDMs. However, we did

not observe an overexpression of autophagic genes in M4-MDMs,

except for BECLIN1, when compared to resting M0-MDMs. As M4-

MDMs are less efficient to engulf apoptotic cells, and because LAP is

a dynamic process, it is also possible that LC3-phagosome

conjugation has already occurred in M0-MDM, thus being less

visualized as compared to an earlier uptake. Therefore, an early

analysis of LAP machinery early after phagocytosis and at the

protein level would be more appropriate to explain the increase of

LAPosome proportion. An increased lysosomal degradation could

also explain this increase of LAPosomes in M4-MDMs.

Intriguingly, a previous study showed that LAP was enhanced in

circulating monocytes from patients with hepatic cirrhosis and in a

mouse model of liver fibrosis and that LAP inhibition led to

increased hepatic inflammation and fibrosis, suggesting that LAP

could act as a compensatory mechanism preventing MDMs

reprogramming toward a proinflammatory phenotype (41). In

our study, we found an increase in autophagic gene expression in

the lungs of BLM-SSc mice. These results notably align with those of

Mori et al. and Frech et al. showing a higher expression of LC3 by

immunofluorescence in the lesional dermis of both BLM-treated

mice and SSc patients compared to controls (42, 43). Moreover,
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Cabrera et al. found that ATG4 gene expression was significantly

increased in BLM-treated mice, thus preventing lung apoptosis and

increasing inflammatory response (44). As mRNA expression was

evaluated on total lung extract in our study, beyond macrophages,

autophagy from other cell types (lung fibroblasts, lung epithelial

cells) could explain these results. In SSc-MDMs, despite showing a

significantly higher expression of BECLIN1 and ATG4, autophagic

gene expression was more heterogeneous, which is consistent with

the heterogeneity of MDMs phenotypes in this disease.

Previous reports argue for a connection between autophagy

machinery and fibrosis (45). Autophagy machinery was activated in

SSc fibrotic skin in a TGFb-dependent manner in previous studies,

thereby promoting collagen release through BECLIN1

overexpression (46). Moreover, Liu et al. demonstrated that

hypoxia enhanced autophagic protein expression concomitant

with fibroblast collagen synthesis (47). As platelets are a

significant source of TGFb and CXCL4, both have been found

elevated in SSc patients with Raynaud’s phenomenon (48, 49).

Given that vasculopathy is an early event in SSc pathogenesis,

endothelial damage occurring during the initial stages of the disease

may activate platelets, leading to subsequent release of mediators

such as CXCL4 (50), linking autoimmunity and fibrosis by its effects

on monocytes (51, 52).

There are several limitations to our study, including the inability

to establish the presence of a specific M4 macrophage population

among human SSc-MDMs. Additionally, we did not correlate the

altered level of efferocytosis of AMs in vivo in SSc mice with the

expression level of CXCL4 in the lungs. Despite our exploration of

LAP for a better understanding of efferocytosis alteration in SSc- and

M4-MDMs, we cannot correlate both processes. Finally, the absence

of difference in the autophagic gene expression betweenM4- andM0-

MDMs might be attributed to a lack of statistical power due to the

limited sample size of the groups. Nevertheless, we have shown that

the phagocytosis capacities of humanMDMs can be influenced by the

extracellular environment, with significant impairment of

efferocytosis by CXCL4. Although we did not identify the specific

CXCL4 receptor responsible for these effects, CCR1 or chondroitin

sulfate proteoglycan receptors are strong candidates (21). Exposure to

CXCL4 induced a specific M4 macrophage phenotype characterized

by a mixed proinflammatory and profibrotic profile. Our study thus

strengthens the role of CXCL4 in the pathogenesis of SSc, providing

additional evidence of a connection between vasculopathy,

autoimmunity, and fibrosis in this severe autoimmune disorder.
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