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Sjögren’s syndrome (SS) is an autoimmune disorder primarily affecting the body’s

exocrine glands, particularly the salivary and lacrimal glands, which lead to severe

symptoms of dry eyes and mouth. The pathogenesis of SS involves the

production of autoantibodies by activated immune cells, and secretion of

multiple cytokines, which collectively lead to tissue damage and functional

impairment. In SS, the Immune interaction among T and B cells is particularly

significant. Lymphocytic infiltration in the salivary glands is predominantly

composed of CD4+ T cells, whose activation cause the death of glandular

epithelial cells and subsequent tissue destruction. The excessive activity of T

cells contributes significantly to the disease mechanism, with helper T cells (CD4

+) differentiating into various subgroups including Th1/Th2, Th17, as well as Treg,

each contributing to the pathological process through distinct cytokine

secretion. In patients with SS, B cells are excessively activated, leading to

substantial production of autoantibodies. These antibodies can attack self-

tissues, especially the lacrimal and salivary glands, causing inflammation and

tissue damage. Changes in B cell subpopulations in SS patients, such as increases

in plasmablasts and plasma cells, correlate positively with serum autoantibody

levels and disease progression. Therapies targeting T cells and B cells are

extensively researched with the aim of alleviating symptoms and improving the

quality of life for patients. Understanding how these cells promote disease

development through various mechanisms, and further identifying novel T and

B cell subgroups with functional characterization, will facilitate the development

of more effective strategies to treat SS.
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1 Introduction

Sjögren’s Syndrome (SS) is a systemic autoimmune disorder

characterized by impaired salivary and lacrimal gland function,

causing pronounced dryness of the skin and eyes (1). Aside from the

classic symptoms of dryness, fatigue, and joint pain, SS can impact

various organs, manifesting symptoms in the lungs and

neuropsychiatric domains (2). Furthermore, research suggests a

heightened susceptibility to cardiovascular diseases and lymphoma

in individuals with SS (3). SS is a prevalent rheumatic disorder, with

an estimated prevalence of 0.5%, an annual incidence ranging from

3 to 11 cases per 100,000, and an estimated mortality rate of 4 per

1,000 per year (4). Women exhibit a higher incidence rate, with a

gender ratio of nearly 10:1 (5). Gender differences in disease

presentation are evident, with men often experiencing more

severe eye involvement and less pronounced systemic and

immune symptoms (6). There is no age limit on when SS

manifests, although it primarily impacts individuals between the

ages of 30 and 50, thus making its occurrence in children

uncommon (7). This autoimmune disease is associated with

significant mortality rates, largely attributed to complications

such as B-cell lymphoma, interstitial lung disease, renal failure,

and severe cryoglobulinemic vasculitis. Notably, non-Hodgkin

lymphoma stands out as one of the most severe complications (8).

The exact etiology and pathogenesis of SS are currently unknown,

with the condition thought to arise from intricate interactions among

the activated immune system, epithelial cells, and target cells

implicated in the autoimmune response, influenced by various

factors crucial to disease progression (9). Genetic factors, particularly

those identified through genome-wide association studies (GWAS),

are of primary importance, with additional research indicating the

involvement of other risk alleles (10). Wang and colleagues discovered

39 immune-related gene variants using whole-exome sequencing in

families affected by primary SS, with a predominant association with

the activation of T cell as well as their receptors (11). The dysregulation

of the immune system and progression of the disease may be attributed

to epigenetic modifications such as DNA methylation and histone

modifications. It has been identified that IFN-regulated genes were

hypomethylated in salivary gland (SG) cells and immune system of

individuals with SS (12, 13). Besides genetic influences, immune

dysregulation, environmental factors, infections, and medications

have the potential to disrupt both innate and adaptive immune

responses, leading to the induction of interferon signaling and

subsequent stimulation of B cell proliferation (14). Furthermore,

neuroendocrine mechanisms involving hormones and neuropeptides

may impact exocrine gland function, providing a potential explanation

for the presence of severe dryness symptoms in some patients with SS

despite the absence of prominent inflammatory histopathological

features (15).

The main pathological characteristics of SS include SG

lymphocytic invasion and the presence of autoantibodies in the

bloodstream. Infiltrating lymphocytes, predominantly T and B cells,

tend to aggregate around striated duct lesions, although other

immune cells such as dendritic cells, may observed as well (16, 17).

Research indicates that the lymphocytes infiltrating glandular tissues
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are primarily composed of CD4+ T cells, with some CD8+ T cells

present. Activation of these T cells leads to epithelial cell death and

tissue destruction (18). Furthermore, the infiltration of T cells into

exocrine glands and other tissues initiates inflammatory responses,

resulting in the symptomatic presentation of SS (19). Regarding

autoantibodies, most individuals suffering from SS have antibodies

against SSA/Ro and SSB/La (20), which has a positive association

with the number of corresponding plasma cells in the SGs. Based on

this, it seems that the SGs serve as a significant reservoir for

autoantibody-producing cells (21). These autoantibodies are

produced by activated B lymphocyte as well as plasma cells. The

heightened activity of B lymphocyte leads to the production of

autoantibodies and various cytokines, with emerging evidence

indicating the functional heterogeneity of B lymphocyte subsets in

both immune reactions and autoimmune pathogenesis (22). This

review emphasizes the significance of immune cell activation on SS

and outlines the key pathways through which T and B lymphocytes,

as well as their subsets, contribute to the development of SS.

Comprehending these intricate immune pathways will aid in the

investigation of the effective targeting of particular immune cells for

therapeutic purposes.
2 T lymphocytes

SS is commonly recognized as a disorder primarily activated with

T cells, as evidenced by the predominance of T cell infiltrates in early-

stage lesions (23). Research has revealed an increase in T cell

infiltration within the SGs of individuals with SS, while T cell levels

in peripheral blood are decreased, likely due to migration, and are

associated with disease progress (24). These infiltrating lymphocytes

are primarily comprised of helper T cells (Th), which can differentiate

into various subsets including Th1, Th2, Th17, regulatory T cells

(Treg), and Tfr, Tfh, as well as CD8+ T cells (25). The pathogenesis of

primary SS is significantly influenced by the heightened activity of T

cells, which persistently trigger local inflammatory immune reactions

through the innate immunity (Figure 1).
2.1 Th1/Th2 cells

The Th1 cells respond to immune stimuli by releasing cytokines

such as interferon-gamma (IFN-g), tumor necrosis factor-alpha (TNF-

a), interleukin-2 (IL-2), and C-X-C motif chemokine receptor 3

(CXCR3) (26). In patients with SS, the activation of Th1 cells results

in damage to glandular tissue and inflammation. These cytokines serve

to recruit additional inflammatory cells to the affected areas, thereby

intensifying the inflammatory response (27). Researchers have

previously demonstrated high levels of IFN-g, TNF-a, and IL-4 in

the saliva of SS patients, suggesting a correlation between heightened

Th1-related inflammatory cytokines and the development of SS (28).

IFN-g, a prominent cytokine produced by Th1 cells, is essential in

modifying the activation of specific innate immune cells. Excessive

activation of IFN-g may exacerbate the pathology of SS (29). This

cytokine has been shown to impair tight junctions in the glandular
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tissues of individuals with SS, leading to dysfunction of the glands result

from the present of local inflammatory cytokines (30). TNF-a, another
Th1 cytokine, is also linked to the progression of SS, as elevated levels

have been detected in the serum with the condition and significantly

increased in their saliva and SGs (31). TNF-a facilitates leukocyte

adhesion through the modulation of epithelial junction reorganization

and the upregulation of adhesion molecule expression (32).

Additionally, TNF-a triggers the release of interleukin-8 (IL-8),

which enhances leukocyte infiltration and contributes significantly to

the pathogenesis of SS (33). Furthermore, studies have identified

elevated levels of interleukin-12 (IL-12) in the SGs of patients with

SS (34). Suboptimal concentrations of IL-12 have been shown to

activate CD4+ T cells to differentiate into Th1 cells via the activation

of the STAT4 phosphorylation pathway (35). It has been demonstrated

that IL-12 stimulate IFN-g production and promote Th1 cell

differentiation, with decreased levels of IL-12 correlating with

reduced symptoms in mouse models (36). IL-27, a cytokine related

to IL-12, has the ability to drive the differentiation of various immune
Frontiers in Immunology 03
cell types, including T, B, NK, and dendritic cells. Elevated levels of IL-

27 in the peripheral blood of individuals with SS might contribute to

the differentiation of Th1 cells, leading to alterations in the Th1/Treg

cell balance as well as the activation of T cells, ultimately contributing to

the development of SS symptoms (23).

Th2 cells are known for their secretion of cytokines like interleukin-

4 (IL-4), interleukin-5 (IL-5), interleukin-13 (IL-13), which are essential

component of humoral immunity (37). In contrast, Th1 cells primarily

produce IFN-g to support cellular immune responses and suppress Th2

cell activity. Excessive inflammation can result in uncontrolled tissue

damage. In addition to producing IL-4 and IL-5, Th2 cells stimulate IgE

production and eosinophil activation, while inhibiting Th1 responses

(38). Hence, maintaining a delicate equilibrium between Th1 and Th2

cells is essential for immune regulation. Th2’s activation is particularly

significant in SS, as relevant cytokines induce B cell hyperactivation and

the production of antibodies, including anti-SSA/Ro and anti-SSB/La

(39). The hyperactivation of B cells and the production of

autoantibodies contribute to SS pathogenesis. Research indicates an
FIGURE 1

The mechanisms of T lymphocytes and their subsets in Sjögren’s syndrome. T lymphocyte infiltration in the salivary glands of SS patients has
increased, predominantly consisting of CD4+ T and CD8+ T cells. IL-12 activates CD4+ T cells to differentiate into Th1 cells, releasing cytokines
such as IFN-g and TNF-a, which cause glandular damage and inflammation. TNF-a also triggers the release of IL-8, thereby enhancing leukocyte
infiltration. Th2 cells secrete IL-4 and IL-5 to activate B cells, participating in the formation of autoantibodies, while also inhibiting Th1 cells. DCs
release TGF-b and IL-23, promoting Th17 cell polarization. Activated Th17 cells induce inflammatory exocrine glands to secrete IL-6 and TNF,
leading to inflammation. TGF-b can also activate Tregs, which secrete inhibitory cytokines such as IL-10 and IL-35, thus inhibiting Th17 cell
responses, whereas IL-6 can mediate the conversion of Tregs to Th17 cells. Macrophages play a role in antigen presentation, activate B-cell-
mediated humoral immunity, and also secrete cytokines such as IL-6 to participate in inflammatory responses. Tfh cells primarily secrete IL-21 and
IL-4, promoting B cell proliferation and differentiation within germinal centers, ultimately producing high-affinity antibodies. Tfr cells can effectively
inhibit Tfh and B cells, thus regulating germinal center reactions and the production of autoantibodies. CD8+ T cells secrete inflammatory cytokines
such as IFN-g and TNF-a, and cause salivary gland cell apoptosis through the FAS and CTL pathways. CD8+ Tregs primarily release IL-21, inhibiting
immune responses by suppressing lymphocyte function. (DC, dendritic cell; MAC, macrophages; Treg, regulatory T cells; Tfh, follicular helper T cells;
Tfr, follicular regulatory T cells).
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increase in Th2 cells in the peripheral blood of SS patients, which

contributes to the progression of the disease (40). Furthermore, elevated

levels of the Th2-derived cytokine IL-10 in saliva are associated with

disease progression in a positive manner (41). Research has identified

the presence of IL-2 and IFN-g in all patients with SS, while IL-4 and IL-
5 are exclusively present in individuals exhibiting elevated levels of B

cell infiltration in the SGs (42). Clinical evidence suggests a marked

elevation of Th2 cytokines in the saliva of SS patients, with Th2

cytokine levels demonstrating a strong correlation with heightened

lymphocyte accumulation in the labial SGs (43). Immunohistochemical

analysis demonstrates the localization of Th2 chemokines, such as C-C

motif chemokine ligand 22(CCL22) and C-C motif chemokine ligand

17(CCL17), in the vicinity of ductal epithelial cells and germinal centers

(43). These findings indicate the crucial function of Th2 cytokines at the

beginning and perpetuation of SS, particularly in the context of

localized B cell activation.
2.2 Th17 cells

Th17 cells express interleukin-17 (IL-17) and interleukin-22 (IL-22),

as well as chemokine receptors CCR6, CCR4. Th17 contribute

significantly to the pathogenesis of various autoimmune diseases (44,

45). Additionally, IL-17 and IL-22 produced by Th17 promote the

formation of tight junction proteins, thereby contributing to the

maintenance of epithelial barrier integrity. Epithelial cell survival and

proliferation are also significantly influenced by IL-22 (46, 47). Located

in the lymph nodes of the salivary glands and the lacrimal glands,

dendritic cells may initiate and polarize Th17 cells. Subsequently, in the

advanced stages of the disease, these dendritic cells release transforming

growth factor-b(TGF-b) and IL-23 to facilitate Th17 cell polarization

(45). The activated Th17 cells contribute to inflammation by inducing

inflamed exocrine glands to secrete IL-6 and TNF (48). There is a

notable increase in Th17 cells in the SS patients’ peripheral blood, and

the levels of IL-17 in their saliva and tears surpass those of healthy

individuals (49). According to Reksten et al (50), the serum IL-17 levels

were higher in small SG biopsies from germinal centre (GC)-positive

patients (patients with ectopic GC formation in the salivary glands) than

in GC-negative patients, and there was a positive correlation among

serum IL-17 levels and anti-Ro/SSA as well as anti-La/SSB. Additionally,

an increase in circulating Th17 was only found in SS individuals with

moderate to high disease activity, suggesting a relationship between the

number of circulating Th17 cells, serum IL-17 levels, and disease severity

(51). Conversely, elevated IL-22 expression promotes the aggregation of

B cells and the formation of lymphoid aggregates, resulting in the

upregulation of multiple cytokines including CXCL12 and CXCL13,

ultimately leading to the production of autoantibodies (52). Increased

IL-22 is linked to the anti-SSB autoantibodies, combined anti-SSA/SSB

antibodies, rheumatoid factor, and reduced saliva flow rate in patients

with SS (53).
2.3 Regulatory T cells

Regulatory T cells (Tregs) express the surface markers CD4,

CD25, and the transcription factor Forkhead Box P3 (Foxp3) that
Frontiers in Immunology 04
distinguish them from suppressive T cells (54). Tregs have a crucial

function in preventing the development of autoimmune and allergic

ailment through the secretion of inhibitory cytokines like IL-10,

IL-35, TGF-b, as well as the induction of cell lysis (granzyme B/A),

which modulates the activation and function of antigen-presenting

cells (55). Both Tregs and Th17 cells could be activated by TGF-b,
and the delicate balance between these cell subsets can be easily

disrupted, resulting in the predominance of pathogenic cells and the

initiation of autoimmune responses (56). An imbalance in the ratio

of Th17 cells to Tregs has been documented in several autoimmune

conditions, such as inflammatory bowel disease, rheumatoid

arthritis, and multiple sclerosis (57–59). In patients with SS, there

has been a reduction in the proportion of CD4+CD25+ Treg cells in

the bloodstream, alongside elevated levels of TGF-b in the SGs,

potentially attributed to the IL-6-mediated transformation of Tregs

into Th17 (60). Moreover, a particular subgroup of circulating CD4

+ T cells with reduced CD25 expression has been identified in

patients with SS. These cells, emergence in the SGs, demonstrate a

regulatory T cell (Treg) phenotype by expressing Foxp3, TGF-b,
and IL-10, despite their little expression of CD25. They proliferate

exclusively in individuals with quiescent disease and display potent

suppressive capabilities against self-reactive cells (61). In contrast to

conventional Tregs, another regulatory subset known as type 1

regulatory T (Tr1) cells, induced by IL-27, exhibit heightened IL-10

production and the ability to dampen T cell responses. The

prevalence of Tr1 is notably diminished in individuals with SS

and in mouse models of the disease (62).
2.4 Tfh/Tfr cells

Tfh cells, an identifiable subset of CD4+ helper T cells, are

predominantly situated in the lymphoid follicles of secondary

lymphoid organs such as tonsils, spleen, and lymph nodes, which

are characterized by the expression of phenotypic markers

including CXCR5, CD40L, ICOS, Bcl-6, and PD-1 (63). Tfh cells

primarily secrete IL-21 and IL-4 to proliferate B cells and

differentiation within germinal centers, ultimately resulting in

developing high-affinity antibodies. This process is essential for

the maintenance of germinal center activity and humoral immune

balance (64). Research has indicated an increase in Tfh cells in the

SS patients’ peripheral blood and SGs, with these levels showing a

positive correlation with the Sjögren’s Syndrome Disease Activity

Index (ESSDAI) (65). Circulating Tfh cells (cTfh) exhibit distinct

characteristics from germinal center Tfh cells, notably the absence

of BCL-6 expression. Specifically, cTfh1 cells are known to release

IL-21, IL-10 as well as IFN-g; cTfh2 cells emergence IL-4, IL-13, and

IL-21; and cTfh17 cells secrete IL-17, IL-21, IL-22 (63). Of these,

cTfh17 cells exhibit higher expression levels in SS individuals and

demonstrate a positive link to disease activity, total IgG levels, and

the amount of anti-SSA/anti-SSB (66). Inducible T-cell costimulator

(ICOS) serves as an active biomarker for cTfh. Research indicates

that ICOS expression in cTfh cells of SS patients is three times

greater than in healthy individuals, and ICOS is upregulated in

conjunction with CXCR5 and PD-1, resulting in heightened

activation of Tfh cells in SS patients (67).
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1468469
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Meng et al. 10.3389/fimmu.2024.1468469
Follicular regulatory T cells (Tfr) are a distinct subset of Tregs that

express Foxp3, CXCR5, and Bcl-6. These cells migrate to B cell follicles

and GCs in which they play a vital function in inhibiting the

overactivation of Tfh and B cells, thus preventing autoimmune

responses (68). Similar to Tfh cells, Tfr cells exhibit high expression

of CXCR5 while also retaining the Foxp3 on the surface of Tregs. This

allows Tfr cells to effectively inhibit Tfh and B cells, thereby regulating

GC reactions and autoantibodies production (69, 70). Tfr exhibit a

notable increase in abundance within the blood and SGs of SS, with a

significantly higher Tfr/Tfh ratio observed in their blood compared to

that of healthy individuals (71). Moreover, circulating Tfr cells (cTfr)

have garnered significant attention in SS research, with key markers

including Foxp3, CXCR5, and CD4. Studies have demonstrated a

correlation between the cTfr/cTfh ratio and the development of

ectopic lymphoid structures and lymphocyte infiltration in the SGs of

SS (65). Additional studies demonstrate that Tfr cells present in the

bloodstream serve as markers for continuous humoral activity. Elevated

levels of cTfr cells could contribute to active lymphocyte proliferation

and differentiation, as opposed to glandular inflammation (72).
2.5 CD8+ T cells

CD8+ T cells, or cytotoxic T cells, serve a critical function in the

human immune system by recognizing antigens presented by MHC

class I molecules through their CD8 receptors and releasing cytotoxins

to eliminate target cells (73). Recent research indicates a notable

enrichment of CD8+ T cells in the SGs of those suffering from SS,

accompanied by a decrease in their numbers in peripheral blood,

potentially attributed to the migration and accumulation of circulating

CD8+ T cells in the glands (74). CD8+ T cells are observed to engage in

direct cytotoxic activity against affected glandular cells, resulting in the

manifestation of classic symptoms of SS such as xerostomia and

xerophthalmia (23). Notable subtypes of CD8+ T cells include type 1

CD8+ T cells (Tc1), Tc2, Tc17 cells, and regulatory CD8+ T cells (CD8

+ Tregs). Tc1 are characterized by the release of IFN-g and TNF-a,
indicating potent cytotoxic capabilities. Tc2 cells predominantly

generate IL-4, IL-5, and IL-13. Tc17 secrete IL-17 and are implicated

in inflammatory responses and autoimmune conditions. CD8+ Tregs

primarily release IL-21, which serves to dampen immune reactions by

inhibiting lymphocyte functions (75). In non-obese diabetic (NOD)

mice deficient in CD8+ Tregs, an increase in Th17 cells results in

corneal damage and exacerbated SS pathology. Therefore, the depletion

of CD8+ Tregs may play a significant role in SS’s development (76).

Studies have revealed that CD8+ T cells within the SGs of SS patients

exhibit heightened activity and abnormal proliferation, leading to the

accumulation of memory CD8+ T cells and elevated production of

cytokines that cause inflammation, like IFN-g and TNF-a. Within the

spleen and SGs of NODmice, CD8+ T cells clump together and use the

FAS and CTL pathways to cause SG cells to undergo apoptosis (77).
2.6 Innate T cells

Innate T cells, including gamma delta (gd) T cells, mucosal-

associated invariant T (MAIT) cells, and natural killer T (NKT)
Frontiers in Immunology 05
cells, recognize antigens in a manner unrestricted by classical major

histocompatibility complex (MHC) class I or II and respond rapidly

upon activation (78). A subpopulation of T lymphocytes known as

gdT cells is distinguished by the expression of altered g and dT-cell
receptors on their surfacea (79). As innate immune cells, gdT cells

rapidly recognize exogenous pathogens and endogenously stressed-

induced ligands in an MHC-unrestricted manner, triggering

adaptive immunity as the first line of immunological defense (80).

Compared to healthy individuals, the frequency of gdT cells in the

blood of patients with SS is increased (81), and they play a

supportive role in inducing B cells to secrete immunoglobulins

(82). Studies report that gdT cells, especially Vg4 T cells, are

involved in the pathogenesis of SS and SS-related pulmonary

inflammation. In NOD mice, an increase in gdT cells and their

subgroups (Vg4 IL-17A T cells) in the lungs and spleen reduces

saliva flow rate and exacerbates pulmonary pathology (83).

MAIT cells are unconventional innate-like T cells, activated

through binding with the MR1 molecule, a class I MHC-like entity

(84). MAIT cells are abundant in peripheral blood, liver,

gastrointestinal tract, and mesenteric lymph nodes, playing a

crucial role in mucosal immunity against infections by rapidly

producing cytokines such as IFN-g, IL-21, TNF-a, IL-17,

perforin, and granzyme B (85, 86). In patients with SS, MAIT

cells are significantly reduced in peripheral blood but increased in

salivary gland tissues (87), with elevated IL-17 levels produced by

salivary gland MAIT cells (88). Immunohistochemical results show

that MAIT cells are present in the labial salivary gland biopsy tissues

of most SS patients but absent in those with mild sialadenitis

unrelated to SS. Homing of MAIT cells to the glands may

account for their reduced frequency in peripheral blood (87).

Furthermore, the increased proportion of MAIT cells expressing

CCR9 and CXCR5 in SS patients, as well as the overexpression of

the ligands CCL25 and CXCL13 to promote their migration into

inflamed tissues, suggests that these innately characterized cells may

contribute to the immunopathology of SS (89).

NKT cells are a subgroup of innate T lymphocytes with

characteristics of both T cells and natural killer (NK) cells,

including effective TCR-mediated and NK-like cytotoxicity,

producing abundant IFN-g and TNF-a (90). Serving as a bridge

between innate and adaptive immunity, NKT cells are associated

with autoimmune diseases (91). Matthew and colleagues observed

that the frequency of peripheral NKT cells in patients with systemic

lupus erythematosus is low and negatively correlated with IgG

levels, suggesting that NKT cells may regulate immunoglobulin

production (92, 93). Compared to healthy controls, the number of

peripheral blood NKT cells is significantly reduced in patients with

primary Sjögren’s syndrome, but there is a considerable

accumulation of NKT cells in the minor salivary glands of SS

patients, correlated with the severity of sialadenitis, and high levels

of IFN-g secreted by NKT cells may exacerbate inflammation in the

labial glands of SS patients (94, 95). In SS patients, NKT cells are

significantly reduced in the periphery and infiltrate into the labial

glands, possibly mediated by the CX3CL1-CX3CR1 chemotactic

axis, with elevated CX3CL1 levels in the glands activating NKT cells

and leading to high secretion of IFN-g and TNF-a, thus

contributing to the pathogenesis of SS (96). However, some
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research groups report an increase in NKT cells in SS patients.

Discrepancies between these studies may be due to variations in the

disease course and background treatment of the patients studied

(97, 98). In a study on the treatment of SS patients, it was found that

after 3 or 6 months of drug therapy, both the number and

proportion of NKT cells in patients significantly increased (99).
3 B lymphocytes

B lymphocytes are essential to the pathophysiology of SS, as

their heightened activity can result in the generation of

autoantibodies including rheumatoid factor, SSA/Ro, SSB/La, and

anti-ANA antibodies. These autoantibodies have the potential to

target self-tissues, specifically the lacrimal and SGs, leading to

inflammation and tissue damage (100–102). In the presence of

genetic and epigenetic abnormalities, external stimuli such as

viruses, infections, trauma, and environmental factors can trigger

specific subsets of B cells, notably marginal zone (MZ) B cells,

plasmablasts, and plasma cells. This process of activation results in
Frontiers in Immunology 06
the generation of autoantibodies and immune complexes, thereby

initiating autoimmune reactions in tissues (103). Research has

shown an elevation in B cell subsets in individuals with SS,

characterized by heightened CD19 expression that potentially

triggers B cell receptor signaling (104). Furthermore, a notable

decrease in circulating CD27+ memory B cells is found in SS

sufferers’ peripheral blood, contrasting with their increased

presence in the SGs (105). There is also evidence indicating that

B cells significantly assist in the pathogenesis of SS in individuals

displaying ectopic germinal center-like structures within their

exocrine glands (106) (Figure 2).
3.1 Plasmablasts and plasma cells

Plasmablasts, an early differentiated form of plasma cells also

referred to as long-lived plasma cells, originate from B cells in the

course of immune responses. Possessing a notable proliferative

potential, plasmablasts ultimately develop into plasma cells, which

generate substantial quantities of antibodies to counteract foreign
FIGURE 2

The mechanisms of B lymphocytes and their subsets in Sjögren’s syndrome. B lymphocytes are crucial to the pathophysiology of SS; increased
activity of B lymphocytes leads to the production of autoantibodies, causing inflammation and tissue damage in the lacrimal and salivary glands.
Viral, infectious, traumatic, and environmental factors stimulate dendritic cells, which in turn activate the proliferation and differentiation of B cells
into plasmablasts and plasma cells, producing autoantibodies. MZB cells accumulate in the salivary glands of SS patients and assist in gland
destruction by producing autoantibodies, being a primary source of non-Hodgkin’s lymphoma. Macrophages promote the activation of MZB cells
and T cells, secreting large amounts of BAFF, which induces the proliferation and differentiation of B cells, thereby producing numerous antibodies.
In SS patients, the lips and parotid glands accumulate ectopic lymphoid structures of secondary lymphoid organs (germinal centers), expressing
chemokines CXCL12 and CXCL13, which aid in the proliferation of T and B cells. Furthermore, Bregs inhibit T and B cells and can directly suppress
Th1 and Th17 cells by releasing IL-35 and IL-10. (MZB, marginal zone B cells; MAC, macrophages; DC, dendritic cell; Breg, regulatory B cells;
BAFF, B-cell activating factor).
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antigens (107). Researchers employing cytometry time of flight

(CyTOF) technology unveiled alterations in B cell subsets among

individuals with SS. Plasmacytoid dendritic cells (pDCs), CD4+ T

and CD27+ memory B cells were less prevalent, whereas the

quantity of activated CD4+ and CD8+ T cells and plasmablasts

demonstrated an increase. Furthermore, the escalation of

plasmablasts in the bloodstream and plasma cells in the SGs of

individuals with SS is positively connected to serum IgG levels,

disease activity, and autoantibody positivity (108, 109). The

decreased presence of CD27+ memory cells may be credited with

their heightened differentiation into plasma cells. Aqrawi et al.

observed heightened levels of CD27-expressing plasmablasts and

plasma cells in SGs (110), while Hansen et al. noted a notable rise in

CD27+ B cells in inflammatory tissues (111). Additionally, a study

on systemic lupus erythematosus (SLE) patients identified a

mucosal phenotype of circulating plasmablasts that express the

chemokine ligand CCL28, release IgA and IgG, and move to

mucosal locations (112). Given the mucosal affinity of SS and its

resemblance to SLE, it is plausible that IgA and IgG autoantibody-

producing plasma cells participate in the advancement of SS.

Approximately fifty percent of the B cells present in the peri-

lobular stroma of SG tissue specimens are mature plasma cells.

Furthermore, investigations on SS patients exhibiting renal

complications underscore the significance of plasma cell

infiltration in SS-related interstitial nephritis (113, 114).
3.2 Marginal zone B cells

Marginal zone B cells (MZB) are a distinct subset of B

lymphocytes predominantly situated within the splenic marginal

region, where they serve a crucial function in promptly reacting to

circulating pathogens and generating innate antibodies (115).

Additionally, MZB cells can be identified in lymph nodes and

blood, and are essential contributors to innate immune responses.

Activation of MZB cells can occur through antigen recognition by the

B cell receptor (BCR) facilitated by dendritic, neutrophil, and reticular

cells, or through toll-like receptor (TLR) stimulation by macrophages

(116). Recent research has presented thatMZB cells accumulate in the

SGs of individuals with SS and assist in glandular destruction through

the production of autoantibodies (117). This phenomenon has also

been observed in SS mouse models, where MZB cells demonstrated a

notable rise in both the spleen and SGs (118). Experimental studies

using transgenic SS mouse models have demonstrated that the

elimination of MZB cells led to normal saliva secretion and

preserved SG histology (119). Non-Hodgkinlymphoma, a serious

complication in SS patients, is primarily derived from MZB cells,

underscoring the significance of this subset in SS (120).
3.3 Regulatory B cells

Regulatory B cells (Bregs) are a particular subgroup of B

lymphocytes known for their immunomodulatory properties,

primarily characterized by the secretion of cytokines like IL-35,

IL-10, and Granzyme B(GrB) to inhibit the activity of other
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immune cells, thereby taking part in the control of excessive

inflammatory responses and influencing disease progression

(121). Previous research indicates that different subsets of Bregs

may exhibit shared surface markers. For example, Mauri et al. have

identified Bregs with the phenotype CD19CD24+hiCD38hi, while

other studies have observed an enrichment of IL-10-generating B

cells within the CD24hiCD27 B cell population (122, 123). Initial

research suggested that Bregs can suppress immune responses

mediated by Th17 cells and improve collagen-induced arthritis

through the manufacturing of IL-10. Furthermore, Bregs have been

shown to hinder the proliferation of Th1 cells by promoting the

expansion of Tregs (122, 124). Recent studies have identified an

inverse relationship between IL-10-secreting Bregs and Tfh cell

responses. As SS advances, the frequency of Breg cells tends to

decrease while the quantity of Tfh tends to increase (125).

Additional cytokines participate in the regulatory functions of B

cells. IL-35, a recently discovered cytokine consisting of a

heterodimer of P35 and EBI3, has been identified as having

potential regulatory functions (126). Bregs release IL-35 to

directly suppress Th1 and Th17 cells and promote the

proliferation of Tregs (127). In patients with SS, A reduction in

serum IL-35 levels and a rise in IL-12 levels indicate an imbalance

between pro-inflammatory and anti-inflammatory states (128).

Furthermore, higher levels of IL-35 are linked to reduced disease

activity in SS, underscoring the significance of IL-35-producing

Bregs as SS developed.
3.4 BAFF and secondary lymphoid GCs

Th1 (BAFF), also known as CD257 or tumor necrosis factor

ligand superfamily member 13B (TNFSF13B), is predominantly

synthesized by myeloid cells. It has a critical role in controlling the

proliferation, maturation, and survival of B lymphocytes, and is

recognized as a critical factor in both local and systemic

autoimmunity (129). Elevated levels of BAFF have been identified

in rheumatic disorders including SLE and RA, with the most

pronounced increase observed in patients with SS. B-cell

malfunction and the development of autoantibodies are the

hallmarks of these illnesses (52). Research has shown that SS

patients exhibit heightened amounts of BAFF in both serum and

SGs, with a notable association between the levels of BAFF and the

antibodies against SSA/Ro and SSB/La (130). While BAFF is

typically generated by monocytes, macrophages, and dendritic

cells, SS patients demonstrate BAFF secretion by T cells, B cells,

and salivary epithelial cells (131).. Elevated BAFF levels contribute

to an increase in B-cell subpopulations resembling MZB cells within

the exocrine glands. Conversely, decreased BAFF levels can prompt

the differentiation of IL-10-producing Bregs (132). Ectopic

lymphoid structures resembling secondary lymphoid organ GCs

have been identified in around 25-30% of labial and parotid glands

of patients with SS. B cells that produce autoantibodies are situated

at the periphery of these GC-like structures, potentially playing a

role in persistent B-cell activation (133). The development of GCs is

reliant on the presence of chemokines CXCL12 and CXCL13, which

have been prominently detected in the SG tissues of individuals with
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SS (134). The importance of CXCL13 in the development of ectopic

lymphoid tissues is underscored by its binding to the CXCR5

receptor on B cells, which, in conjunction with BAFF, facilitates

the aggregation of CD27+ memory B cells in the SGs (135).

Furthermore, the microenvironment of patients with SS promotes

the formation of ectopic lymphoid tissues and germinal centers,

with these GC-like structures exhibiting heightened focal

infiltration and a correlation with disease severity.
4 Discussion

The pathogenesis of SS involves a multitude of immune cells,

with T and B lymphocytes, along with their respective subgroups,

playing pivotal roles in the disease’s mechanism. The intricate

relationship between these cells collectively drives the progression

of the condition (136). Antigen-driven, T cell-mediated

hyperactivity of B cells, which results in autoreactive B cell

activation and the development of ectopic germinal centers and B

cell lymphomas within the SGs, is a defining feature of SS. In these

glands, effector B cells enhance the growth as well as multiplication

of CD4+ T cells through a beneficial feedback cycle. Activated B

cells internalize antigens via the B cell receptor (BCR), subsequently

processing peptides in a class II MHC-independent manner to

present to CD4+ T cells, thereby modulating both the reactions of

primary and memory CD4+ T cells (137). Among the T cell

subgroups implicated in SS, Tfh stimulate B cell responses that

are dependent on T cells inside GCs, primarily by secreting IL-21,

which induces the activation of B cells and their development into

plasma cells (138). Conversely, regulatory B cells that produce IL-10

inhibit Tfh cell responses in SS, indicating that fine-tuning of B cell

responses is crucial for controlling autoimmunity and T cell

reactions in the syndrome. Additionally, Tfr exert an

immunosuppressive effect on the proliferation and activation of

Tfh and B cells within secondary lymphoid tissues (139).

Since T cells have long been known to play a major role in SG

damage in SS, focusing on T cell-associated cytokines offers a

potentially effective treatment strategy. A special biologic called

abatacept (CTLA4-Ig) attaches itself to CD80/CD86 on APCs,

inhibiting the co-stimulatory molecules required for full T cell

activation. Additionally, it lowers the quantity of cTfh and the

degree to which T cells express inducible co-stimulatory molecules,

which inhibits the activities of both CD4+ and CD8+ T cells (140).

It has been demonstrated that the connection between the

transmembrane glycoprotein CD40 on APCs and B cells and its

ligand CD40L on activated CD4+ T cells enhance cellular and

humoral immune responses. Elevated levels of CD40L in SS

individuals and heightened transcripts of CD40L in CD4+ T cells

highlight the potential of targeting CD40 with the inhibitory

monoclonal antibody Iscalimab as a viable treatment option for

SS (141). SG epithelial cells from SS individuals demonstrate a high

degree of the inducible co-stimulatory molecule ligand (ICOSL),

which, in conjunction with IL-6, promotes the precise distinction of

activated CD4+ T cells into follicular T cell subgroups, subsequently

secreting IL-21 to induce B cell activation. Prezalumab, a fully

humanized antibody targeting ICOSL, has been used in a recent
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placebo-controlled study to treat patients with active primary SS

(142). RO5459072 is a covalent, reversible, and selective inhibitor of

protease S, expected to reduce antigen presentation mediated by

MHC-II and attenuate the activation of CD4+T cells. This is likely

to inhibit the production of T-cell-dependent autoantibodies and

neutralize tissue damage caused by activated macrophages and

neutrophils (143). A randomized, double-blind, parallel-group

clinical study found that treatment with RO5459072 slightly

reduced B and CD8+T cells in SS patients, yet there was no

significant improvement in disease activity and symptoms (144).

In experimental SS mouse model, intra-glandular injection of

anti-CD103 monoclonal antibody effectively reduces tissue-resident

memory T cells, alleviates gland damage, and enhances salivary

function. These findings highlight the potential of T cell-related

cytokines as therapeutic targets for SS, offering a strategy to control

disease progression through T cell modulation (145). Additional,

anti-CD4 monoclonal antibody eye drops reduce activation and

proliferation of specific CD4+ T cells in the mouse SS model and

prevent disease progression in the lacrimal glands (146). Intranasal

administration of the autoantigen a-fodrin reduces serum IFN-g
levels and exocrine gland infiltration, expands peripheral FoxP3+

Tregs, delays autoantibody production, and prevents the

exacerbation of exocrine gland disease in NOD mice (147). KPL-

404 is a humanized monoclonal antibody targeting the crucial

CD40-CD40L pathway for B cell activation, serving as an effective

therapeutic for SS. By blocking CD40 on B cells, KPL-404 disrupts

the interaction between B cells and CD40L on T cells, thereby

inhibiting the activation and proliferation that lead to SS lesions.

KPL-404 effectively reduces pathogenic B cell responses without

causing B cell depletion or triggering adverse immune activation

(148). Preclinical studies indicate that KPL-404 blocks downstream

NF-kB activation mediated by CD40, inhibits primary and

secondary antibody responses, and exhibits favorable

pharmacokinetic properties. These research findings have

propelled the clinical development of KPL-404 as a targeted

therapy for SS (149).

Similarly, therapies targeting B cells are attracting increasing

attention. The transmembrane protein CD20, which is found on

mature and pre-B cells but not on progenitor B cells or normal

plasma cells, has been the subject of the most research in B cell

biology. Currently, the anti-CD20 monoclonal antibody rituximab

is being investigated in SS, with studies indicating its efficacy in

alleviating dryness symptoms and glandular manifestations in

patients, and rapidly depleting B cell subpopulations in peripheral

blood as well as SGs (150). In addition, rituximab downregulates T-

cell subsets associated with GC formation and B-cell activation,

suggesting a potential therapeutic effect of rituximab in SS (151).

CD22 is a B cell-restricted transmembrane sialoglycoprotein,

appearing late in pre-B cells, little expressed in developing B cells,

and intensely articulated in mature B cells but nonexistent in

differentiated plasma cells. Epratuzumab, a monoclonal antibody

against CD22, has shown effectiveness in reducing B cell numbers in

patients with SLE without increasing adverse events, suggesting its

potential as a novel therapeutic for SS, pending validation through

extensive clinical trials (152). Treatment with anti-Ly9 (CD229)

monoclonal antibodies in an SS mouse model selectively depletes
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pathogenic B cell subsets, including B1, MZB, and GC B cells. This

targeted depletion reduces lymphocytic infiltration in the salivary

glands and kidneys, lowers autoantibody levels, and effectively

mitigates the glandular and extra-glandular manifestations of SS

(153). Blocking the IL-7 receptor a-chain with an antibody in newly

diagnosed female NOD mice with SS significantly improves the

disease pathology, which correlates with reduced production of

IFN-g by CD4+ T cells, CD8+ T cells, and B cells in the SMG, along

with decreased levels of chemotactic lymphocyte attractants

CXCL9, -10, -11, and -13 (154).

As previously mentioned, the BAFF is essential for B cell

activation, survival, and differentiation, and targeting BAFF

regulation may offer new hope for treating SS patients.

Belimumab, a monoclonal antibody targeting BAFF, significantly

reduces ESSDAI, ESSPRI, and average dryness VAS scores in SS

patients, with most B-cell biomarkers (including IgG, IgA, IgM, free

k, and l light chains), RF titers, and average B-cell counts showing

improvement (155). Another study indicates that Belimumab

treatment significantly reduces immature B-cell subpopulations in

SS and normalizes BAFF-R (BAFF receptor) expression across all B-

cell subpopulations (156). Discontinuation of Belimumab is

reported to facilitate relapse in SS (157). Lanalumab (VAY736), a

human IgG1/kmonoclonal antibody targeting human BAFF-R, has

been studied for its potential in treating SS. A current single-center,

double-blind, placebo-controlled phase II study of Ianalumab

shows positive therapeutic effects on SS, with Ianalumab also

capable of depleting B cells through antibody-dependent cellular

cytotoxicity (ADCC) (158). Iguratimod, a novel anti-rheumatic

drug, targets the key regulatory kinase TEC in B cell function,

inhibiting BAFF-induced B cell activation and plasma cell

differentiation, thereby reducing autoantibody production and

more effectively alleviating SS symptoms (159). This study reveals

the potential of iguratimod in treating SS by inhibiting TEC

function, offering a treatment strategy distinct from traditional

kinase inhibitors.

The pathogenesis of SS involves the complex dysregulation of

multiple immune pathways. Compared to single-target therapies,

targeting these pathways in combination may offer a more effective

treatment approach. In vitro studies using peripheral blood

mononuclear cells from healthy controls and SS patients have shown

that the combined use of leflunomide (LEF) and hydroxychloroquine

(HCQ) can dose-dependently inhibit the proliferation of T and B cells,

and reduce levels of key pro-inflammatory cytokines (CXCL13, IFN-a,
IFN-g) and immunoglobulins (IgG, IgM) associated with SS pathology.

Notably, HCQ exhibits a potent B-cell-specific inhibitory effect, while

LEF is more effective at inhibiting T-cell activation (160). The observed

synergistic effects at clinically achievable concentrations suggest that

this dual therapy could provide a novel and comprehensive strategy for

managing SS by addressing its complex immunological underpinnings.
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In conclusion, further research into the identification and functional

characterization of novel T and B cell subgroups within the SS

pathogenesis will aid in developing new therapeutic strategies for SS

and other autoimmune diseases. Additional translational research is

needed to validate the feasibility and efficacy of these methods in

clinical settings.
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