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Application of a risk score model
based on glycosylation-related
genes in the prognosis and
treatment of patients with
low-grade glioma
Binbin Zou1†, Mingtai Li1†, Jiachen Zhang2†, Yingzhen Gao1,
Xiaoya Huo1, Jinhu Li2, Yimin Fan2*, Yanlin Guo1*

and Xiaodong Liu2*

1School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, China, 2Department of
Neurosurgery, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
Introduction: Low-grade gliomas (LGG) represent a heterogeneous and

complex group of brain tumors. Despite significant progress in understanding

and managing these tumors, there are still many challenges that need to be

addressed. Glycosylation, a common post-translational modification of proteins,

plays a significant role in tumor transformation. Numerous studies have

demonstrated a close relationship between glycosylation modifications and

tumor progression. However, the biological function of glycosylation-related

genes in LGG remains largely unexplored. Their potential roles within the LGG

microenvironment are also not well understood.

Methods: We collected RNA-seq data and scRNA-seq data from patients with

LGG from TCGA and GEO databases. The glycosylation pathway activity scores

of each cluster and each patient were calculated by irGSEA and GSVA algorithms,

and the differential genes between the high and low glycosylation pathway

activity score groups were identified. Prognostic risk profiles of glycosylation-

related genes were constructed using univariate Cox and LASSO regression

analyses and validated in the CGGA database.

Results: An 8 genes risk score signature including ASPM, CHI3L1, LILRA4, MSN,

OCIAD2, PTGER4, SERPING1 and TNFRSF12A was constructed based on the

analysis of glycosylation-related genes. Patients with LGG were divided into high

risk and low risk groups according to the median risk score. Significant

differences in immunological characteristics, TIDE scores, drug sensitivity, and

immunotherapy response were observed between these groups. Additionally,

survival analysis of clinical medication information in the TCGA cohort indicated

that high risk and low risk groups have different sensitivities to drug therapy. The

risk score characteristics can thus guide clinical medication decisions for

LGG patients.
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Conclusion: Our study established glycosylation-related gene risk score

signatures, providing new perspectives and approaches for prognostic

prediction and treatment of LGG.
KEYWORDS

low grade glioma, prognostic characteristics, glycosylation, immunotherapy, tumor
immune microenvironment
1 Introduction

Glioma is one of the most common tumors in the human

central nervous system (CNS), characterized by the origin in glial

cells of CNS (1). It is known for its rapid growth and aggressive

tendencies (2). WHO grade II gliomas, such as diffuse astrocytomas

and oligodendrogliomas, are classified as low-grade glioma (LGG)

(3) (4). These tumors usually have a long and slow course of disease.

However, studies have shown that LGG may undergo malignant

transformation, leading to severe disability and death (5), thus

significantly reducing the quality of life and survival rates of patients

(6). Although conventional surgical resection, radiotherapy

combined with immunotherapy, and novel electric field therapy

have improved the prognosis of glioma patients, the overall

prognosis remains poor due to the heterogeneity of LGG (7).

Therefore, there is an urgent need for a comprehensive

understanding of the molecular mechanisms underlying glioma

genesis and development, the discovery of new biomarkers, and the

improvement and validation of innovative predictors to accurately

assess the prognosis of patients with LGG.

Glycosylation is an enzymatic process that involves linking

sugars to proteins, lipids, and other glycans. This major post-

translational modification (PTM) occurs in the endoplasmic

reticulum and Golgi apparatus of all cells and is mediated by the

coordinated action of different glycosyltransferases and glycosidases

(8). Glycosylation-mediated post-translational modifications play a

crucial role in regulating fundamental processes such as cell

division, differentiation, immune response, and cell-cell

interactions. Altered N-linked or O-linked glycosylation patterns

of regulatory proteins, such as transcription factors or cellular

receptors, contribute to a variety of diseases, including cancer.

These alterations contribute to microscopic and macroscopic

heterogeneity of tumor cells (9). Studies have shown that

glycosylation-related genes are strongly associated with the

prognosis of patients with breast cancer (10), ovarian cancer (11),

liver cancer (12), cervical cancer (13), and pancreatic cancer (14).

Tumor cells generally exhibit abnormal glycosylation patterns

compared to non-malignant cells. Abnormally expressed

glycosylation-related genes have been shown to be potent

biomarkers for a variety of tumors (15).

Therefore, it is essential to delve into the analyzing the

expression and prognosis of glycosylation-related genes in LGG,
02
and constructing the prognosis model by the glycosylation-related

genes for optimizing the diagnosis, prevention, and management

of LGG.
2 Materials and methods

2.1 Data collecting

We obtained transcriptome data and clinical information for

low-grade glioma (LGG) from the Cancer Genome Atlas (TCGA)

database (https://portal.gdc.cancer.gov/) using the “TCGAbiolinks”

(16) R package, including data from a total of 504 LGG patients

with survival information. Additional LGG validation data were

sourced from the CGGA-LGG693 and CGGA-LGG325 datasets

in the China Glioma Genome Atlas (CGGA) database (http://

www.cgga.org.cn), where we selected patients classified as WHO

grade II, resulting in 172 patients in the CGGA-LGG693 cohort

and 98 patients in the CGGA-LGG325 cohort. Furthermore,

single-cell transcriptomic data (GSE117891) (17) were collected

from the Gene Expression Omnibus (GEO, https://www.ncbi.

nlm.nih.gov/geo/), encompassing samples from 73 regions in 13

patients with glioma and 1 patient with brain metastases. Gene

expression data from 1,152 cases of normal brain tissue were

obtained from the Genotype-Tissue Expression (GTEx) project

(https://commonfund.nih.gov/GTEx). For the LGG pediatric

peptide vaccine immunotherapy cohort (12 patients) versus the

GBM (Glioblastoma) anti-PD-1 immunotherapy cohort (34

patients), data were sourced from the TIGER database (http://

tiger.canceromics.org/).
2.2 Single-cell RNA sequencing analysis

We utilized the R package “Seurat” (18) for the analysis of

single-cell RNA sequencing (scRNA-seq) data from Glioma

patients. Initially, we conducted quality control measures, which

included filtering out low quality genes detected in fewer than three

cells, removing low-quality cells with fewer than 300 identified

genes, excluding cells with mitochondrial gene content greater than

15%, ribosomal gene content less than 3%, and hemoglobin gene

content greater than 0.1%. We also filtered out the MALAT1
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housekeeping gene and mitochondrial genes, and removed

doublets. For the retained cells, we normalized the gene

expression matrix using the NormalizeData function in Seurat,

and applied centering and scaling using the ScaleData function.

We extracted the top 2000 highly variable genes and then

performed principal component analysis (PCA), utilizing the top

20 principal components for clustering. The cell populations were

visualized using Uniform Manifold Approximation and Projection

(UMAP). Clustering analysis was performed using the FindClusters

function with a resolution of 0.3 to identify distinct cell clusters.

To identify cell types, we employed specific cell markers sourced

from the official CellMarker 2.0 website (http://117.50.127.228/

CellMarker/). The FindAllMarkers function in Seurat was used to

determine differentially expressed genes across various cell

clusters.Using the default method of the FindAllMarkers function,

the Wilcoxon rank-sum test, we screened for differentially

expressed genes in the microglia population, selecting those with

p.adjust < 0.05 and an absolute log2FC > 0.585.
2.3 Glycosylation gene sets enrichment
score of cell clusters

To calculate the glycosylated gene sets enrichment score within

each cell cluster, we employed the irGSEA.score function from the

“irGSEA” (19) package. The KEGG glycosylated gene sets (C2

classification), including “KEGG_N_GLYCAN_BIOSYNTHESIS”

and “KEGG_O_GLYCAN_ BIOSYNTHESIS”, was downloaded

from the MSigDB database, and several enrichment analysis

algorithms were applied to normalized RNA sequencing data,

including AUCell, UCell, and ssGSEA.
2.4 Glycosylation pathway activity analysis

We computed the KEGG glycosylation pathway enrichment

score for each patient in the TCGA-LGG cohort using GSVA (20).

Patients were divided into high and low N-glycosylation groups

based on the median N-glycosylation score, and similarly into high

and low O-glycosylation groups based on the median O-

glycosylation score. Differential expression analysis was

performed using “Deseq2” (21), with thresholds of P.adjust < 0.05

and the absolute value of log2FC > 0.585 to identify differentially

expressed genes. These genes were used to investigate the molecular

characteristics associated with high and low activity in the N-

glycosylation and O-glycosylation pathways.
2.5 Functional enrichment analysis

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and

Genomes (KEGG) functional enrichment analyses were conducted

on the differentially expressed genes using the R package

“clusterProfiler” (22). Only results with p.adjust < 0.05 were

considered significantly enriched.
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2.6 Immune infiltration analysis

The ESTIMATE (23) (Estimation of Stromal and Immune Cells

in Malignant Tumors Using Expression Data) algorithm was

utilized to assess changes in immune scores, stromal scores,

ESTIMATE scores, and tumor purity in the samples.

Additionally, the relative abundance of various cell types was

determined using the “CIBERSORT” (24) and “GSVA” (20) R

packages, employing the CIBERSORT and ssGSEA (Single

Sample Gene Set Enrichment Analysis) methods, respectively.
2.7 Prognostic glycosylation based
signature construction

To establish a glycosylation-based prognostic signature, we

performed univariate Cox regression and least absolute shrinkage

and selection operator (LASSO) regression with 10-fold cross-

validation using the R package “glmnet” (25). In the LASSO

regression, we selected “lambda.min” to prevent overfitting. The

risk score for each LGG patient was calculated using the

following formula:

Risk score = (0.382 × ASPM expression) + (0.017 × CHI3L1

expression) + (0.068 × LILRA4 expression) + (0.258 × MSN

expression) + (0.116 × OCIAD2 expression) + (-0.137 ×

PTGER4 expression) + (0.109 × SERPING1 expression) + (0.073

× TNFRSF12A expression)
2.8 Validation and performance evaluation

Kaplan-Meier analysis compared overall survival between high

and low risk score groups, stratified by the median risk score.

Receiver Operating Characteristic (ROC) curves generated with the

“timeROC” (26) R package assessed the predictive accuracy of risk

score for 1-, 3-, and 5-year survival.
2.9 Prognostic nomogram construction

Prognostic nomograms incorporating risk score and other

clinical features were constructed using the R package “rms”. The

performance of these nomograms was evaluated through

calibration curves and ROC curves to assess their predictive

accuracy and reliability.
2.10 Prognostic feature gene analysis

We combined the expression data from the TCGA-LGG cohort

with expression data from normal brain tissues in the GTEx

database and performed a Wilcoxon test using the R package

“rstatix”. Boxplots were then generated to visualize gene

expression levels. Additionally, we calculated the proportion of

each cell type in each sample from the single-cell data and
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determined the average gene expression within each cell type group.

The gene with the highest average expression was used to compute

the correlation between average gene expression and cell content in

each sample, using the cor.test function from base R. The cor.test

function employed Pearson’s correlation coefficient to assess the

linear relationship between gene expression and cell content.
2.11 Prediction of
immunotherapy responsiveness

The Tumor Immune Dysfunction and Exclusion (TIDE)

algorithm was utilized to predict the potential response of LGG

patients to immune checkpoint inhibitors (ICIs) treatment (27). A

higher TIDE score suggests a decreased likelihood of benefiting

from immunotherapy and an increased risk of immune escape. The

Dysfunction score indicates the level of immune cell dysfunction

infiltrating the tumor, while the Exclusion score reflects the degree

of immune cell exclusion within the tumor microenvironment.
2.12 Drug sensitivity analysis

To predict susceptibility to different drugs in LGG patients

within the high and low risk score groups, drug treatment sensitivity

was assessed using the R package “oncoPredict” (28). This analysis

used expression matrices from the Cancer Drug Sensitivity

Genomics (GDSC) database and drug treatment information as a

training set. The half-maximal inhibitory concentration (IC50)

served as the primary indicator for evaluating the sensitivity of

LGG cancer cells drugs. Differences in IC50 between the high and

low risk score groups were compared using the Wilcoxon test, with

p < 0.05 considered statistically significant.
2.13 Statistical analysis

All statistical analyses were conducted using R software (version

4.3.0). The R packages employed in this study are open access and

freely available. Statistical significance was determined at a

threshold of p < 0.05, with levels indicated as follows: * p < 0.05;

** p < 0.01; *** p < 0.001.
3 Results

3.1 Annotation of cell types calculation the
glycosylation scores and marker gene of
the cell type

Figure 1 shows the flow chart of this study. In the GSE117891

dataset, we analyzed a total of 5,368 cells and 22,559 genes. By

collecting common cell marker genes for brain tissue from the

CellMarker 2.0 website and combining them with classical cell

markers, we ultimately annotated four cell types: oligodendrocyte

(MBP, MOP, PLP1, MAG), T cell (CD3D, CD3E, CD8A), astrocyte
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(GFAP, AQP4, SOX9, CLU), and microglial cell (TMEM119,

CX3CR1, P2RY12). Oligodendrocyte accounted for 744 cells,

approximately 13.7%, T cell accounted for 379 cells ,

approximately 7.1%, astrocyte accounted for 2,993 cells,

approximately 55.8%, and microglial cell accounted for 1,252

cells, approximately 23.4%. These cell types were visualized using

UMAP and DotPlot (Figure 2A detailed in Figure 2B and

Supplementary Figure 1A).

Based on the expression levels of genes from the “KEGG_N_

GLYCAN_BIOSYNTHESIS” and “KEGG_O_GLYCAN_

BIOSYNTHESIS” pathways in the KEGG pathway database, we

calculated glycosylation scores for each cell type using three

algorithms: AUCell, UCell, and ssGSEA. The results showed that,

for both N-glycosylation and O-glycosylation, microglia exhibited

the highest glycosylation scores across all three algorithms,

significantly higher than other cell types (Figure 2C;

Supplementary Figure 1B). This suggests that glycosylation may

play an important role in the function of microglia.

To understand the unique molecular characteristics of

microglia, we identified 1,684 differentially expressed genes

(DEGs) compared to other cell types and visualized these genes

using a volcano plot (Figure 2D). GO and KEGG enrichment results

(Figures 2E, F) showed that these DEGs were enriched in pathways

related to cytokine regulation, immune response activation, ATP

synthesis coupled with electron transport, and other related

signaling pathways.
3.2 TCGA-LGG cohort
glycosylation analysis

Kaplan-Meier survival analysis revealed significant survival

differences based on N-glycosylation pathway activities (P <

0.001, Figure 3A), indicating that patients with lower N-

glycosylation pathway activity had better prognoses. We identified

3,019 DEGs between high and low N-glycosylation pathway activity

subgroups (Figure 3B) and performed functional enrichment

analyses using GO and KEGG, which highlighted potential

alterations in immune signaling pathways (Figures 3C, D).

Furthermore, we evaluated the immune microenvironment of

each patient. Results indicated that patients with high N-

glycosylation pathway activity exhibited elevated stromal scores,

immune scores, and ESTIMATE scores, along with reduced tumor

purity, indicative of increased tumor heterogeneity and a more

complex immune microenvironment (Figure 3E).

There was no significant difference in prognosis between high

and low O-glycosylation groups (Figure 4A). Similarly, enrichment

analysis of 3,164 DEGs between high and low O-glycosylation

pathway activity groups (Figure 4B) revealed that these genes

were enriched in signaling pathways related to chromosome

segregation, synaptic signaling regulation, and the cell cycle

(Figures 4C, D). The high O-glycosylation pathway activity group

showed higher matrix scores, immune scores, and ESTIMATE

scores compared to the low-activity group, suggesting a similarly

complex immune microenvironment (Figure 4E).These findings

underscore the potential role of N-glycosylation and O-
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glycosylation levels in influencing immune cell types and responses

within the LGG tumor microenvironment.
3.3 Establishing and validating
glycosylation-based prognostic features

Recognizing the impact of glycosylation on the prognosis and

immune microenvironment of patients with LGG, we further

explored prognostic features to understand the potential complexity

of LGG. We compared the DEGs of microglia in GSE117891 with

other cell type, the DEGs of the high-lowN-glycosylation subgroup in

the TCGA-LGG cohort, and the DEGs of the high-low O-

glycosylation subgroup, and identified 125 intersecting genes

(Figure 5A). Through univariate Cox regression analysis, 105 of

125 genes were confirmed to be associated with prognosis. After

LASSO regression narrowing, eight key genes were identified

(Supplementary Figures 2A, B), constructing a prognostic feature

model called risk score (Figure 5B), including ASPM, CHI3L1,

LILRA4, MSN, OCIAD2, PTGER4, SERPING1, and TNFRSF12A.
Frontiers in Immunology 05
We calculated the risk score for each patient in the TCGA-LGG

cohort and divided the patients into high and low risk score groups

based on the median risk score, showing the survival status plots of the

patients. The results indicated that patients with higher risk score values

exhibited increased expression levels of ASPM, CHI3L1, LILRA4,MSN,

OCIAD2, PTGER4, SERPING1, and TNFRSF12A (Figure 5C), which

were associated with poorer survival outcomes (Figure 5D). Kaplan-

Meier analysis showed that overall survival (OS) was significantly better

in the low risk score group (P < 0.001, Figure 5E).

To assess the predictive power of our prognostic features, we

generated receiver operating characteristic (ROC) curves (Figure 5H)

for 1-, 3-, and 5-year OS, with areas under the curve (AUC) of 0.882,

0.859, and 0.785, respectively, indicating good predictive performance

of our model. Additionally, we validated our prognostic features in

two independent external validation sets (CGGA-LGG693, CGGA-

LGG325), yielding satisfactory results with 5-year AUCs of 0.669 and

0.634, respectively (Figures 5F, G, I, J).

To improve clinical utility, we created nomograms combining

risk score and clinical characteristics. Univariate and multivariate
FIGURE 1

Flow chart of this study,created using BioGDP.com. (GEO, Gene Expression Omnibus; TCGA, The Cancer Genome Atlas; CGGA, The China Glioma
Genome Atlas; LGG, low-grade glioma; GBM, Glioblastoma; LASSO, Least Absolute Shrinkage and Selection Operator; DEGs, Differentially Expressed
Genes; TIDE, Tumor Immune Dysfunction and Exclusion).
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1467858
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zou et al. 10.3389/fimmu.2024.1467858
Cox regression analyses, which assessed the effect of clinical

characteristics and risk score on LGG survival, showed that age

and risk score were important predictors of survival (Figures 6A, B).

Based on these predictors, we designed a nomogram to estimate the

1-, 3-, and 5-year survival probabilities of patients with LGG

(Figure 6C). The ROC curve showed that the nomogram had an

AUC of 0.906 at 1 year, 0.898 at 2 years, and 0.819 at 3 years

(Figure 6D), and the calibration curve demonstrated the predictive

accuracy of the nomogram (Supplementary Figure 2H). In addition,

we validated the predictive performance of nomograms in two

independent external validation sets (Figures 6E, F; Supplementary

Figures 2I, J).
Frontiers in Immunology 06
Collectively, these results suggest that risk score-based

nomograms, rooted in the concept of glycosylation, have

substantial clinical predictive value for LGG.
3.4 Differences in the expression of
prognostic feature genes and
immune landscapes

The analysis of the TCGA-LGG cohort combined with GTEx

normal brain tissue data revealed notable expression differences of the

prognostic feature genes. Specifically, ASPM, LILRA4, MSN, PTGER4,
FIGURE 2

Analysis of glycosylation pathway in single-cell RNA sequencing of glioma and its biological significance. (A) UMAP plots illustrating the distribution
of four major cell types within the comprehensive dataset. (B) Dot plot depicting marker gene expression levels across each identified cell type.
(C) Expression and distribution of N-glycosylation and O-glycosylation pathway activity scores across different cell types. (D) Volcano plot displaying
differentially expressed genes (DEGs) comparing the microglial population versus other subpopulations (logFC > 0.585, P.adj < 0.05). (E) Gene
Ontology (GO) analysis results, with -Log10 (adjusted p-value) plotted on the horizontal axis. (F) KEGG pathway analysis results, with -Log10
(adjusted p-value) plotted on the horizontal axis.
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and TNFRSF12A were significantly upregulated in LGG patients

compared to normal tissues, while CHI3L1, OCIAD2, and

SERPING1 exhibited decreased expression (Figure 7A). We further

examined the distribution of these eight genes in the GSE117891

dataset (Figure 7B, C). The results indicated that ASPM, CHI3L1, and

TNFRSF12A were more highly expressed in astrocyte, while LILRA4,

MSN, PTGER4, and SERPING1 were more highly expressed in

microglial cell. OCIAD2 was found to be more highly expressed in T

cell. We calculated the proportion of each cell type in each sample and

determined the average expression of genes in the cell group with the

highest expression. We then analyzed the correlation between gene

expression and cell proportion (Figure 7D, E). The results indicated

that ASPM expression was positively correlated with the proportion of

astrocyte (cor = 0.61, p < 0.05), OCIAD2 expression was negatively

correlated with the proportion of oligodendrocyte (cor = -0.59, p <

0.05), and SERPING1 expression was positively correlated with the

proportion of T cell (cor = 0.57, p < 0.05).
Frontiers in Immunology 07
We also investigated the differences in the immune

microenvironment between patients in different risk score groups

within the TCGA-LGG cohort. The findings showed a positive

correlation between glycosylation score and risk score. Patients in

the high risk score group had higher stromal, immune, and

ESTIMATE scores compared to those in the low risk score group,

but exhibited lower tumor purity (Figure 7F). This indicates a more

complex immune microenvironment, characterized by increased

tumor heterogeneity.
3.5 Response to immunotherapy in
different risk score groups

The Tumor Immune Dysfunction and Exclusion (TIDE)

algorithm evaluates the potential for tumor immune escape by

analyzing gene expression profiles of tumor samples. Our analysis
FIGURE 3

Analysis of N-glycosylation pathway in TCGA-LGG cohort and its biological significance. (A) Kaplan-Meier survival curves comparing overall survival
between high and low N-glycosylation subgroups. (B) Volcano plot showing differentially expressed genes (DEGs) between high and low N-
glycosylation subgroups (logFC > 0.585, P.adj < 0.05). (C) GO analysis results, plotted with -Log10 (adjusted p-value) on the horizontal axis.
(D) KEGG pathway analysis results, plotted with -Log10 (adjusted p-value) on the horizontal axis. (E) Heatmap illustrating differences in immune
scores between high and low N-glycosylation subgroups, highlighting variations in immune microenvironments.
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revealed that in the TCGA cohort, the high risk score group

exhibited higher TIDE, Exclusion, and Dysfunction scores, along

with lower MSI (microsatellite instability) scores. This suggests that

patients in the high risk score group are more likely to experience

immune escape and may have a poorer response to immune

checkpoint inhibitor (ICI) therapy (Figure 8A). Conversely, the

low risk score group predicted a higher proportion of patients likely

to respond positively to immunotherapy (Figure 8B). These findings

indicate that patients with a low risk score may derive greater

benefit from immunotherapy compared to those with a high

risk score.

In the LGG pediatric peptide vaccine immunotherapy cohort,

the high risk score group predicted a higher proportion of patients
Frontiers in Immunology 08
responding to immunotherapy (Figure 8C). In contrast, in the GBM

anti-PD-1 immunotherapy cohort, the low risk score group

indicated a higher proportion of patients responding to

immunotherapy (Figure 8D).The ROC of risk score predicting

immunotherapy response was 0.77 and 0.626 in the two cohorts,

respectively (Figures 8E, F).

Furthermore, we examined the relationship between risk score

and drug therapy effectiveness in LGG treatment. Our findings

revealed that high risk score values were associated with lower IC50

of Temozolomide and Gemcitabine, and higher IC50 of Gefitinib

(Figures 8G–I, P < 0.05). Consequently, our study suggests that risk

score could serve as a valuable predictor of drug therapy sensitivity

in LGG patients.
FIGURE 4

Analysis of O-glycosylation pathway in TCGA-LGG cohort and its biological significance. (A) Kaplan-Meier survival curves comparing overall survival
between high and low O-glycosylation subgroups. (B) Volcano plot showing differentially expressed genes (DEGs) between high and low O-
glycosylation subgroups (logFC > 0.585, P.adj < 0.05). (C) GO analysis results, plotted with -Log10 (adjusted p-value) on the horizontal axis.
(D) KEGG pathway analysis results, plotted with -Log10 (adjusted p-value) on the horizontal axis. (E) Heatmap illustrating differences in immune
scores between high and low O-glycosylation subgroups, highlighting variations in immune microenvironments.
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FIGURE 5

Establishment and validation of risk score. (A) The Venn diagram illustrates the intersection of differentially expressed genes (DEGs) between
microglia and other cell types from the GSE117891 dataset, DEGs between high and low N-glycosylation groups in the TCGA-LGG cohort, and DEGs
between high and low O-glycosylation groups in the same cohort. (B) Contribution coefficients of the individual constituent genes in the risk score
model. (C) Heatmap showing the expression levels of the eight genes across different risk score subgroups in the TCGA-LGG cohort. (D) Distribution
of risk score among patients in the TCGA-LGG cohort, ranked from lowest to highest. The survival status of each patient is classified according to
their risk score. (E-G) Kaplan-Meier survival curves in three cohorts (TCGA-LGG, CGGA-LGG693, CGGA-LGG325), demonstrating the differences in
overall survival between the high and low risk score subgroups. (H-J) ROC curves describing the predictive performance of risk score for 1-, 3-, and
5-year overall survival in patients with LGG in the three cohorts.
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3.6 Prognostic difference of drug
treatment in different risk score groups

In the TCGA-LGG cohort, we analyzed the survival outcomes

of patients receiving medication versus those not receiving

medication. At the 2-year survival time point, we observed

distinct trends for short-term (< 2 years) and long-term (≥ 2

years) prognosis between the two groups (Figures 9A–C).

Specifically, among all LGG patients, those receiving medication
Frontiers in Immunology 10
had a better short-term prognosis, while those not receiving

medication had a better long-term prognosis.

Further analysis revealed that this phenomenon was particularly

pronounced in the high risk score group. In this group, patients

receiving medication had a better short-term prognosis but a worse

long-term prognosis (Figures 9D–F). Conversely, in the low risk score

group, the prognosis was not significantly affected by whether the

patients received medication (Figures 9H–J).
FIGURE 6

Establishment and validation of nomograms. (A) Univariate Cox regression analysis of clinical characteristics and risk score in the TCGA-LGG cohort.
(B) Multivariate Cox regression analysis of clinical characteristics and risk score in the TCGA-LGG cohort. (C) Nomogram combining age, sex, and
risk score for predicting 1-, 3-, and 5-year overall survival in LGG patients. (D-F) ROC curves describing the predictive performance of the
nomograms for 1-, 3-, and 5-year overall survival in patients with LGG in three cohorts (TCGA-LGG, CGGA-LGG693, CGGA-LGG325).
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The independent validation cohort CGGA-325 yielded results

consistent with those of the TCGA-LGG cohort, reinforcing these

observations (Supplementary Figure 3). These findings suggest

that the risk score not only serves as a prognostic indicator but

may also help identify which patients are likely to benefit from
Frontiers in Immunology 11
pharmacological treatment in the short term and require careful

consideration for long-term prognosis. However, consistent

results were not observed in the CGGA-693 cohort, and further

studies are needed to validate these findings(Supplementary

Figure 4).
FIGURE 7

Differential expression of prognostic characteristic genes and immune microenvironment. (A) Differential expression of the 8 prognostic signature
genes in normal brain tissue and LGG tissue, analyzed using data from the TCGA combined with the GTEx database. (B) Expression and distribution
of the 8 prognostic signature genes across different cell types in the GSE117891 single-cell dataset. (C) Dot plot showing the expression levels of 8
prognostic signature genes across different cell populations. (D) Bar plot showing the percentage of each cell population within each sample in the
GSE117891 single-cell dataset. (E) Heatmap showing the Pearson correlation between cell proportions and gene expression, with the numbers in the
blocks representing correlation coefficients and asterisks indicating p-values. (F) Heatmap showing differences in immune scores and immune
microenvironments between high and low risk score subgroups in the TCGA-LGG cohort. (* p < 0.05 ; ** p < 0.01; *** p < 0.001).
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FIGURE 8

Immunotherapy response and drug sensitivity analysis of risk score. (A) TIDE score, Dysfunction score, Exclusion score, and MSI for different risk
score groups in the TCGA-LGG cohort. (B) Proportion of immunotherapy responders in different risk score groups in the TCGA-LGG cohort. (C)
Proportion of immunotherapy responders in different risk score groups in the pediatric peptide vaccine immunotherapy cohort. (D) Proportion of
immunotherapy responders in different risk score groups in the GBM anti-PD-1 immunotherapy cohort. (E) ROC curve assessing the predictive
accuracy of risk score for immunotherapy response in the pediatric peptide vaccine immunotherapy cohort. (F) ROC curve assessing the predictive
accuracy of risk score for immunotherapy response in the GBM anti-PD-1 immunotherapy cohort. (G-I) Analysis of risk score and sensitivity to
various antineoplastic agents (Temozolomide, Gemcitabine, and Gefitinib), indicating differences in IC50 values across high and low risk score
groups. (** p < 0.01; *** p < 0.001.).
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4 Discussion

Although LGG is less malignant, its treatment still presents

numerous challenges. The slow growth and poorly defined

boundaries of LGG often make complete tumor resection difficult.

Additionally, the effects of radiotherapy and chemotherapy on LGG

can vary, with some patients developing resistance to these
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treatments, resulting in unsatisfactory outcomes. Even with a

combination of surgical resect ion, radiotherapy, and

chemotherapy, some patients still experience poor prognosis and

high tumor recurrence rates. Furthermore, patients with LGG often

face declines in cognitive function and quality of life during long-

term treatment, making the management of treatment side effects a

significant issue (29). Given the complexity and individual
FIGURE 9

Survival analysis of TCGA cohort drug group and non-drug group. (A) Kaplan-Meier survival curves for all patients with LGG in the drug and non-
drug groups. (B) Kaplan-Meier survival curves for short-term survival (< 2 years) in the drug and non-drug groups. (C) Kaplan-Meier survival curves
for long-term survival (≥ 2 years) in the drug and non-drug groups. (D) Kaplan-Meier survival curves for all patients in the high risk group of LGG in
the drug and non-drug groups. (E) Kaplan-Meier survival curves for short-term survival (< 2 years) in the high risk group of LGG in the drug and non-
drug groups. (F) Kaplan-Meier survival curves for long-term survival (≥ 2 years) in the high risk group of LGG in the drug and non-drug groups.
(G) Kaplan-Meier survival curves for all patients in the low risk group of LGG in the drug and non-drug groups. (H) Kaplan-Meier survival curves for
short-term survival (< 2 years) in the low risk group of LGG in the drug and non-drug groups. (I) Kaplan-Meier survival curves for long-term survival
(≥ 2 years) in the low risk group of LGG in the drug and non-drug groups.
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differences in LGG treatment, developing a reliable prognostic

model is particularly important.

In this context, glycosylation, a common post-translational

modification of proteins, has become the focus of our research.

Glycosylation plays a crucial role in assisting immune cells with

proper localization and migration (30). However, aberrant

glycosylation modifications are closely associated with

tumorigenesis, proliferation, invasion, metastasis, and immune

escape (31, 32). Genetic, epigenetic, metabolic, inflammatory, and

environmental mechanisms can lead to modifications of

glycosylation, driving several biological processes in cancer (33).

The first report of aberrant glycosylation modifications in tumors

dates back 50 years (34). Due to the susceptibility to glycosylation,

even minor pathogenic alterations or metabolic stress can lead to

glycosylation dysfunction, resulting in aberrant sugar chains and

glycoproteins (15). Understanding the causes and consequences of

glycosylation changes associated with neoplastic disease will

provide valuable insights into tumor development (31).

Risk models constructed from glycosylation-related genes have

been shown to be closely related to overall survival and tumor

microenvironment in patients with prostate cancer (14), lung

adenocarcinoma (35), renal cell carcinoma (36), and bladder cancer

(37). Risk models of N-glycosylation-related genes can effectively

predict the prognosis of patients with hepatocellular carcinoma and

the immune status of the tumor microenvironment (38). Despite this,

the characterization of glycosylation-related gene sets in gliomas has

not been comprehensively analyzed, and the relationship between

glycosylation-related genes and glioma prognosis has been

rarely studied.

Notably, a recent study showed that the prognostic model

constructed by analyzing the differential glycosylation-related

regulatory genes between glioma and normal brain tissue can

accurately predict the prognosis of glioma patients. This is helpful

in studying the occurrence and progression of glioma and

identifying new targets for glioma diagnosis and treatment (39).

However, due to the failure to properly stratify the samples

according to the different grades of glioma in the study, this may

affect the accurate revelation of gene expression differences of

different grades of tumors and their correlation with prognosis.

Our study started from the single-cell level, identifying four cell

types in LGG scRNA-seq data and finding that the glycosylation

pathway is active in the microglial population. Combined with

TCGA-LGG data, we constructed and validated glycosylation-

related risk characteristics based on eight glycosylation-related

genes (ASPM, CHI3L1, LILRA4, MSN, OCIAD2, PTGER4,

SERPING1, and TNFRSF12A). Among the eight glycosylation-

related genes we studied, ASPM (Abnormal spindle-like

microcephaly associated protein) is a spindle pole/intermediate

protein that regulates mitosis and cytoplasmic division (40).

ASPM is aberrantly expressed in various tumors, such as

glioblastoma (41), endometrial adenocarcinoma (42), pancreatic

cancer (43), prostate adenocarcinoma (44), and ovarian cancer (45,

46), and is associated with tumor prognosis. CHI3L1 (chitinase-3-

like protein 1) is a member of the glycoside hydrolase family (47).

Elevated serum CHI3L1 levels correlate with disease severity in a

variety of human tumors, including breast, colon, prostate, ovarian,
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brain, thyroid, lung, and liver cancers, leading to poorer prognosis

and shorter survival (48). In gliomas, CHI3L1 reprograms the

tumor microenvironment (TME) by promoting NF-kB pathway

activation, regulating tumor malignancy and local invasiveness,

making it a potential therapeutic target for gliomas (49, 50).

Dendritic cells (DCs) are divided into myeloid dendritic cells

(mDCs) and plasmacytoid dendritic cells (pDCs) (51), with pDCs

specifically expressing the orphan receptor immunoglobulin-like

transcript 7 (ILT7, also known as LILRA4 and CD85g) (52).

Typically, ILT7/ILT7L signaling produces a negative immune

response feedback following viral infection (53). Intervention in

the ILT7L/ILT7 system may enhance anti-tumor and antiviral

immunity (51). The Moesin protein encoded by the MSN gene is

part of the ezrin-radixin-moesin (ERM) protein family (54). Moesin

is upregulated in various human cancers, including breast cancer,

prostate cancer, pancreatic cancer, lung cancer, and melanoma (55).

Studies suggest that MSN could be a novel therapeutic target for

colorectal cancer (56). OCIAD2, part of the ovarian cancer immune

response antigen (OCIA) domain family, promotes tumor

metastasis by enhancing STAT3 activation and cell migration

(57). OCIAD2 has been associated with prognosis in bladder

cancer patients and shows potential in immunotherapy (58). The

methylation status of OCIAD2 may be a useful prognostic indicator

in patients with hepatoblastoma (59) and lung adenocarcinoma

(60). PTGER4 is a major prostaglandin E2 (PGE2) receptor whose

genetic variation and expression levels can affect gastric cancer (61).

SERPING1 encodes a highly glycosylated plasma protein involved

in the regulation of the complement cascade and immune responses

(62). Studies indicate that SERPING1 can serve as a novel marker

for prostate cancer diagnosis and prognosis (63) and is relevant for

early detection of bone metastases in breast cancer (64). Fibroblast

growth factor inducible 14 (Fn14; TNFRSF12A) is a cell surface

receptor for TNF-like weak inducers of apoptosis (TWEAK), part of

the tumor necrosis factor (TNF) family. TNFRSF12A expression is

usually low in normal tissues but significantly increases after tissue

injury and in many solid tumor types (65), including glioma, breast

cancer, esophageal adenocarcinoma, pancreatic cancer, and

hepatocellular carcinoma. Overexpression of TNFRSF12A is

associated with poor prognosis in these tumors (66).

The resulting risk score as a novel prognostic biomarker in

patients with LGG, can predict ICB immunotherapy response.

TIDE analysis demonstrated that patients with a low risk score

had a higher immunotherapy response rate compared to those with

a high risk score. In the external immunotherapy cohort, the results

of the GBM anti-PD-1 immunotherapy cohort supported this

finding, while the LGG pediatric peptide vaccine immunotherapy

cohort showed a higher proportion of patients predicted to respond

to immunotherapy in the high risk score group due to the smaller

sample. And the data of these two cohorts indicated that risk score

can be used to predict immunotherapy response. Additionally, we

explored the relationship between risk characteristics, immune

characteristics, and drug sensitivity. Our results suggested that

patients in the high risk score group exhibit higher glycosylation

pathway activity and a more complex immune microenvironment

compared to those in the low risk score group, while the high risk

score was associated with lower IC50 for Temozolomide and
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Gemcitabine, as well as higher IC50 for Gefitinib. Innovatively, we

discovered that LGG patients treated with drugs tend to have a

better short-term prognosis but a poorer long-term prognosis.

Conversely, patients with LGG who do not receive drug

treatment have a good long-term prognosis but a poor short-term

prognosis. And this difference in prognosis is particularly significant

in the high risk score group. This finding provides new insights into

the treatment strategy for LGG.

By evaluating the predictive value of these genes in the

prognostic model for LGG patients, we have revealed their

potential roles in the effectiveness of immunotherapy and drug

therapy, providing a basis for precise treatment of LGG patients.

However, the study has some limitations. First, the scRNA-seq data

involves a limited number of samples, which may affect the accuracy

and reliability of the results. And there is a lack of higher quality

immunotherapy cohorts to validate the predictive power of risk

score in predicting immunotherapy response. Second, further

studies are needed to validate the roles of these genes in the

development of LGG and to understand their potential

mechanisms and therapeutic value.

To overcome these limitations, we plan to conduct more in-

depth studies with larger sample sizes to further validate and

expand upon these findings. We hope that these follow-up studies

will provide more effective treatment strategies and prognostic

evaluation tools for LGG patients, thereby improving their overall

prognosis and quality of life.
5 Conclusion

Glycosylation are pivotal in tumor biology, influencing tumor

development and impacting the immune microenvironment of

LGG. The risk features based on glycosylation constructed and

validated in this study are robust predictors of overall survival (OS)

in LGG patients. Importantly, these features also hold promise for

predicting response to immunotherapy. Our study contributes a

novel perspective by unraveling the mechanisms underlying LGG

prognosis and offering insights into potential avenues for

personalized cancer immunotherapy.
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