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Targeting extracellular matrix
stiffness for cancer therapy
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The physical characteristics of the tumor microenvironment (TME) include solid

stress, interstitial fluid pressure, tissue stiffness and microarchitecture. Among

them, abnormal changes in tissue stiffness hinder drug delivery, inhibit infiltration

of immune killer cells to the tumor site, and contribute to tumor resistance to

immunotherapy. Therefore, targeting tissue stiffness to increase the infiltration of

drugs and immune cells can offer a powerful support and opportunities to

improve the immunotherapy efficacy in solid tumors. In this review, we discuss

the mechanical properties of tumors, the impact of a stiff TME on tumor cells and

immune cells, and the strategies to modulate tumor mechanics.
KEYWORDS

mechanical properties, matrix stiffness, tumor microenvironment, immunotherapy,
solid tumors
1 Introduction

Advanced solid tumor patients have poor responses to surgical and conventional

treatments (1, 2). The emergence of cancer immunotherapy has significantly increased both

the quality of life and survival rates of patients. However, its efficacy in solid tumors has

been hampered by significant obstacles such as immunosuppression and targeted delivery

challenges (3).

Solid tumors possess unique tumor microenvironment (TME). The primary drivers of

this tumor microenvironment include a highly fibrotic stroma and extensive infiltration of

immunosuppressive cell populations (4, 5). Owing to the abundance of collagen, the dense

fibrous stroma leads to high stiffness of the tumor tissue, in terms of mechanical properties.

From a macroscopic perspective, the highly stiff extracellular matrix (ECM), which is

equivalent to a physical barrier, which can block the delivery of anticancer drugs and the

infiltration of immune killer cells, thus affecting the efficacy of immunotherapy. At the

microscopic level, mechanical stiffness can involve signaling pathways that mediate cell

mechanics and affect cell phenotypes, behaviors and functions to promote tumor

progression. On the basis of these characteristics, we introduce the physical

characteristics, especially ECM stiffness of the TME in solid tumors, and discuss how the
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increased tissue stiffness affects tumor cells as well as the immune

cells. In addition, we explore the strategies for altering the tumor

stiffness to improve cancer therapy.
2 The mechanical properties of
the ECM

2.1 ECM stiffness and its key regulators

Stiffness, also known as the modulus of elasticity, is the

resistance to deformation of a material in response to a force

applied at a very slow rate (6). Stiffness is an inherent physical

property of tissue and has been used as a diagnostic marker

for several solid tumors (7) and a prognostic indicator (8, 9), such

as breast cancer, pancreatic cancer, prostate cancer, and

colorectal cancer.

During the tumor initiation process, cancer cells release a range

of growth factors, including TGF-b, IL-6, and IL-13, which play a

crucial roles in the activation of fibroblasts into cancer-associated

fibroblasts (CAFs) (10). CAFs are the main contributors to ECM

deposition. CAFs are believed to originate from normal resident

fibroblasts or quiescent stellate cells. They gradually transform into

CAFs when stimulated by chemokines and cytokines (11–13).

These activated fibroblasts have enhanced capabilities to

synthesize and secrete ECM components. They promote the

synthesis of collagen I, II, and V, and the assembly of collagenous

fibers, thus remodeling the ECM and increasing tumor stiffness

(14). On the other hand, tumor associated macrophages (TAMs)

can induce the reprogramming of fibroblasts to CAFs by releasing

TGF-b (5). Owing to excessive cell proliferation and tumor growth,

the core region becomes hypoxic, thereby inducing the stable

expression of HIF-1 (15, 16). Tumor cells, CAFs and TAMs

activate LOX and transglutaminases in response to hypoxia and

promote the assembly and cross-linking of collagenous fibers with

the participation of cross-linkers such as fibronectin and tenascins,

resulting in the deposition of large amounts of collagen and ECM

proteins, leading to increased stiffness of the ECM (17). Moreover,

stiffness activates TGF-b signaling (18, 19) and downstream Smad3,
Abbreviations: ECM, Extracellular matrix; CAF, Cancer associated fibroblast;

LOX, Lysyl Oxidase; IGF, Insulin-like growth factor; EGF, Epidermal growth

factor; TGF-b, Transforming growth factor b; VEGF, Vascular endothelial

growth factor; MMPs, Matrix metalloproteinases; IL-6, Interleukin-6; IL-8,

Interleukin-8; IL-13, Interleukin-13; IL-23, Interleukin-23; IL-1b, Interleukin

1b; IL-12b, Interleukin 12b; FGF, Fibroblast growth factor; CTGF, Connective

tissue growth factor; EMT, Epithelial to mesenchymal transition; CSF-1, Colony

stimulating factor 1; TNF-a, Tumor necrosis factor-a; NO, Nitric oxide; HIF-1,

Hypoxia-inducible factor 1; Smad3, SMAD Family Member 3; ROCK, Rho-

associated protein kinase; CCL4, Chemokine ligand 4; ICAM-1, Intercellular

adhesion molecule-1; BCR, B-cell receptor; MMPs, matrix metalloproteinases;

NOS2, Nitric Oxide Synthase 2; ICAM-1, intercellular cell adhesion molecule-1;

CTGF, connective tissue growth factor; RhoA, Ras homolog family member A;

PI3K, Phosphoinositide 3-kinase; MAPK, mitogen-activated protein kinase;

NSCLS, Non-Small Cell Lung Cancer.
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PI3K/MAPK and other signaling pathways to activate LOX to

induce ECM remodeling (5, 20). Meanwhile, proteoglycans play a

crucial role in ECM organization, cell adhesion, and signaling. In

the ingredient of the tumor microenvironment, proteoglycans

contribute to the physical barrier created by the ECM, influencing

drug delivery and immune cell infiltration (21). Additionally,

proteoglycans can bind to and modulate the activity of cytokines

and growth factors, including inflammatory cytokines. This can

create gradients of inflammatory cytokines within the tumor

microenvironment, influencing the recruitment, activation, and

polarization of immune cells (22, 23). These activities ultimately

result in epithelial mesenchymal transformation of tumor cells,

tumor cell migration and invasion, immune escape and therapeutic

resistance (Figure 1).

Owing to the excessive proliferation of tumors, hypoxia in the

core region induces the stable expression of HIF-1, activating and

accelerating the synthesis of intracellular lysine oxidases (LOXs)

and transglutaminases, especially LOX-1, LOXL-2 and

transglutaminase-2, which further increases ECM stiffness (17).

Within this rigid and hydrated ECM network, various soluble

factors are stored, such as growth factors, angiogenic factors, and

chemokines, are stored, which collectively trigger a sustained

inflammatory milieu. This inflammatory environment further

promotes the generation of myofibroblasts and macrophages,

leading to the deposition of significant amounts of growth factors

and ECM proteins. Consequently, this process escalates the stiffness

of the ECM, perpetuating a dynamic cycle of ECM remodeling and

reinforcement (24, 25).
2.2 Cell response to increased
mechanical stiffness

Tumor cells, immune cells and other cells share conserved

pathways to sense and respond to mechanical cues. Many cell

adhesion molecules, which are crucial for cell-matrix interactions

and cell-cell communication, can function as mechanosensors,

including integrins, selectins, and cadherins (26). Additionally,

mechanosensitive ion channels that regulate the passage of ions

such as Ca2+, Na+, and K+ also act as mechanosensors (27). For

example, Piezo1 has been identified as a key mediator in the

deletion of mechanical signals in both macrophages and T cells

(28). Moreover, within lymphocytes, T cell receptors (TCRs) and B

cell receptors (BCRs) play a critical mechanical roles in antigen

recognition and the initiation of effector functions (29–31). These

mechanosensors transmit signals that result in Ca2+ flux and the

assembly of actin filaments (32, 33), which activate myosin to

generate traction force. The active myosin assembles with

filamentous actin and forms the skeleton of the actomyosin

filament bundle.

Traction is transmitted along the chain of protein molecules to

the ECM, which generates counterforces to balance the traction

generated by myosin (34). The actin filament skeleton links the cell

nuclear membrane to the linker of the nucleoskeleton and

cytoskeleton (LINC complex) to transduce traction into the

nucleus, activate YAP/TAZ to promote nuclear expression, and
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ultimately regulate gene and protein expression as well as cell

phenotypes (35).

When the traction force reaches a certain threshold, some

structural proteins are activated successively (36). First, talin

exposes the active site and binds to the N-terminus of FAK,

resulting in rapid phosphorylation of Tyr397. Activated FAK

binds to a variety of downstream molecules and activates

downstream RhoA and ROCK (37), which transmit signals to the

nucleus and ultimately promote collagen synthesis of cancer

associating fibrobrasts, leading to matrix remodeling and

stiffening. These processes, which involve the conversion of

cellular mechanical signals into biochemical signals, are known as

mechanical transduction (38).
2.3 Other mechanical cues of the TME

There are other physical characteristics of the tumor, including

solid stress (compression and tension), interstitial fluid pressure,

and physical microstructure characteristics (6), in which abnormal

changes contribute to tumor progression and resistance to

treatment (39).

2.3.1 Solid stress
Solid stress is the mechanical force (compression, stretching,

and shearing) contained in the ECM and cells and is transmitted

through solid and elastic elements. The solid stress increases with

increasing tumor size. The increase in tissue volume is a result of

cell infiltration, cell proliferation, and matrix deposition. This

augmented volume exerts pressure, consequently generating solid

stress in the tumor and surrounding tissues. Helmlinger et al. first
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proposed the effect of solid stress on cancer cell biology and

reported that accumulated solid stress inhibited the growth of

tumor spheres (40). These pressures are large enough to compress

or even destroy the blood and lymphatic vessels (41–43). Vascular

compression leads to hypoxia (43, 44) and interferes with the

efficacy of radiotherapy, chemotherapy and immunotherapy (45–

47). Solid stress may also have additional direct effects on tumor

biology, such as promoting the aggressiveness of cancer cells (48)

and stimulating tumorigenic pathways in the colon epithelium (49).

Elevated solid stress can regulate fluid stress by compressing the

blood and lymphatic vessels within the tumor. Vascular

compression reduces tumor perfusion, whereas compression of

lymphatic vessels impedes the tumor’s ability of tumors to expel

excess fluid from the interstitial space, resulting in an even increase

in interstitial fluid pressure (50).

2.3.2 Interstitial fluid pressure
Normal interstitial fluid pressure homeostasis generally involves

blood entering through arteries and veins, blood arriving through

veins through arteries and lobes, and excess tissue fluid being

expelled through lymphatic vessels. The presence of tumor tissue

disrupts this homeostasis, showing high resistance to blood flow,

low resistance to transcapillary fluid flow, and impaired lymphatic

discharge (45, 51), resulting in increased interstitial fluid pressure

(IFP). A high IFP hinders drug penetration to tumor sites, reduces

the utilization rate, increases drug resistance, and affects the efficacy

of radiotherapy, chemotherapy and immunotherapy (52).

2.3.3 Tissue microstructure
In the human body, from every organ to every cell, there is a

specific arrangement of microstructures, and constant normal
FIGURE 1

The primary causes of matrix stiffness and its effect on tumor microenvironment.
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evolution optimizes the stability, efficiency and function of tissues.

Pathological changes disrupt these microstructures, leading to

disturbances in homeostasis and facilitating the onset of various

diseases. For example, the occurrence of atherosclerosis prevents the

normal flow of blood, possibly leading to a lack of normal fluid shear

force, eventually resulting in changes in the morphology and function

of endothelial cells, and promoting vascular proliferation (53).

Throughout the epithelial-mesenchymal transition process,

epithelial cells undergo a loss of cell polarity. This results in a shift

from the epithelial phenotype, which is anchored to the basement

membrane, to a mesenchymal phenotype characterized by enhanced

invasion and migration capabilities (54). In addition, excessive tumor

growth eventually leads to abnormal collagen cross-linking, persistent

stiffening of the stroma, and alterations in the TME, and ultimately

facilitating immune evasion and resistance to therapy (55).
3 Matrix stiffness regulates the
tumor microenvironment

3.1 Effects of matrix stiffness on
tumor cells

3.1.1 Increased tumor cell proliferation
and survival

A stiff ECM activates signaling pathways, such as the FAK,

MAPK, and PI3K/Akt pathways in tumor cells, and enhances their

proliferation and survival capabilities (56, 57).

3.1.2 Promotion of tumor cell migration
and invasion

Increased matrix stiffness can promote the migration and invasion

of tumor cells, making it easier for them to penetrate the ECM and

enter blood or lymph vessels, leading to tumor metastasis (58, 59).

Stiffness-mediated downregulation of the antiangiogenic isoform of

VEGF, which results in the alternative splicing of more proangiogenic

isoforms (60), could play an important role in regulating angiogenesis.

The presence of laminin b1 chains in the ECM increases cell–cell

contact during tube formation (61). In contrast, collagen I ensures the

disruption of cell–cell connections (62). Notably, since collagen I fis the

main component of many surrounding tissues, it promotes the

migration behavior of the cells.
3.2 Effects of matrix stiffness on the
behavior of immune cells

Interestingly, within the TME, particularly in solid tumors,

immune cells experience comparable physical and mechanical

conditions characterized by specific pressure and stiffness.

Research has focused primarily on elucidating the impact of

various biochemical signals on immune cells (63, 64), and the

specific implications and underlying mechanisms of mechanical

stiffness on immune cell behavior remain unclear. Here, we

summarize the influence of physiologically related mechanical
Frontiers in Immunology 04
cues on the polarization, function, and activity of various

immune cells.

3.2.1 Monocytes
Monocytes and their derived macrophages, which are involved

in tissue repair and remodeling, are responsive to various

mechan i ca l mic roenv i ronment s . The expre s s ion o f

proinflammatory genes and cytokines, such as NOS2, IL-12b, IL-
6, and IL-8, is upregulated in human monocytes encapsulated in

agarose and exposed to a combination of shear and compression

conditions. Monocyte activation tends to be associated with more

M1-like phenotypes, highlighting the response of human

monocytes to mechanical stimuli (65).

Hypertension and endothelial mechanical stretching have been

reported to regulate the phenotype and function of monocytes.

Coculture of human monocytes with fused human aortic

endothelial cells under cyclic stretching of 5% or 10%, similar to

hypertension, affected the distribution of human circulating

monocytes, with the percentage of classical monocytes decreasing

and the proportion of intermediate and nonclassical monocytes

increasing. Additionally, the expression of IL-6, IL-1b, IL-23, CCL4
and TNF-a were increased in monocytes, leading to the promotion

of monocyte differentiation and activation (66).

3.2.2 Macrophages
Macrophages are among of the most predominant immune cells

within the TME and promote tumor growth and immune

suppression (67, 68). They facilitate tumor growth by promoting

neoangiogenesis, remodeling the matrix, and inhibiting tumor

immunity and other mechanisms (67). While they promote ECM

remodeling, macrophages are affected by changes in substrate

stiffness. In addition, macrophages exhibit mechanical sensitivity

to the hardening mechanical microenvironment and can respond to

variations in matrix stiffness by altering the area, phenotype,

migration rate and mode, function and actin tissue regulation. On

rigid (150 kPa) substrates, the stiffness and phagocytosis capacity of

macrophages increase, and further studies have indicated that the

function of macrophages is regulated by actin polymerization (68).

Studies have shown that substrate stiffness strongly influences

the phagocytic function and polarization phenotype of

macrophages, and the specific influence is mainly determined by

the origin of the macrophages, the biomaterial model used and the

different chemical stimuli used (63, 68–71). Rukmani Sridharan

et al. showed that the phagocytosis and migration of macrophages

were impaired by stiff gel, and the migration mode was mainly

mesenchymal, which was different from that of a softer matrix, and

involved mainly ROCK-dependent deformation (63). Cougoule

et al. suggested that there were differences in the migration

patterns of macrophages in different substrate forms, such as

amoeba migration in a porous matrix (e. g., fibrillary collagen

type I) and mesenchymal migration in a dense matrix (e.g.,

matrix gel) accompanied by matrix proteolysis (72). Moreover,

the migration rate of humanmonocyte-derived macrophages on flat

fibronectin-coated PA gel was positively correlated with

stiffness (73).
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3.2.3 T cells
T cells are mechanically sensitive throughout their life cycle and

are always exposed to different mechanical microenvironments,

ranging from soft tissues such as the thymus or bone marrow to

rigid tissues such as inflammatory and tumor tissues, which affects

the function of T cells.

TCRs act as essential mechanical sensors in T cells, and

mechanical forces initiate TCR signaling by acting directly on the

TCR complex rather than on other surface receptors (74–76). ECM

stiffness can greatly increase the activation of T cells (29) by

extending the lifetime of the ligand-T cell receptor (TCR) bond,

and triggering the influx of calcium ions (77, 78).

The migration, cytokine secretion, metabolism and cell cycle

progression of human CD4+ T cells vary with substrate stiffness

(76, 79). Migration was monitored on PA-hydrogels of various

stiffness coated with biotinylated ICAM-1. CD3 and CD28

antibodies were used to activate T cells. The mean instantaneous

velocity and migration distance of T cells on 100 kPa PA gels were

significantly greater than those on 0. 5 kPa and 6. 4 kPa gels. With

increasing rigidity, TCR/CD3, the main rigid sensing receptor,

induced stronger signal transmission and gene expression. The

expression of cytokines, T-cell surface markers, T-cell-specific

transcription factors (TBX21 and Foxp3), and the proliferative

transcription factor MYC increased with increasing stiffness in

the presence of the CD3. However, it is interesting to note that

some T-cell functions such as cytokine signaling, and T-cell

activation, can be triggered at a lower stiffness value range (0.5–

6.4 kPa), whereas others (respiratory electron transport and

glycolysis) require greater stiffness (6.4 –100 kPa). Moreover, the

TCR activation induced glycolytic metabolism, the cell cycle, and

the proliferation of T cells increase in response to stiff

substrates (79).

The induction of human Treg cells is mechanosensitive and

dependent on oxidative phosphorylation (OXPHOS). Specifically,

Treg induction and metabolism are enhanced on stiffer substrates

(80). In aged skin, a more aligned ECM resulting from the loss of

the hyaluronic and proteoglycan link protein HAPLN1 impedes

CD8+ T cell migration while promoting Treg infiltration in

melanoma (81). Additionally, activation of integrin a4b1 has

been shown to enhance the immunosuppressive capacity of Treg

cells, whereas the loss of talin—an integrin-binding protein—can

lead to severe systemic autoimmunity (82). Notably, collagen, a

primary component of the ECM, can increase the expression of

Treg biomarkers such as CD4, FOXP3, and CD25, thereby

supporting the immunosuppressive TME (83).

Furthermore, the inducible co-stimulatory molecule (ICOS), a

member of the CD28/CTLA4 family, is expressed on activated T

cells (84, 85). ICOS-mediated costimulation facilitates the

production of cytokines such as IL-4 and IL-10, suggesting the

role of ICOS in supporting secondary, memory, and effector T cell

responses (86, 87).

3.2.4 B cells
B cells sense antigens through B-cell receptors (BCRs) and react

differently, contributed by the varying rigidity of antigens presented
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on substrates (88, 89). For example, virus particles exhibit greater

stiffness (45–1,000 MPa) (90), most mammalian cells have medium

stiffness (0.01–1,000 kPa) (91), and the secreted soluble pathogen

antigens have a low stiffness of less than 100 Pa (92). Substrate

stiffness guides B cell activation, proliferation, class switching and

the antibody response in vivo (88, 93).

3.2.5 Dendritic cells
Dendritic cells (DCs), specialized immune cells, scan for foreign

bodies or abnormal cells in the surrounding tissue. Once they

recognize this danger signal, they travel to the lymph nodes to

activate T cells and then trigger an immune response. To do this,

dendritic cells travel long distances in the body and encounter a

variety of microenvironments with different mechanical properties,

such as tissue stiffness (94).

Studies have shown that mechanical stiffness is a key physical

cue affecting DC differentiation/maturation, phenotype,

metabolism, quality and function (94, 95). The expression of C-

type lectins on immature DCs (IDCs) is regulated by substrate

rigidity, leading to the internalization of different antigens. In

addition, substrate rigidity impacts b-2 integrin expression and

foot formation in IDCs, thus affecting cell functions (94).

DCs respond to increased stiffness through both functional and

metabolic reprogramming. Higher stiffness upregulated glucose

metabolism in DCs to support their inflammatory phenotype.

Stiffness bolstersBMDC differentiation in vitro. Tension effects on

DCs are potentially transient and reversible, to allow for the

regulation of DC activation. In the course of immunotherapy,

high-tension DC cells enhance the main adaptive immune

capacity for tumor clearance. This effect does not require pattern-

recognition receptor (PRR) ligation. In addition, rigid substrates

can result in crosstalk of the adaptive immune system, contributing

to diseases such as diabetes and pancreatitis. A major hippo

signaling factor, TAZ, and a mediator of ion homeostasis,

including PIEZO1, a potential tension sensor in DCs, regulate the

metabolic function of DCs. Tension also influences the phenotype

of human monocyte-derived DCs (95).
4 ECM stiffness affects the immune
therapy response

4.1 Stiffness of the ECM affects
drug infiltration

Many immunotherapies, such as immune checkpoint

inhibitors, cancer vaccines, and tumor microenvironment

modulators, exert their effects through drugs. The physical and

biochemical properties of the tumor ECM can influence the ability

of drugs to enter and diffuse within the tumor microenvironment.

In particular, the stiffness of the ECM plays a significant role in the

infiltration and delivery of drugs. As the tumor progresses, the ECM

becomes dense and rigid. This rigidity and compactness act as a

physical barrier, impeding the effective infiltration of drugs (96).

The cross-linking and accumulation of collagen and other
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fibers within the ECM might restrict the penetration of drug

molecules (97). Moreover, the increased stiffness of the ECM

alters the morphology and function of tumor microvessels,

thereby affecting the transport of drugs from blood vessels to

tumor tissue (98). Additionally, the increased stiffness and density

of the ECM can increase interstitial fluid pressure, which might

further hinder the invasion and dispersion of drugs. Owing to this

elevated hydrostatic pressure, the driving force for drugs to move

from blood vessels into the tumor tissue may decrease (99).
4.2 The stiffness of the ECM mediates the
formation of an
immunosuppressive microenvironment

Increased stiffness of the ECM can promote the formation of an

immunosuppressive TME in various ways. The increased stiffness of

the ECM can act as a physical barrier, limiting the migration and

infiltration of immune cells, such as T cells, NK cells, andmacrophages,

thereby reducing their presence within the tumor tissue (100–102). The

stiffness of the ECM can influence the activation and differentiation of

immune cells through mechanical signaling pathways. For instance, T

cells experience reduced stimulation in a high-stiffness ECM, leading to

their functional suppression (63). Increased ECM stiffness can also

favor the differentiation of certain immune cells, such as macrophages,

toward an immunosuppressive phenotype. Variations in ECM stiffness

may promote the accumulation of regulatory T cells (Tregs) and

myeloid-derived suppressor cells (MDSCs) in the tumor

microenvironment (103). The immunosuppressive environment

mediated by ECM stiffness substantially hampers the application of

adoptive cell therapies, such as CAR-T cells, in solid tumors (104).
4.3 ECM stiffness affects the immune cells

ECM stiffness represents a significant factor driving macrophage

polarization toward the M2 phenotype. A notably higher proportion

of M2-like macrophages was identified in the stiffer ECM of mouse

mammary tumor by single-cell RNA sequencing (105). It has been

reported that CAFs are highly correlated with tumor-associated

macrophages. In patients with poorer clinical prognosis, there is a

concomitant high expression of both CAF and TAMmarkers, such as

a-SMA, FAP, and CD163 (106, 107). Furthermore, CAFs are able to

facilitate monocyte migration into tumors and polarize into the M2

phenotype. For instance, CAF-derived M-CSF1, IL-6, and CCL2 in

monocyte recruitment increased the M2/M1 TAM ratio in pancreatic

cancer (108).

ECM stiffness affects T cell migration and infiltration. One

study found that T cells stranded in condensed fibrotic collagen

areas surrounding human hepatocellular carcinoma highly express

both PD-1 and TIM-3, markers for late exhausted CD8+ T cells. It

suggested that high environmental stiffness can promote CD8+ T

cell exhaustion (109). In 20 resected triple-negative breast cancer

samples, immunostaining for CD8 and picrosirius red staining for

fibrous collagen were performed. The results showed that samples

with high collagen density usually had fewer infiltrating CD8+ T
Frontiers in Immunology 06
cells (110). In mice models, in soft tumors those induced by LOX

inhibition, T cells are able to migrate. On the contrary, in stiff non-

treated control tumors, T cell migration is hindered (111).

The implications of ECM stiffness also extend to other immune

cell types. The protein STEAP3, whose activity is influenced by

matrix stiffness, facilitates neutrophil infiltration (112).

Additionally, SOX9, by increasing collagen deposition and

thereby intensifying ECM stiffness in Kras+G12D-driven murine

LUAD, leads to reduced infiltration of DCs within tumors, thereby

suppressing CD8+ T cell and NK cell infiltration and activity (102).
4.4 ECM architecture changes affect
immune therapy

In lung cancer, high collagen correlates with reduced anti-PD-1/

PD-L1 efficacy. Anti-PD-L1 resistance in lung cancer mouse models

is associated with enhanced collagen deposition and fewer exhausted

tumor-infiltrating CD8+ T cells. Therapeutic targeting of the LAIR-1

pathway in tumor models promoted the activation and function of T

cells, NK cells, macrophages, and DCs (113). Blockade of LAIR-1

enhances anti-PD-L1 efficacy (114–116). Blockade of LAIR-1 also

works in humanized murine xenograft models (115, 117). LOX-

inhibitor reduces tumor stiffness, increases tumor-infiltrating T cells,

and improves anti-PD-1 response (111). Inhibition of FAK in

pancreatic cancer murine models reduces collagen deposition,

decreases anti-inflammatory immune cells, increases CD8+ T cells,

and improves the efficacy of TIL-based and checkpoint inhibitor

therapy (118). A bacterial-based agent delivering collagenase to

murine pancreatic tumors reduces collagen levels and enhances

checkpoint inhibitor treatment (119).

Overexpression of matrix metalloproteinases (MMPs) is

associated with a poor prognosis in cancer. Anti-MMP-9

treatment can increase certain T cell-related factors, including IL-

12p70 and IL18 (120). MMP2/9 is correlated with tumor-

infiltrating lymphocytes (TILs), T cell exhaustion, and inhibitory

immune checkpoints. An MMP2/9 inhibitor called SB-3CT

enhances T cell-mediated cytotoxicity. Moreover, SB-3CT

improves the efficacy of anti-PD-1 and anti-CTLA4 treatment in

mouse models of melanoma and lung cancer as well as in metastatic

melanoma in the lung (121). Knockdown of MMP-1 expression in

TNBC cells inhibits breast cancer growth and brain metastasis in a

xenograft model (122). MMP-1 is also involved in tamoxifen

resistance in breast cancer. Downregulation of MMP1 in

tamoxifen-resistant breast cancer cells induces tamoxifen

sensitivity in vitro and retards tumor growth in vivo (123).
5 Substrate mechanics: potential
therapeutic targets and drugs

As we mentioned above, increased ECM stiffness has been

associated with increased cancer cell proliferation, enhanced cell

survival, and the induction of an immunosuppressive

microenvironment. Addressing this stiffness through targeted

therapies may enhance the penetration of drugs into tumor cells,
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potentially improving treatment outcomes. On the other hand,

ECM degradation has been correlated with cancer cell migration,

invasion, and the angiogenesis induction (124). Therefore, a

meticulously planned strategy to target both ECM stiffness and

processes such as cell migration and angiogenesis is paramount for

optimizing therapeutic effectiveness while minimizing unintended

side effects. Here we focus on strategies that target ECM stiffness

(Table 1).
5.1 Targeting ECM components to reduce
mechanical stiffness

5.1.1 Myofibroblasts
Preclinical experiments have shown that targeting myofibroblast

apoptosis is an effective antifibrotic treatment. The monoclonal

antibody C1-3 specifically targets transmembrane proteins expressed

by hepatic myofibroblasts, and when combined with gliotoxin, it can

induce the apoptosis of myofibroblasts and significantly reduce the

severity of fibrosis (125). In addition, the abnormal transformation of

fibroblasts into myofibroblasts can be inhibited. In this process, signals

such as reactive oxygen, microRNAs, chemokines, and cytokines,

which are important mediators of the phenotypic transformation of

myofibroblasts, can be used as potential therapeutic targets (126–129)

to inhibit the formation of myofibroblasts. MRG-201, a drug similar to

miR-29, was recently tested in a phase 1 clinical trial for antifibrosis

therapy (129) (NCT02603224). However, normal wound healing and

other physiological functions require the critical involvement of

myofibroblasts, and it has also been shown that depletion of

myofibroblasts in the stroma leads to increased tumor aggressiveness

and decreased survival (130), which is counterproductive.
5.1.2 TGF-b
TGF-b is widely involved in the occurrence and development of

fibrosis in different organs. TGF-b is also a well-studied profibrotic

cytokine. During the initiation of fibrosis, the overproduction of

TGF-b or the enhancement of its profibrotic effect leads to an

abnormal wound healing response. Moreover, TGF-b within the

TME has been implicated in promoting immunosuppression,

promoting angiogenesis, and epithelial-mesenchymal transition

(EMT) (131–133). By targeting TGF-b, not only can the ECM be

remodeled, but the TME can also be optimized to facilitate more

effective cancer therapy outcomes. At present, many drugs targeting

TGF-b, such as drugs prepared from peptides, antisense

oligonucleotides, small molecule inhibitors, monoclonal

antibodies and vaccines, have been developed and have entered

phase I, II, and III clinical trials (134).

The ability of pirfenidone to inhibit TGF-b has been confirmed in

clinical trials (135, 136), and it was the first drug approved

for idiopathic pulmonary fibrosis (IPF) treatment in Europe and

was in phase III trials in the United States (134, 137, 138)

(NCT01366209, NCT00287729, NCT00287716, and NCT01504334).

Belagenumatucel-L is an antisense prepared as an enhanced tumor

vaccine that is actually a genetically engineered non-small cell lung

cancer tumor cell line with better activity than a conventional tumor
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vaccine vaccination (139, 140). Significantly increased survival was

found in patients treated with each dose of this vaccine, who entered a

phase II/III clinical trial (141) (NCT00676507). In addition, the

angiotensin receptor 1 blocker losartan reduces collagen I and HA

by inhibiting TGF-b (44). In a preclinical model of PDAC, the

strategies of losartan in reducing solid pressure, decompressing

blood vessels, enhancing chemotherapy, and improving overall

survival are currently being tested in a randomized clinical trials

(142) (NCT01821729).

5.1.3 CTGF
CTGF mediates the expression and signaling of TGF-b, which

circulates through the TGF-b pathway and subsequently induces

additional TGF-b production (143). CTGF, which is essential for

TGF-b-mediated fibrosis, binds directly to TGF-b to enhance

receptor association (144). Therefore, CTGF promotes ECM

remodeling and fibrosis pathology by indirectly regulating ECM

synthesis and MMP expression in myofibroblasts.

FG-3019 is a full-human monoclonal antibody against CTGF.

Preclinical studies have shown that FG-3019 can penetrate tissues

and reduce the effective tissue level of CTGF, thereby reducing

profibrotic factors, rebalancing ECM secretion and processing, and

restoring tissue homeostasis (144, 145). FG-3019 has been evaluated

for the treatment of pulmonary fibrosis and has shown good safety

and tolerability, as well as good results in imaging changes in

pulmonary function and the degree of pulmonary fibrosis

(144, 146) (NCT01262001, NCT00074698, NCT01890265,

NCT04419558, and NCT03955146). In preclinical trials, FG-3019

combined with gemcitabine was found to promote tumor stability

and prolong survival, with better efficacy than any single treatment

(147). Therefore, FG-3019 was added to gemcitabine and erlotinib

in a follow-up study in which naive patients with locally advanced

or metastatic pancreatic cancer were recruited, and the results

revealed good safety with significantly better overall survival (148)

(NCT01181245). In addition, the research results support that FG-

3019 has a good effect on the treatment of skin fibrosis, but it has

not entered into clinical trials (145).

5.1.4 LOX
Lysyl oxidase (LOX), a typical member of five secretory copper-

dependent enzyme families, promotes covalent cross-linking

through the oxidative deamination of peptidyl lysine residues in

collagen and elastin, thereby reshaping the stiff extracellular matrix

(149, 150). LOX is now being recognized as a promising therapeutic

target because of its dual involvement in the tumor stroma and

premetastatic niche formation (151). b-Aminopropenitrile (b-
APN) is a nonspecific, irreversible inhibitor of the lipoxygenase

family that covalently binds to the active site of the lipoxygenase

family of enzymes and is the first widely used LOX family inhibitor;

however, its use was discontinued because of its high toxicity in

clinical trials (152). GS-6624, a monoclonal antibody against LOX 2

(LOXL2), was well tolerated in the first half of the phase II safety

study, but patients with cancer and fibrosis disease did not benefit

from the phase II clinical trial (153–155) (NCT01362231,

NCT01769196, NCT01479465, and NCT01472198).
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In the race to create effective LOX inhibitors, a considerable

challenge is that the complete crystal structure of mammalian LOX

remains unknown (156). Therefore, other approaches have been

proposed, including inhibition of LOX transcription factors or

prevention of BMP-1 posttranslational cleavage of precursor

peptides (156). The depletion of copper LOX catalytic sites in the

nonspecific copper chelator tetraithiomolybdate reduced the serum

LOXL2 concentration in patients with moderate- to high-risk primary

breast cancer in a phase II clinical trial (157) (NCT00195091).

Tetrathiomolybdate has also been used to treat idiopathic

pulmonary fibrosis (NCT00189176), primary biliary cirrhosis

(NCT00805805) and non-small cell lung cancer (NCT01837329).

Overall, compared with b-APN, tetrathiomolybdate therapy is

favorable because of its simple oral administration route, excellent

tolerability, and stronger LOX inhibition (156, 157). PXS-5120A (158)
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and PXS-5153A (159), which are halinated allylamine drugs, have

been shown to reduce collagen cross-linking, reduce the degree of liver

and pulmonary fibrosis, and improve liver and lung function (158,

159). A phase I clinical trial of an oral LOXL2 inhibitor, PXS-5382A,

was completed in healthy adults (NCT04183517). PAT-1251, a highly

specific small molecule inhibitor of LOXL2 based on benzylamine and

2-substituted pyridine-4-methylamine, has not been tested in a phase

II clinical trial to date, although it was found to be well tolerated and

successfully passed a phase I clinical trial (NCT02852551). A

preclinical study of the aminomethiophene-based LOX inhibitor

CCT365623 demonstrated that inhibition of LOX led to delayed

tumor development and reduced lung metastasis in a mouse model

of breast cancer (160–162). Furthermore, CCT365623 has been shown

to have good stability and specificity for LOX (160–162) but has not

yet been tested in a clinical setting.
TABLE 1 Targeting ECM components.

Target Drug name Category Stage ClinicalTrials.gov ID Diseases

Myofibroblasts MRG-201 MicroRNA Phase I NCT02603224 Fibrous scar

TGF-b pirfenidone Small molecule inhibitor Phase
II, III

NCT03068234 Skin Fibrosis

Phase
II, III

NCT01933334 Systemic Sclerosis

Phase
III

NCT01366209,
NCT00287729, NCT00287716

Idiopathic Pulmonary Fibrosis

Losartan Angiotensin-receptor blocker Phase II NCT01821729 Pancreatic Cancer

Lucan

ix™
Antisense gene-modified
allogeneic tumor cell vaccine

Phase
III

NCT00676507 Lung Neoplasm, Non-small Cell
Lung Cancer Stage IIIA, IIIB, IV

Nintedanib Small-molecule tyrosine
kinase inhibitor

Phase II NCT01170065 Pulmonary Fibrosis

Phase II NCT02389764 HER2-Negative Metastatic
Inflammatory Breast Cancer

CTGF Pamrevlumab
(FG-3019)

Monoclonal antibody Phase I,
II, III

NCT01262001, NCT00074698,
NCT01890265,
NCT04419558, NCT03955146

pulmonary fibrosis

Phase I NCT01181245 Locally Advanced or Metastatic
Pancreatic Cancer

Phase II NCT02047513 Resectable Pancreatic Cancer

LOX Simtuzumab
(GS-6624)

Monoclonal antibody Phase
I, II

NCT01769196, NCT01362231 Idiopathic Pulmonary Fibrosis

Phase II NCT01479465 Metastatic KRAS Mutant
Colorectal Adenocarcinoma

Phase II NCT01472198 Pancreatic Cancer

Phase II NCT01369498 Myelofibrosis

Tetrathiomolybdate Copper chelator Phase II NCT00195091 Breast carcinoma

Phase
I, II

NCT00189176 Idiopathic Pulmonary Fibrosis

Phase
III

NCT00805805 Primary Biliary Cirrhosis

Phase I NCT01837329 NSCLC

GB2064 Small molecule inhibitor Phase II NCT04679870 Myelofibrosis
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5.1.5 MMPs
MMPs, which are secreted by tumor cells, stromal cells and

other cells, play crucial roles in selectively cleaving ECM

components. Their capacity to cleave and activate growth factors,

chemokines, cytokines, and receptors is closely linked to the

metastasis cascade and tumor angiogenesis processes, ultimately

driving cancer progression (163, 164). MMPs can activate TGF-b,
CTGF, KGF, macrophage inflammatory protein (MIP), bone

morphogenetic protein (BMP), and other factors that are crucial

for tumor progression and immune regulation. Additionally, MMPs

can cleave proteoglycans, such as syndecans and glypicans, which

are important for cell adhesion, signaling, and ECM organization.

The release of these factors can further modulate the immune

response and influence the infiltration and function of immune cells

within the tumor microenvironment (165–167).

Efforts to target MMPs to combat cancer metastasis have been

extensively pursued in clinical trials but have ultimately been

proved unsuccessful in patients. Hence, strategies that involve

modifying MMP activity to reduce ECM stiffness should be

approached with caution (168, 169).
5.2 Blocking abnormal mechanical
transmission signals

5.2.1 Integrin
Integrins, as the connecting proteins, play direct connections

from the matrix to the intracellular space (Table 2). In general,

integrins serve as bridges for cell-ECM interactions, and their

activity is influenced by ECM stiffness. As initiators of the

mechanical sensing signaling pathway, activated integrins are able
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to activate myosin to generate force and then transduce mechanical

signals to the nucleus to activate YAP/TAZ. Moreover, it can

activate the mechanical sensor FAK and initiate downstream

signaling cascades such as Src and Rho/ROCK, acting as a

feedback loop to promote stromal stiffening and further worsen

tumors (170). Preclinical studies have also shown that integrins can

promote the progression of malignant tumors, including invasion,

metastasis and drug resistance. Therefore, the specific targeting of

integrins to directly block mechanical sensing in and out of cells is

an attractive target.

Immune cells utilize integrins to facilitate interactions with cell

adhesion molecules, which is essential for communication with

other cells and the ECM (Figure 2). Notably, the integrin a4b1 acts
as the primary receptor for VCAM-1 on leukocytes (171).

Moreover, a4b1 and axb2 can collaborate to bind VCAM-1,

significantly enhancing leukocyte adhesion (172). Additionally,

macrophage integrins a4 and a9 are pivotal in promoting both

macrophage migration and survival (173). On the other hand, the

activation of integrin aVb3 in macrophages can sustain chronic

inflammatory responses in pathological conditions. Conversely, the

loss of aVb3 ligation allows macrophages to exit the inflammatory

state, highlighting its role in inflammation modulation (174).

Integrins also play a vital role in T cell functionality. For

instance, blocking avb6 can inhibit SOX4 expression and

enhance T cell-mediated cytotoxicity in response to immune

checkpoint inhibitors, particularly in triple-negative breast cancer

mouse models (175). Furthermore, integrin avb8 is predominantly

expressed in CD4+CD25+ T cells within tumors. The specific

deletion of b8 from T cells can mitigate TGFb-mediated

inhibition of CD8+ T cells, thereby restoring their tumor-killing

capacity and synergizing with immunotherapies (176).
FIGURE 2

Immune cells utilize integrins to facilitate interactions with cell adhesion molecules.
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Monoclonal antibodies, such as LM609, are among the first

integrin antagonists to be developed and have been reported to have

antiangiogenic effects in preclinical models (177). Its humanized

version, etaracizumab (MEDI-522), is one of the first integrin

antagonists to enter clinical trials because of its efficacy in
Frontiers in Immunology 10
preclinical studies and has completed a phase II clinical trial in

malignant metastatic melanoma (178) (NCT00066196). The human

Avintegrin-specific monoclonal antibody CNTO95 against the aVb3
and aVb5 integrins exhibited good safety in phase I and II clinical

trials and demonstrated antitumor activity (179–181) (NCT00888043,
TABLE 2 Blocking abnormal mechanical transmission signals.

Target Drug name Category Stage ClinicalTrials.gov ID Diseases

Integrin Etaracizumab
(MEDI-522)

monoclonal antibody Phase II NCT00066196 Malignant Metastatic Melanoma

CNTO95 monoclonal antibody Phase I NCT00888043 Solid Tumors

Cilengitide Small
molecule inhibitor

Phase II NCT00246012 Melanoma

Phase I,
II, III

NCT00103337, NCT00121238 Recurrent Prostate Cancer

GSK3008348 Small
molecule inhibitor

Phase I, II NCT01118676, NCT00842712 NSCLC

Phase II, III NCT00813943,
NCT00093964, NCT00689221

Glioblastoma

Phase I NCT03069989, NCT02612051 Idiopathic Pulmonary Fibrosis

FAK PF-00562271 Small
molecule inhibitor

Phase I NCT00666926 Head and Neck Neoplasm
Prostatic Neoplasm
Pancreatic Neoplasm

VS-6063 Small
molecule inhibitor

Phase I NCT01778803 Ovarian Cancer

VS-4718 Small
molecule inhibitor

Phase I NCT01849744 Metastatic Non-Hematologic
Malignancies

GSK2256098 Small
molecule inhibitor

Phase I NCT01138033 Solid Tumors

Phase II NCT02428270 Pancreatic Cancer
FIGURE 3

Targeting ECM stiffness for improved cancer therapy.
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NCT00246012). CNTO95 and etaracizumab are being evaluated in

further clinical trials. Cilengitide, an inhibitor of the aVb3 and aVb5
integrins, has completed phase II trials in patients with recurrent

prostate cancer (182) (NCT00103337, NCT00121238) and NSCLC

(183) (NCT01118676, NCT00842712) and is currently undergoing

phase II and III trials in glioblastoma (184, 185) (NCT00813943,

NCT00093964, NCT00689221). In nonclinical studies, aVb6
integrins have been shown to inhibit the activation of TGF-b in

nonclinical studies (186). GSK3008348, a small molecule inhibitor of

aVb6 integrin and the first inhaled compound of this class of drugs, is

safe and well tolerated by inhalation administration. A phase I clinical

trial of GSK3008348 for the treatment of idiopathic pulmonary

fibrosis has been completed (187) (NCT03069989, NCT02612051).

5.2.2 FAK
FAK, a cytosolic nonreceptor tyrosine kinase, is activated by

integrin clustering and functions as a key regulator of focal adhesion

dynamics (Figure 3, Table 2) (188). It plays a critical role in cellular

responses to ECM stiffness, making it a promising target for

inhibiting such mechanotransduction pathways (189). The

phosphorylation of FAK is increased in response to increased

matrix stiffness, with constitutive phosphorylation observed in

myofibroblasts (188, 190). In addition, our previous data revealed

that FAK inhibition alters the fibrotic and immunosuppressive

TME in pancreatic cancer and renders tumors responsive to

immunotherapy (191). As such, FAK is also a potential target to

mediate matrix stiffness responses.

The first FAK inhibitor, PF-562271, was tested in a phase I

clinical trial with tolerable results and controllable safety. A total of

99 patients with advanced malignant tumors were treated with PF-

562271. After treatment, two-thirds of the patients were stable

(approximately 6 weeks after the end of cycle 2). This first clinical

trial revealed FAK as a promising therapeutic target (192)

(NCT00666926). The FAK inhibitor VS6063, acquired by

Verastem, has good pharmacodynamic characteristics (192) and

has completed a phase I clinical trial in combination with paclitaxel

in patients with advanced ovarian cancer (193) (NCT01778803).

The inhibitors VS-4718 and VS-5095 also effectively target FAK

kinase activity. Furthermore, the VS-4718 inhibitor is currently in

clinical trials for patients with metastatic nonhematological

malignancies (NCT01849744). The recently developed FAK

inhibitor GSK2256098 has also been tested in clinical trials

(194, 195) (NCT01138033, NCT02428270) and has completed

phase II clinical trials in pancreatic cancer (194) (NCT02428270).

The FAK inhibitors examined in clinical trials to date have

controlled toxicity and good safety and have shown extended

progression-free survival as monotherapy inhibitors without

clinical or radiological effects. Trials are underway to increase the

efficacy of treatment by combining FAK inhibitors with cytotoxic

chemotherapy, targeted therapy or immunotherapy.
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Conclusion

While the biological signals within the TME have been well

studied, the specific physical cues and mechanisms of mechanical

signals remain unclear. This article discusses the impact of

mechanical factors, particularly the stiffness of the matrix, on

the tumor immune microenvironment. Furthermore, we

explored potential targets for modifying the stiff TME. By

illuminating these concepts, our goal is to raise awareness

about the crucial role of the physical environment in cancer

and offer strategies to manipulate the TME to improve cancer

therapy outcomes.
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