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and Ling Xu1*
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Background: The incidence of breast cancer remains high and severely affects

human health. However, given the heterogeneity of tumor cells, identifying

additional characteristics of breast cancer cells is essential for accurate treatment.

Purpose: This study aimed to analyze the relevant characteristics of matrix genes

in breast cancer through the multigroup data of a breast cancer multi-database.

Methods: The related characteristics of matrix genes in breast cancer were

analyzed using multigroup data from the breast cancer multi database in the

Cancer Genome Atlas, and the differential genes of breast cancer matrix genes

were identified using the elastic net penalty logic regression method. The risk

characteristics of matrix genes in breast cancer were determined, and matrix

gene expression in different breast cancer cells was evaluated using real-time

fluorescent quantitative polymerase chain reaction (PCR). A consensus clustering

algorithm was used to identify the biological characteristics of the population

based on the matrix molecular subtypes in breast cancer, followed by gene

mutation, immune correlation, pathway, and ligand-receptor analyses.

Results: This study reveals the genetic characteristics of cell matrix related to

breast cancer. It is found that 18.1% of stromal genes are related to the prognosis

of breast cancer, and these genes are mostly concentrated in the biological
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2024.1466762/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1466762/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1466762/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1466762/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1466762/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2024.1466762&domain=pdf&date_stamp=2024-10-18
mailto:fangfanfu@126.com
mailto:xulq67@aliyun.com
https://doi.org/10.3389/fimmu.2024.1466762
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2024.1466762
https://www.frontiersin.org/journals/immunology


Su et al. 10.3389/fimmu.2024.1466762

Frontiers in Immunology
processes related to metabolism and cytokines in protein. Five different matrix-

related molecular subtypes were identified by using the algorithm, and it was

found that the five molecular subtypes were obviously different in prognosis,

immune infiltration, gene mutation and drug-making gene analysis.

Conclusions: This study involved analyzing the characteristics of cell-matrix

genes in breast cancer, guiding the precise prevention and treatment of

the disease.
KEYWORDS

breast cancer, cellular matrix gene, single-cell sequencing, matrix score,
molecular subtyping
Introduction

Breast cancer is currently the most common tumor in the world

(1). The incidence of breast cancer is 11.7%, and the mortality rate is

6.9% worldwide, placing a heavy burden on human health and the

health system. In addition to conventional surgical procedures,

chemotherapy, radiotherapy, endocrine therapy (2–8), targeted

therapy (9–12), and immunotherapy (13), breast cancer treatment

strategies are increasingly considered by researchers and clinicians.

Owing to the heterogeneity of tumor cells, improving the clinical

efficacy of these treatment methods is complicated. Therefore,

exploring approaches to improve the clinical effectiveness of breast

cancer treatments is essential. Single-cell sequencing technology

focuses on individual cells, performing uniform amplification of

genetic material from single cells, followed by library preparation and

sequencing. Finally, data analysis is conducted on the genome or

transcriptome of individual cells. The technical principles mainly

include three aspects: single-cell isolation, amplification sequencing,

and data analysis. This technology has advantages in revealing cell

characteristics, identifying tumor heterogeneity, and understanding the

microenvironment (14), and provide researchers with more decision-

making information.

Cells play a crucial role in life processes. Studies (15) have

shown that during cell migration, intense nuclear deformation

causes nuclear membrane rupture, accompanied by DNA

damage, and researchers (16) have found that DNA damage and

nuclear membrane rupture concurrently promote the cellular

production of invasive phenotypes, which might promote the

progression of breast tumors. An increasing number of

researchers have recently focused on extracellular structures. The

extracellular matrix (ECM) is a complex dynamic grid structure

comprising macromolecules secreted by cells into the extracellular

stroma, which is composed of an interstitial matrix and a basement

membrane, constituting more than one-third of the body

mass (17). It is an essential component of the biological cell

microenvironment, cell proliferation, and survival. As a

significant participant in differentiation and migration, the ECM
02
has long been ignored as an inert framework; however, an

increasing number of studies have found that the cytoplasmic

matrix is closely related to many diseases, particularly tumors (18,

19). Despite significant progress in deciphering breast cancer at the

whole-genome level, the mechanisms of matrix body genes in breast

cancer have not yet been studied. Stromal-specific tumor biology

involves integrating several RNA-sequencing (RNA-seq) and

single-cell RNA seq (scRNA-seq) data, cell type deconvolution,

ligand-receptor interaction analysis, and rich biological pathways to

obtain the biological characteristics of matrix genes. A model was

established to identify malignant breast cancers based on matrix

gene expression. Understanding the characteristics of matrix genes

could offer valuable insights into the diagnosis of poor prognosis

and the development of treatment strategies for breast cancer.

With the deepening of the human understanding of tumors,

researchers have realized that all cell types in the tumor

microenvironment markedly influence tumors, among them, CD8

T cells are the most valued by researchers, with the main function of

killing tumor and other pathological cells (20). CD4 T cells, due to

their numerous subtypes, have diverse roles; on one hand, they can

help tumors escape and suppress anti-tumor immune responses,

while on the other hand, they can promote anti-tumor immune

responses and inhibit tumor growth (21). An increasing number of

researchers have found that other cells, such as dendritic cells and

natural killer cells, play a key role in the initiation, regulation, and

maintenance of anti-tumor immune responses (22, 23). Therefore,

paying attention to the infiltration of immune cells is of great

significance for tumor research. Some studies (24) have found that

immune infiltration in patients with breast tumors is associated

with clinical prognosis. Improving breast cancer treatment requires

a comprehensive understanding of the biological features of the

breast tumor microenvironment and its influencing factors. Studies

on the relationship between cell-matrix genes and immune

infiltration are unavailable; therefore, we analyzed immune

infiltration in the molecular subtypes of matrix genes to observe

the immune infiltration characteristics across different molecular

subtypes and offer insights for clinical treatment.
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To investigate the correlation between breast cancer and cell-

matrix genes, we first used biological data on breast tumors and

clinical survival data from various databases, such as the Cancer

Genome Atlas (TCGA). Elastic net penalty logistic regression was

used to pinpoint highly correlated differentially expressed matrix

genes and construct a stromal risk regression model for subsequent

analyses, which was used based on the Monte Carlo consensus

clustering algorithm to identify different matrix-related molecular

subtypes, and subsequently through gene ontology (GO)/Kyoto

Encyclopedia of Genes and Genomes (KEGG), immune

infiltration, receptor-ligand, and other analytical methods to show

the biological characteristics of different molecular subtypes. Based

on the above, the study guides the clinical study of breast cancer and

helps more patients with breast cancer to benefit from survival.
Materials and methods

Technical overview

This study investigates the prognostic value of matrix genes in

breast invasive carcinoma (TCGA-BRCA) using data from the

TCGA database. We downloaded the dataset consisting of 1,222

samples, integrated clinical data, and filtered for 1,109 patients with

complete survival and TNM staging information.

Differential expression analysis was conducted using the limma

package to identify differentially expressed genes (DEGs) linked to

patient survival, categorizing patients into long-term (≥1 year) and

short-term (<1 year) survival groups. Gene Ontology (GO) and

KEGG pathway enrichment analyses were performed on these

DEGs to understand their biological roles.

We developed a risk signature utilizing elastic net penalized

logistic regression, optimizing the model to predict patient

outcomes based on gene expression profiles. Each patient received

a matrix risk score, enabling classification into high- and low-risk

groups, followed by survival analysis using Kaplan–Meier curves.

To identify molecular subtypes, we implemented consensus

clustering on MRDEG expression and validated results with

independent datasets. We also assessed immune cell infiltration

using the CIBERSORT algorithm. Pathway activity was analyzed

with GSVA, focusing on hallmark pathways. Additionally, ligand-

receptor interactions were examined to explore signaling dynamics

in the tumor microenvironment. Statistical analyses were

performed in R, with p<0.05 considered significant Figure 1.
2 http://www.gseamsigdb.org/gsea/msigdb/search.jsp)
Data download

We downloaded the breast invasive carcinoma (BRCA) dataset,

TCGA-BRCA (n=1,222), from the TCGA database (25) using the

TCGAbiolinks package (26). The data type was selected as count

and converted to FPKM format. In addition, we obtained clinical

data corresponding to the matched samples of the TCGA BRCA
1 https://portal.gdc.cancer.gov/
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dataset from the TCGA GDC1 official website, including age,

survival status, follow-up time, and tumor stage. Our study

excluded patients with no survival information and incomplete

TNM staging information, and 1,109 patients were included in our

subsequent analyses.

To examine the gene mutation status of TCGA-BRCA patients,

we acquired ‘Masked Somatic Mutation’ data from the official

website of TCGA. The obtained data served as the somatic

mutation dataset for patients with breast cancer. We preprocessed

the data using VarScan software and visualized the somatic

mutations of patients using the maftools package (27). We

obtained the body genes from the study of Naba et al. (28), which

contains 1,062 matrix body genes, and the specific information is

presented in Supplementary Table S1 and Table 1.

In addition, we assessed the Molecular Signature Database (29)

(MSigDB) 2. The 50 Hallmark gene sets were obtained from

“h.all.v2023.1.Hs.symbols.gmt” on the database website, from

“c2.cp.kegg.v 7.4.symbols.gmt” file to obtain the KEGG pathway

gene set for subsequent Gene Set Enrichment Analysis (GSEA).

To further validate our approach, we acquired a set of scRNA-seq

data, GSE161529, from the Tumor Immune Single-cell Hub 23

database (30). Additionally, we obtained an independent validation

set for breast cancer, UCSC (Caldas 2007), from the Xena platform 4,

and another independent validation set, GSE20685, from the Gene

Expression Omnibus (GEO) database.
Differentially expressed genes related to
breast cancer survival

To elucidate the potential mechanism of gene action and related

biological characteristics influencing the prognoses of patients with

breast cancer, we first divided patients with an overall survival of >1

year into the long survival group according to their prognoses.

Patients aged<1 year were classified into the short-term survival

group. Genes in different groups were subjected to differential

analysis using the limma package. Genes with an absolute value

of log fold change (|logFC|) >0.25 and a p-value<0.05 were

considered as differentially expressed genes (DEGs) associated

with prognosis in patients with breast cancer. To obtain breast

cancer-related matrix body-related DEGs (microsomal-related

(MR) DEGs), we compared the DEGs obtained from the

differential analysis of TCGA-BRCA datasets with matrix body-

related genes (microsomal-related genes, MRGs) at the intersection

and drew a Venn diagram. The findings from the differential

analysis were visualized using the R package ggplot2 to generate a

volcano plot and the R package pheatmap to create a heatmap.
3 (http://tisch.comp-genomics.org/)

4 (http://xena.ucsc.edu/)
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GO and pathway (KEGG)
enrichment analysis

GO analysis (31) is a standard method for large-scale functional

enrichment studies, including biological processes, cell

components, and molecular functions. KEGG (32) is a database

containing information on genomes, biological pathways, diseases,

and drugs. We used R-package clusterProfiler (33) to analyze the

GO and pathway (KEGG) enrichment of differentially expressed

matrix genes, and the screening criteria for entries were adj. p<0.05.

An FDR value (q-value)<0.25 was considered statistically

significant, and the correction method of p-value was

Benjamini–Hochberg.
Construction of stromal body risk
characteristics in breast cancer

We performed risk signature selection on matrix genes

differentially expressed between long- and short-term survival in

the TCGA-BRCA dataset. We used Elastic Net penalized logistic

regression to select highly correlated differentially expressed matrix

genes based on the correlation between long and short survival. The

elastic net penalized logistic regression was implemented using the

glmfit function in the R package glmnet, where the parameter alpha

was set to 0.5. Using a=0.5 in penalized logistic regression is to

combine the advantages of Lasso (L1 penalty) and Ridge (L2

penalty) regression, allowing for both variable selection and

handling of feature correlation issues. We select the shrinkage

coefficient l through cross-validation, specifically by finding a l
value that minimizes prediction error and ensuring that this value is

within one standard error range, which helps prevent overfitting
Frontiers in Immunology 04
and improves the model’s predictive ability on new data. We

initially normalized the expression profiles of the samples in the

TCGA-BRCA dataset using the Z-scale. Subsequently, we used the

createDataPartition function in the caret package to split the

samples into training and test sets with 80% and 20% allocations,

respectively. In this study, we developed an elastic net penalized

logistic regression model using only the training set. The shrinkage

coefficient (lambda) was selected as a value within a standard error

range to minimize the cross-validation prediction error rate, and

the model feature with a minor prediction error was selected as the

final marker gene. To generate a gene-based matrix risk score for

the samples, Firth’s correction was used to calculate the odds ratios

using the logistic function in the logistic package. The matrix of

each sample risk score is the sum of the product of the risk ratio and

the expression value of each marker gene; that is Matrix Risk Score 

=on
i=1zibi, where n is the length of the marker gene, zi is the

expression of gene i, and bi is the log-odds ratios of gene i.

Subsequently, according to the dataset, the patient matrix risk

score was used to determine the best grouping through the

surv_cutpoint function and divide patients into high- and low-

risk groups. The Kaplan–Meier test was used to compare differences

in overall survival among the different sample groups.
Identification of stromal molecular
subtypes in breast cancer

We used a consensus clustering algorithm based on Monte

Carlo references (Monte Carlo reference-based consensus

clustering, M3C) (34) based on MRDEG expression to identify

matrix-associated molecular subtypes. M3C is a consensus-

clustering algorithm that involves using Monte Carlo simulations
FIGURE 1

Work Flow. GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; DEGs, differentially expressed genes; MRDEGs, matrisomal-
related differentially expressed genes; TISCH: Tumor Immune Single-cell Hub; BRCA, Breast invasive carcinoma; TCGA, The Cancer Genome Atlas;
GSEA, Gene Set Enrichment Analysis; GSVA, Gene Set Variation Analysis; ECM, extracellular matrix.
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to mitigate the overestimation of K and effectively reject the null

hypothesis of K=1. Real data were compared to eliminate bias, and

statistical tests for the presence of structures were used to correct for

inherent bias in consensus clustering. The optimal number of

clusters K has the largest relative cluster stability index, the

proportion of Monte Carlo P value is<0.05, and the fuzzy

clustering score (Proportional Ambiguous Clustering, PAC) is the

smallest. To confirm the accuracy of consensus clustering, the

results were validated using a validation set. Subsequently, the R

package ggpubr was used to generate a box plot, with the sample

cluster labels as groups. Group differences were assessed for

statistical significance using the Wilcoxon rank-sum test, with a

p-value<0.05 indicating statistical significance.

Gene mutation analysis of stromal molecular subtype

populations in different breast cancers

Breast cancer data were downloaded from GDC, and all non-

synonymous mutations were selected for downstream analysis. R

package map tools were used to display the related gene mutations,

the biological functions affected by the mutations, and the

classification of potentially druggable genes in different groups of

breast cancer stromal molecular phenotype characteristics.
Immune-related analysis of the population
of stromal molecular subtypes in different
breast cancers

To identify the underlying molecular mechanisms of different

stromal molecular subtypes in patients with breast cancer, we first

performed ESTIMATE (35) on the TCGA-BRCA dataset. We

analyzed and calculated four tumor-related scores, namely the

matrix score, immune score, tumor purity, and ESTIMATE score,

the immune score and matrix score calculated based on the

ESTIMATE algorithm can facilitate the quantification of immune

and matrix components in tumors; in this algorithm, immune and

matrix scores are calculated by analyzing the specific gene expression

characteristics of immune and matrix cells to predict the infiltration

of non-tumor cells. Subsequently, the CIBERSORT algorithm (36)

was applied to assess the infiltration status of immune cells within

integrated datasets of various tumor samples. Next, differences in

immune cell infiltration among different tumor subgroups were

examined using the Wilcoxon test. Statistical significance was set at

p<0.05. CIBERSORT5 involves using linear support vector regression

and serves as an R/web tool for deconvoluting expression matrices of

human immune cell subtypes. It is used to evaluate the infiltration

status of immune cells in sequenced samples using a gene expression

signature set of 22 known immune cell subtypes. In addition, we

analyzed the differential expression of immune checkpoint genes

across different matrix molecular subtypes.
5 https://cibersortx.stanford.edu/

6 https://www.r-project.org , version 4.0.2
Path analysis

Seen in different subtypes of matrix molecules, we performed

pathway enrichment analysis based on the 50 hallmark and C2

oncogenic pathways in patients with different subtypes. Pathway
Frontiers in Immunology 05
activity was assessed for each sample using the GSVA algorithm,

and differentially active pathways were identified using a t-test.
Ligand-receptor interaction analysis

We annotated the genes in the RNA-seq dataset as ligands and

receptors using a curated database of human ligand-receptor pairs

previously published by Ramilowski et al. (37). We retained only

ligands corresponding to core matrix genes identified by Naba et al.

(28) for subsequent analyses. The interaction score between a core

matrix gene and its receptor was computed as the product of the

expression values of the ligand (core matrix gene) and its cognate

receptor in each sample. We identified the relative enrichment of

ligand-receptor interaction scores among samples of different

matrix subtypes using the Wilcoxon test and visualized the results

using Circos.
Single-cell analysis

All single-cell data analyses and integrations were performed using

R software Seurat v 4.0.6. Two-cell quality control was implemented

using the R Scrublet package. Cells with fewer than 300 genes, as

revealed by single-cell sequencing, were deleted through quality

control. Similarly, cells with more than 20% of the mitochondrial

gene reads were deleted. The normalization and standardization of

each sample data were realized through principal component analysis,

and the inter-batch difference between samples was determined using

the Harmony package. We used the t-distributed stochastic neighbor

embedding algorithm to reduce dimensionality and visualize the single-

cell data. The ECM scores of different cells were calculated using the

AddModuleScore function.
qPCR

For qPCR, total RNA was extracted using RNAiso Plus

(TaKaRa, Japan), followed by reverse transcription using

PrimeScript™ RT Master Mix (TaKaRa, Japan). qPCR was

conducted using AceQ Universal SYBR qPCR Master Mix

(Vazyme, China). The primer sequences are listed in

Supplementary Table S2.
Statistical analysis

All data processing and statistical analyses were conducted

using the R software6. To compare two groups of continuous

variables, the independent Student’s t-test was used to assess the

statistical significance of normally distributed variables, whereas the
frontiersin.org
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Mann–Whitney U test was used for non-normally distributed

variables. The U-test (i.e., the Wilcoxon rank-sum test) was used

to analyze the differences among non-normally distributed

variables. The chi-square or Fisher’s exact test was used to

compare and analyze the statistical significance of categorical

variables between the two groups. The survival package in R was

used for survival analysis, using Kaplan–Meier survival curves to

illustrate the survival differences. The significance of the survival

time difference between the two patient groups was evaluated using

a log-rank test. Univariate and multivariate Cox analyses were

performed using the survival package in the R software. All

statistical p-values were two-sided, and p<0.05 is considered

statistically significant.
R language

Detailed R packages can be found in Supplementary Table S3.
Results and discussion

Data source

Identification of differentially expressed
matrix genes associated with breast
cancer prognosis

To further explore the underlying molecular mechanisms

affecting the prognosis of patients with breast cancer, we

conducted differential gene expression analysis on the complete

TCGA-BRCA dataset to identify genes that were differentially

expressed between patients in the long and short survival groups.

Genes with an absolute value of log fold change (|logFC|) >0.25 and

a p-value<0.05 were considered as DEGs associated with prognosis

in patients with breast cancer, and 127 DEGs were identified

(Figure 2A). Differential analysis revealed that 18.1% of the DEGs

were stromal (Figure 2B). Of these genes, 3.9% were core matrix,
Frontiers in Immunology 06
and 14.2% were matrix-related. Subsequently, through Gene

Ontology (GO) and KEGG analysis, biological processes and

functions related to differentially expressed genes were identified.

Among them, red represents biological processes, purple represents

cellular components, blue represents molecular functions, and

orange represents KEGG pathways. The p-values for all enriched

functions are presented in the form of -log10(padj). In GO

functional enrichment analysis, the analysis revealed the

enrichment of biological processes associated with protein

metabolism, including the negative regulation of endopeptidase

activity, peptidase activity, and proteolysis. KEGG enrichment

analysis indicated that the DEGs were associated with cytokines,

including cytokine-cytokine receptor interaction and the

chemokine signaling pathway (Figure 2C).

Recent advancements have underscored that individual matrix

molecules rarely operate independently but as integral components

within a dynamic three-dimensional supramolecular network

comprising structurally and functionally integrated matrix

constituents (41). We performed a correlation analysis of

differentially expressed matrix genes in patients with breast

cancer to determine whether these genes are also regulated in the

disease (Figure 2D). Unsupervised clustering revealed two

significant stromal body gene clusters related to somatic genes.

Volcano map display of differential analysis, in which red is the

gene with up-regulated expression, and blue is the gene with down-

regulated expression; (B) The proportion of differential matrix

genes, red is the proportion of core matrix genes, and blue is the

gene proportion of other matrix bodies; (C) Functional enrichment

analysis of differentially expressed matrix genes; (D) Correlation

heat map of differentially expressed matrix genes. GO, Gene

Ontology; BP, biological process; CC, cellular component; MF,

molecular function; KEGG, Kyoto Encyclopedia of Genes

and Genomes.

To explore the potential biological functions of different gene

clusters, we performed GO and KEGG functional enrichment

analyses on these two gene clusters. Gene Cluster 1 was primarily

enriched in salivary secretion (Figure 3A), whereas gene Cluster 2

was primarily enriched in viral protein interactions with cytokines

and cytokine receptors, chemokine signaling pathways, and

cytokine-cytokine receptor interactions (Figure 3B). Concerning

functional enrichment analysis with GO, gene Cluster 1 was found

to be primarily enriched in the negative regulation of proteolysis

and peptidase activity (Figure 3A). Gene Cluster 2 was primarily

enriched in the chemokine-mediated signaling pathway, response

to chemokines, and cellular response to chemokines (Figure 3B).

The enrichment result display of gene cluster1; (B) The

enrichment result display of gene cluster2. GO, Gene Ontology;

BP, biological process; CC, cellular component; MF, molecular

function; KEGG, Kyoto Encyclopedia of Genes and Genomes.
Construction of stromal body risk
characteristics in breast cancer

We identified 15 matrix-related marker genes using the elastic

net penalized logistic regression method. To generate a matrix gene-
TABLE 1 Datasets accessed in this study.

Cohort Data type Source Reference

TCGA-BRCA RNAseq TCGAbiolinks
Reference
(25, 26)

Breast cancer RNAseq
Gene Expression
Omnibus GSE20685

Reference (38)

Breast cancer RNAseq UCSC xene
Reference
(39)

Cell types
from scRNAseq

scRNAseq
h5 files and
Signature Matrix

Reference
(40)

Data type

Extracellular
matrix gene set

Gene Manuscript
Reference
(28)

Cell types scRNAseq TISCH database
Reference
(30)
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FIGURE 3

KEGG functional enrichment analysis of different gene clusters. (A) Gene cluster 1 enrichment results display; (B) Gene cluster 2 enrichment
results display.
FIGURE 2

(A) The volcano plot of differential analysis, where red represents upregulated genes and blue represents downregulated genes; (B) The proportion
of differential plastid genes, with red indicating the proportion of core plastid genes and blue indicating the proportion of other plastid genes; (C)
Functional enrichment analysis of differentially expressed plastid genes; (D) Correlation heatmap of differentially expressed plastid genes. GO, Gene
Ontology; BP, biological process; CC, cellular component; MF, molecular function; KEGG, Kyoto Encyclopedia of Genes and Genomes.
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based risk score for the samples, we used Firth’s correction to

calculate the odds ratios(Figure 4A) and the logistic function in the

logistic package. Subsequently, patients were divided into high-and

low-risk groups based on their matrix risk score. The Kaplan–Meier

test was used to compare the differences in overall survival among

the different sample groups. Survival analysis showed that the

constructed stromal body risk signature could be used to

accurately distinguish and predict patient prognosis (Figures 4B,

C). Furthermore, significant differences were found between

patients with different clinical characteristics. For example, in

patients with breast cancer who died, it was significantly higher

(Figure 4D); in older patients, it was also higher than that in

younger patients (Figure 4E) and significantly lower in patients

with T1 stage disease (Figure 4F).

To verify the effectiveness of our model, we applied our matrix

body risk model to the GSE 20685 dataset, and the UCSC results of

survival analysis on the Caldas 2007 dataset showed that our model

could be used to significantly distinguish patients with breast cancer

with different prognoses in the independent validation set

(Figures 5A, C). The Receiver Operating Characteristic (ROC)

curve analysis demonstrated that our model has a certain

prognostic predictive ability and may have some clinical reference

value; the Area Under Curve (AUC) of the GSE20685 dataset was

0.617 (Figure 5B), and that of the UCSC Caldas 2007 dataset was

0.571 (Figure 5D).
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To explore which cell types express the marker genes we

identified for constructing our stromal risk signature based on

cell annotation information from a single-cell dataset (GSE

161529), we calculated positive ratios (positive score) and the

enrichment degree of stromal risk genes with a negative ratio

(negative score). CD4 Tconv, endothelial cells, epithelial cells,

fibroblasts, malignant cells, Mono/Macro, pericytes, and plasma

cells differed significantly between tumor and normal cells in the

negative score (Figure 6A), and CD4 Tconv, endothelial cells,

epithelial cells, fibroblasts, malignant cells, mono/macrophages,

NK cells, pericytes, and plasma cells were significantly different

between tumor and normal cells in the positive score (Figure 6B).
Identification of stromal molecular
subtypes in breast cancer

Weused a consensus clustering algorithm based on aMonte Carlo

reference (Monte Carlo reference-based consensus clustering, M3C)

to identify the matrix-associated molecular subtypes based on the

expression of matrix body-associated DEGs (MRDEGs). Five matrix-

associated molecular subtypes were identified (Figure 7A). Survival

analysis revealed that the five distinct stromal-associated molecular

subtypes had significantly different survival rates, with patients in

Cluster 3 having the worst prognosis (Figure 7B). To further explore
FIGURE 4

Construction of stromal body risk signature in breast cancer (A) Coefficient of genes in stromal risk signature; (B) K-M survival curve of high and low
stromal risk score sample group; (C) ROC plot of stromal risk feature predicting patient prognosis; (D) stromal risk score in Distribution boxplots
between living and dead patients; (E) distribution boxplots of stromal body risk scores between older and younger patients; (F) distributions of
stromal body risk scores among patients with different T stages box plot. The symbol ** is equivalent to p < 0.01; the symbol **** is equivalent to p
< 0.0001.
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the underlying molecular mechanism, Cluster 5 samples were

significantly enriched in ECM interactions (Figure 7C), ECM

proteoglycans (Figure 7D), and KEGG_ECM (Figure 7E) pathways,

indicating that Cluster 5 samples had higher matrix body-related

activity. To validate the feasibility of our clustering results, we

performed the same clustering on the GSE20685 dataset and found

that the samples clustered into four categories, with significant

differences in survival. The lack of significance in cluster 4 may be

due to the biological characteristics of the samples in this category, the

small sample size, or the heterogeneity of clinical features. This

indicates that the prognosis of patients in cluster 4 is relatively

uniform, with no obvious survival differences. Additionally, the gene

expression or related molecular pathways in this category may not

have had a significant impact on patient prognosis, thus failing to

achieve statistical significance in the survival analysis (Figure 7F).
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Furthermore, we analyzed the differences in immunity between

the different sample clusters. The ESTIMATE analysis indicated

that Cluster 2 samples had the highest matrix (Figure 8A), immune

(Figure 8B), and ESTIMATE (Figure 8C) scores and exhibited the

lowest tumor purity (Figure 8D). Conversely, Cluster 1 showed the

highest tumor purity. The CIBERSORT analysis revealed significant

differences in the infiltration of various immune cells among

patients with different molecular subtypes. Notably, CD8+ T cells

and activated NK cells showed higher enrichment in Cluster 2

samples but lower enrichment in those of Cluster 1; however, T cells

CD4 memory resting cells are more enriched in Cluster-5 samples

and less enriched in Cluster-2 samples. Macrophages M0 cells are

more enriched in Cluster-1 samples and less enriched in Cluster-5

samples. Macrophages M2 cells are more enriched in Cluster-3

samples and less enriched in Cluster-2 samples (Figure 8E).
FIGURE 5

Validation of the performance of matrix body risk features (A) K-M survival curve of high and low stromal body risk score sample group in GSE20685
dataset; (B) ROC plot of stromal body risk characteristics in GSE20685 data set predicting patient prognosis; (C) UCSC K-M survival curve of high
and low stromal body risk score sample group in Caldas 2007 dataset; (D) UCSC Caldas 2007 data set stromal body risk characteristics predict
patient prognosis ROC plot.
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Furthermore, significant differences were observed in the

expression of immune checkpoint genes among patients with the

five molecular subtypes (Figures 9A, B). These results indicate that

stromal body genes may affect the prognosis of patients with breast

cancer by regulating their immune response and infiltration.
Gene mutation analysis of stromal
molecular subtype populations in different
breast cancers

The mutation characteristics of the above stromal-associated

breast cancer subgroups were analyzed using the R package

maftools. The Cluster 1 subtype primarily had mutations in TP53,

TTN, and GATA 3 (Figure 10A); the Cluster 2 subtype primarily

had TP53, TTN, and PIK3CA mutations (Figure 10B); the Cluster 3

subtype primarily had PIK3CA, TP53, and KMT2C gene mutations

(Figure 10C); the Cluster 4 subtype primarily exhibited PIK3CA,

GATA3, and TP53 gene mutations (Figure 10D); the Cluster 5

subtype primarily had PIK3CA, CDH1 , and TP53 gene

mutations (Figure 10E).

Furthermore, we analyzed the mutations of the three patient

subtypes to explore the gene druggability and the interaction
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between drugs and genes (from Drug Gene Interaction database,

DGIdb database) and found that the genes to predict that the drug

might act on Cluster 1, 2, 3, 4, and 5 subgroups are DRUGGABLE

GENOME (FCGBP, HMCN1, MUC16, MUC17, and OBSCN)

(Figure 11A), DRUGGABLE GENOME (CDH1, DST, FAT3,

HMCN1, and MUC16) (Figure 11B), DRUGGABLE GENOME

(CDH1, HMCN1, MAP2K4, MAP3K1, and MUC16) (Figure 11C),

CLINICALLY ACTIONABLE (ARID1A, CBFB, CDH1, GATA3,

and KMT2C) (Figure 11D), and DRUGGABLE GENOME

(ABCA13, CDH1, HMCN1, MAP3K1, and MUC16) (Figure 11E),

respectively, indicating that these mutated genes can be used for

subsequent studies on the development of drug targets.

Subsequently, we calculated the scores of marker genes related

to the matrix (CCL5, CLEC3A, CST1, CST7, CTSW, CXCL9,

EMID1, HPX, IGFALS, LAMB3, PLAT, S100B, SCUBE2,

SEMA3B , and SERPINA1) using the ssGSEA algorithm.

Comparing the Figure 12A score of different typing scores of

samples with the sample typing information revealed that the

Cluster 1 score was the lowest; we defined it as the ECM-low

group. Cluster 5 score was the highest, and we defined it as the

ECM-high group. The hallmark (Figure 12B), and C2 (Figure 12C)

enrichment pathway analyses for different patient groups, the colors

in the heatmap indicate the relative expression levels: red for high
FIGURE 6

Distribution of different risk signature gene scores in tumor and paracancerous samples (A) Distribution of negative scores in different cell types in
tumor and paracancerous samples; (B) Distribution of positive scores in different cell types in tumor and paracancerous samples. The symbol ns (not
statistically significant) is equivalent to p≥0.05, no statistical significance; the symbol ** is equivalent to p < 0.01; the symbol **** is equivalent to p
< 0.0001.
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expression, blue for low expression. The clustering on left shows the

hierarchical relationship of samples based on their gene expression

profiles. It revealed that the ECM-high group samples were

primarily enriched in APOPTOSIS, HALLMARK IL2 STAT5

SIGNALING, HALLMARK TNFA SIGNALING VIA NFKB,

HALLMARK KRAS S IGNALING UP , HALLMARK
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EPITHELIAL MESENCHYMAL TRANSITIO, HALLMARK

COAGULATION, HALLMARK INTERFERON ALPHA

RESPONSE, HALLMARK INFLAMMATORY RESPONSE,

HALLMARK ESTROGEN RESPONSE EARLY, HALLMARK

COMPLEMENT, HALLMARK INTERFERON GAMMA

RESPONSE, and HALLMARK ALLOGRAFT REJECTION, and
FIGURE 7

Identification of stromal molecular subtypes in breast cancer (A) Expression heat map of differentially expressed stromal body-related genes; (B) K-M survival
curves of patients with different stromal molecular subtypes in the TCGA-BRCA dataset; (C) REACTOME ECM Interactions of patients with different stromal
molecular subtypes Enrichment degree of pathway; (D) enrichment degree of REACTOME ECM Proteoglycans pathway in patients with different matrix
molecular subtypes; (E) enrichment degree of KEGG_ECM pathway in patients with different matrix molecular subtypes; (F) GSE20685 K–M survival curves
for patients with different matrix molecular subtypes in the dataset. The symbol ns is equivalent to p≥0.05, no statistical significance; the symbol * is
equivalent to p< 0.05; the symbol ** is equivalent to p< 0.01; **** is equivalent to p < 0.0001.
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the ECM-low group samples are primarily enriched in

LI_CISPLATIN_RESISTANCE_DN, L I_CISPLATIN_

RESISTANCE_UP, KANG_CISPLATIN_RESISTANCE_DN, and

BRACHAT_RESPONSE_TO_CISPLATIN. Apoptosis, IL2 stat5

signaling, Tnfa signaling via NFKB, Kras signaling up, Epithelial-

mesenchymal transition, Coagulation, Interferon alpha response,

Inflammatory response, Estrogen response early, Complement,

Interferon-gamma response, Allograft rejection, and the ECM-low

group samples are mainly enriched in Cisplatin resistance dn,

Cisplatin resistance up, Kang cisplatin resistance dn, and Brachat

response to cisplatin.

Similarly, we assessed the expression of matrix-related marker

genes (CCL5, CLEC3A, CST1, CST7, CTSW, CXCL9, EMID1, HPX,

IGFALS, LAMB3, PLAT, S100B, SCUBE2, SEMA3B, and

SERPINA1) in various breast cancer subtypes (Figure 13). The

results showed that different markers, such as CTSW and S100B,
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were specifically overexpressed in Luminal A breast cancer cells.

CST1, EMI D1, andHPX SCUBE2 were specifically overexpressed in

Luminal B breast cancer cells. CCL5, CLEC3A, CTSW, CXCL9,

IGFALS, and SEMA3B were specifically overexpressed in HER2-

positive breast cancer cells. CST7, PLAT, and SERPINA1 were

specifically overexpressed in Basal-like breast cancer cells.
Cell composition analysis of the ECM-high
and -low groups

We used ESTIMATE to assess tumor purity between different

groups (ECM-high vs. ECM-low), revealing a notable difference in

the tumor purity between them (p<0.05, Figure 14A). Furthermore,

the ECM-high group exhibited lower tumor purity owing to its

higher matrix and immune scores (p<0.05; Figure 14B). Moreover,
FIGURE 8

Immune correlation analysis of stromal molecular subtypes in breast cancer (A) Distribution of matrix scores in patients with different matrix
molecular subtypes; (B) Distribution of immune scores in patients with different matrix molecular subtypes; (C) Distribution of ESTIMATE scores in
patients with different matrix molecular subtypes; (D) Tumor purity of patients with different stromal molecular subtypes; (E) distribution of
infiltration degree of 22 immune cell types in patients with different stromal molecular subtypes; the symbol ns is equal to p ≥ 0.05, no statistical
significance; the symbol * is equal to p < 0.05; the symbol ** is equivalent to p < 0.01; the symbol *** is equivalent to p < 0.001; the symbol **** is
equivalent to p < 0.0001.
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we developed a reference matrix for CIBERSORTx using the cell

types identified in the single-cell dataset (GSE161529).

Deconvolution methods were used to calculate the scores of

TCGA-BRCA samples for different cell types.

The findings revealed that samples from the ECM-low group

exhibited higher malignant tumor scores (Figure 14C). Conversely,

samples from the ECM-high group had a significant enrichment of

immune cells, particularly B cells, macrophages, monocytes, and

CD4 T cells (Figure 14D). Furthermore, the ECM-high group

samples demonstrated significant enrichment of stromal cells,

specifically endothelial cells and fibroblasts, whereas the ECM-low

group samples were notably enriched in epithelial cells (Figure 14E).
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Ligand-receptor interaction analysis

ECM components interact directly with cell surface receptors,

regulating the activity of numerous signaling pathways, including

those related to epithelial-mesenchymal transition (EMT) and ECM

production. We conducted a ligand-receptor interaction analysis to

elucidate the potential direct effects of these maturation forms on cell

signaling. The results showed that thematrix body genes CCL19, CCL5,

CXCL9, LTB, MMP12, PLAT, SEMA3B, and SERPINA1 interacted

with many receptors (Figure 15A). Interacting receptors are crucial in

cancer development, participating in the IL-6/JAK/STAT 3 signaling

pathway (Figure 15B).
FIGURE 9

Immune checkpoint correlation analysis of stromal molecular subtypes in breast cancer (A) Distribution of immune checkpoint gene expression in
patients with different matrix molecular subtypes, (B) Distribution of immune checkpoint gene expression in patients with different matrix molecular
subtypes. The symbol ns is equivalent to p≥ 0.05, no statistical significance; the symbol * is equivalent to p< 0.05; the symbol ** is equivalent to p<
0.01; the symbol *** is equivalent to p< 0.001.
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Discussion

Breast cancer is the most common cancer worldwide and is

critical to human life and health. Understanding the behavioral

mechanisms of breast cancer cells could provide better coping

strategies for treatment; however, the behavior of tumor cells is

complex. Owing to the advancement in the literature, researchers

have suggested that cell behavior should be studied based on the

internal mechanisms of cells and the situation of the cell matrix.

Biological tissues comprise cells and the ECM. The ECM is a three-

dimensional scaffold (42) that supports the activities and

microenvironment of the whole cell and promotes the biological

signal transmission of tissue cells. Researchers have considered this

as an essential aspect of regulating the microenvironment of cell
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behavior and phenotypes. Research has found a close relationship

between matrix genes and breast cancer (43). However, the

relationship between breast cancer matrix genes and the

prognosis of breast cancer has no targets and mechanisms, and

the relationship between matrix genes and immune invasion is also

unclear. Therefore, we aimed to analyze the relevant characteristics

of matrix genes in breast cancer through the multigroup data of a

breast cancer multi-database, identify 127 differential genes of

breast cancer matrix genes using the elastic net penalty logic

regression method, and construct the risk characteristics of

matrix genes in breast cancer. This model could be used to

reasonably predict the prognosis of breast cancer. Subsequently, a

consensus clustering algorithm was used to identify matrix

molecular subtypes in breast cancer, and five matrix-related
FIGURE 10

Gene mutation analysis of different breast cancer subtypes. (A) Gene mutation waterfall diagram of Cluster -1 sample cluster; (B) Gene mutation
waterfall diagram of Cluster -2 sample cluster; (C) Gene mutation waterfall diagram of Cluster -3 sample cluster; (D) Gene mutation waterfall
diagram of Cluster - 4 sample clusters; (E) Cascade diagram of gene mutations in Cluster - 5 sample clusters.
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molecular subtypes were identified. The biological characteristics of

the matrix molecular subtypes in different breast cancers were

determined through gene mutation, immune correlation,

pathway, and ligand-receptor analyses. Similarly, we used ssGSEA

to compute the expression levels of 15 marker genes associated with

the matrix. Subsequently, we assessed the expression of these

marker genes in different breast cancer cell lines using qPCR. We

found that the gene expression and immune invasion of various

breast cancer matrix molecular subtypes differed significantly. Our

analysis revealed the biological characteristics of matrix genes in
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breast cancer subtypes and guided future studies on improving the

diagnosis and treatment of patients with breast cancer with

poor prognosis.

Through differential gene analysis and a penalty logic regression

algorithm of the elastic net, 15 stromal cell-related marker genes

were identified. Among them, CLEC3A was highly expressed in

patients with estrogen-positive breast cancer (42), the expression of

CLEC3A is significantly associated with the overall survival of

patients, and other studies (44) found that CLEC3A was

associated with immune invasion of lung squamous cell
FIGURE 11

Analysis of available genes of matrix molecular subtypes in different breast cancer populations (A) Classification of potentially druggable genes in Cluster-1;
(B) Classification of potentially druggable genes in Cluster-2; (C) Classification of potentially druggable genes in Cluster-3; (D) Classification of potentially
druggable genes in Cluster-4; (E) Classification of potentially druggable genes in Cluster-5.
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carcinoma. CCL5 is a chemokine involved in the activation of CD8+

T cells, and its expression influences the immune infiltration of

breast cancer cells (45), CCL5 is closely related to disease-free

survival. SEMA3B is associated with glioblastoma multiforme

(46), uveal melanoma (47), breast cancer (48), gastric cancer (49),

and other tumors. EMID1 is more than lung cancer and lung injury

(50); however, no study has found a relationship between CXCL9

and breast cancer. Some studies (51) have identified CXCL9 as a T

cell chemokine related to the prognosis of head and neck cancer

(51), prostate cancer (52), melanoma (53), ovarian cancer (54),

gastric cancer (55) and other tumors, and studies primarily focus on

the immune infiltration of CD8 T cells. S100B is primarily

associated with neurological tumors in children (56). Studies have

shown that S100B is a good predictor of disease-free survival of

breast cancer (57). Several studies have demonstrated a close

association between SERPINA1 and digestive tract tumors,

indicating a strong correlation with tumor-infi ltrating

lymphocytes. However, to date, no study has established a

relationship between SERPINA1 and breast cancer. We

concurrently assessed the expression of stromal-related marker

genes across different breast cancer subtypes. These findings

reveal the differential expression of various stromal marker genes
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across different breast cancer subtypes. For example, CST1 is highly

expressed in Luminal B breast cancer cells, SEMA3B is highly

expressed in HER2-positive breast cancer cells, while SEMA3B

stands out in the analysis of progression-free survival, and PLAT

is highly expressed in basal-like breast cancer cells. This suggests

that specific clinical decisions should be made according to the

breast cancer type. The significant expression of these genes in

different subtypes suggests their potential in subtype-

specific therapies.

This model serves as a robust tool to predict the survival and

prognosis of patients with breast cancer. Our model significantly

improves the accurate prediction of prognosis in breast cancer

patients by integrating the expression characteristics of matrix-

related genes. Especially in assessing the impact of tumor

infiltration and the immune microenvironment, this model

demonstrates strong predictive capability.

Furthermore, it is crucial in tumor immunity, offering a novel

avenue for assessing the immune status of patients and guiding

immunotherapy selection.

Firth’s correction was used to calculate the risk ratio (odds

ratios) for each marker gene to determine the risk of generating

matrix-based genes in the sample. Based on the matrix risk scores of
FIGURE 12

Functional enrichment analysis of stromal molecular subtype populations in different breast cancers (A) Group comparison diagram of matrix scores
of different subtypes of samples; (B) enrichment of Hallmark gene set among different sample groups; (C) enrichment of C2 oncogenic pathway
gene set among different sample groups.
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patients in the dataset, individuals were stratified into high- and

low-risk groups. The Kaplan–Meier test was used to compare the

overall survival differences between the different sample groups,

revealing a statistically significant difference between the two

groups. The low-risk group exhibited a significantly longer

survival period than the high-risk group. The matrix risk score

was notably higher in deceased and older patients with breast

cancer and lower in patients with T1 breast cancer. To validate

the efficiency of our model, it was applied to the GSE20685 and

UCSC Caldas2007 datasets. Similarly, this model could be used to

significantly separate patients with breast cancer with different

prognoses in the dataset. Therefore, the devised stromal gene

model in this study can serve as a robust model for predicting the

survival and prognosis of patients with breast cancer.

More matrix genes have been identified than tumor immune

cells in previous studies. We assessed tumor purity in different

groups (ECM-high and ECM-low). The results demonstrated a

notable disparity in tumor purity between the ECM-high and ECM-

low groups, with lower tumor purity observed in the ECM-high

group, attributed to its higher matrix and immune scores.

Moreover, we constructed a reference matrix of CIBERSORTx

and calculated the scores of TCGA-BRCA samples in different

cell types using the deconvolution method. The results indicated
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higher malignant tumor scores in samples from the ECM-low

group. The samples in the ECM-high group exhibited a

significant enrichment of immune cells, particularly B cells,

macrophages/monocytes, and CD4 T cells. In contrast, samples

from the ECM-high group showed significant enrichment of

endothelial cells and fibroblasts in the matrix cell population.

ECM-low was significantly enriched in epithelial cells. In tumor

immunotherapy, researchers divide tumor immune cell infiltration

into “hot tumor” and “cold tumor.” “Hot tumor” has an excellent

response to immunotherapy (58, 59). Therefore, converting a “cold

tumor” into a “hot tumor” has been focused on by researchers.

Some breast cancer patients often face systemic toxicity and low

response rates when undergoing immunotherapy, primarily due to

the immunosuppressive tumor microenvironment. Therefore,

reversing the immunosuppressive tumor microenvironment is

considered crucial for enhancing the efficacy of immunotherapy.

As researchers explore ways to reverse immunosuppression, some

have utilized bioorthogonal click chemistry and PD-L1 targeted

imaging (60). It has been found that the expression of necroptosis-

related genes is closely associated with immune cell infiltration and

the activation of immune checkpoints, suggesting that guiding

personalized treatment strategies based on necroptosis

characteristics could improve the prognosis and treatment
FIGURE 13

Expression of matrix related marker genes in different breast cancer cells.
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outcomes for breast cancer patients (61). Additionally, researchers

have discovered that oxidative stress-related genes play a significant

role in regulating the behavior of tumor cells and immune cells,

thereby affecting tumor progression and prognosis (62). Our results

indicate that the expression of matrix genes influences the

infiltration of tumor immune cells. Improving the state of tumor

immune infiltration by interfering with the expression of matrix

genes could also affect the prognosis of patients with tumors.

To explore which cell types express the marker genes that we

identified to construct our matrix extraction risk characteristics, based

on the cell annotation information of a single-cell dataset (GSE161529),

we calculated the enrichment degree of matrix risk genes with positive
Frontiers in Immunology 18
(positive score) and negative (negative score) ratios in specific cell types

and found that in negative scores, CD4 Tconv and endothelial,

epithelial, fibroblast, malignant, mono/macro, and pericyte, and

plasma cells differed significantly between tumor and normal cells. In

the positive score, CD4T conv and endothelial, epithelial, fibroblast,

malignant, mono/macro, NK, pericyte, and plasma cells significantly

differed between tumor and normal cells.

Further analysis revealed significant differences in the

expression of immune checkpoint genes among patients with five

molecular subtypes. These results indicate that the matrix gene

might affect the prognosis of patients with breast cancer by

regulating the immune response and infiltration.
FIGURE 14

(A, B) Comparison charts of tumor purity, stroma score, and immune score in high and low ECM group samples; (C) Comparison chart of malignant
tumor scores in high and low ECM group samples; (D) Comparison chart of scores in different immune cells for high and low ECM group samples;
(E) Comparison chart of scores in different stromal cells for high and low ECM group samples. The symbol ** indicates p < 0.01, which has high
statistical significance; the symbol *** indicates p < 0.001, which has extremely high statistical significance.
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Analysis of gene mutations in different subtypes of stromal

molecules in breast cancer revealed that TP53 was commonly

mutated across all five subtypes, and the commonly mutated gene

was PIK3CA. TP53 is also known as p53. Among the human genes,

TP53 is a critical tumor suppressor that exhibits low expression in

normal cells and high expression in malignant tumors. The p53

protein encoded by TP53 is a vital regulator of cell growth,

proliferation, and repair in response to cellular damage. During

the process of DNA damage, p53 halts the cell cycle at the G1/S

phase boundary, facilitates DNA repair, and induces apoptosis if

repair is not feasible (63). PIK3CA mutations occur in

approximately 8% of cancers, including 40% of HR-positive

breast cancers (64). It is a pan-cancer mutagen; therefore,

studying PIK3CA is more conducive to the development of

clinical drugs. In analyzing pharmaceutically available genes in

populations with different matrix molecular subtypes of breast

cancer, four groups of subtype gene populations contained the

geneHMCN1, which encodes immunoglobulin. However, its role in

humans remains unclear, but HMCN in Caenorhabditis elegans has

multiple functions in transient cell contact required for cell

migration and basement membrane invasion, and there is stable

contact between the semi-chromosome-mediated cell junction and

the elastic fibrous structure (65). Mutations in this gene have also

been found in gastric and colorectal cancers (66). HMCN1 was

mutated in this study population of breast cancer; therefore, this

gene can be used as a target for drug development in the future.

Another mutated gene isMUC16, mucin 16, also known as a cancer

antibody 125 (CA125). MUC16 is implicated in various tumor

signaling pathways, including those in ovarian (67), breast (68),

cervical (69), pancreatic (70), and colorectal (71) cancers. Elevated

MUC16 expression is correlated with cancer progression,

metastasis, and poor prognosis in patients.

The genetic constituents of the matrix directly engage cell surface

receptors, modulating the activity of numerous signaling pathways.
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Through ligand-receptor analysis, we found that the matrix marker

genes primarily acted on the inflammatory response, EMT, and IL-/

JAK/STAT3 signaling pathway. Previous studies have found that

inflammation stimulates tumor cells, promotes their growth, and

alters the tumor microenvironment (72, 73). EMT is a biological

process involving epithelial cell transition to acquire a mesenchymal

phenotype through a defined program. During EMT, epithelial cells

relinquish their characteristic epithelial traits, such as cell polarity and

adhesion to the basement membrane, and acquire mesenchymal

characteristics, such as enhanced migratory and invasive

capabilities, resistance to apoptosis, and extracellular matrix

degradation. EMT is a critical biological process that enables the

migration and invasion of malignant tumor cells derived from

epithelial origins (74, 75). This study shows that the ligands of

matrix genes are mostly concentrated in the inflammatory

signaling pathway and EMT, guiding the follow-up treatment and

the development of corresponding drugs.

However, our study has some limitations. First, to fully clarify

the influence of matrix genes on the prognosis of patients with

breast cancer, microarray samples from different types of breast

cancers are needed. Second, although we conducted several analyses

in this study, such as using the ESTIMATE algorithm to assess the

immune characteristics of the tumor microenvironment and

employing CIBERSORT to analyze the composition of immune

cell infiltration, to explore the role of smatrix genes in breast cancer

and their relationship with the immune microenvironment, there

are still some limitations. Although our results support the

association between matrix genes and breast cancer prognosis

through various public databases, the characteristics of many

matrix genes in breast cancer are not clear, and the biological

functions of these stromal marker genes in breast cancer require

further verification, as there are no corresponding clinical

correlation studies. These directions should be the focus of

future studies.
FIGURE 15

Ligand-receptor interaction analysis (A) Receptor-ligand interaction diagram; (B) Enrichment analysis of Hallmark pathways corresponding to matrix
ligands and their receptors.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1466762
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Su et al. 10.3389/fimmu.2024.1466762
Conclusions

This comprehensive examination of cell-matrix genes in

patients with breast cancer revealed the key genes influencing

breast cancer prognosis. By integrating multiple omics datasets,

we established a predictive model capable of forecasting the survival

and prognosis of patients with breast cancer. In addition, the model

is significant in tumor immunity, providing new directions for

patient immune status assessment and immunotherapy selection.

Receptor analysis showed that matrix genes were primarily involved

in the inflammatory pathway. This study offers a novel foundation

for clinical research and drug development in breast cancer to

enhance the prognosis of patients with breast cancer.
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