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Multi-omics analyses were
combined to construct
ubiquitination-related features
in colon adenocarcinoma and
identify ASNS as a
novel biomarker
Zhaohui Wang1,2†, Wenbing Zhang2†, Xin Yin1†, Qinqing Wu3,
Yongwei Zhang1,2, Yeben Qian1,2, Qian Bao4* and Fubao Liu1,2*

1Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China,
2Department of General Surgery, Anqing First People’s Hospital of Anhui Medical University,
Anqing, China, 3Department of Preventive Medicine, Shantou University Medical College,
Shantou, China, 4Department of Pediatric Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical
University, Beijing, China
Background: As one of the malignant tumors with the highest incidence and

fatality in the world, colon adenocarcinoma (COAD) has a very complex

pathogenic mechanism, which has not yet been fully elucidated. Ubiquitin can

regulate cell proliferation, cell cycle, apoptosis, DNA damage repair, and other

processes by changing the activity of substrate proteins or causing ubiquitin-

proteasome degradation. These are the key links in the pathogenesis of COAD,

and ubiquitin plays an important role in the occurrence and development

of COAD.

Methods: We integrated transcriptomics, single-cell and clinical omics, and

TCGA and GEO databases of COAD patient data. Cox and Lasso regression

was employed to assess ubiquitination genes in COAD for generating

ubiquitination-related features. The aim was to evaluate the prognostic value

of these features for tumors and their impact on the immune microenvironment.

At the same time, the expression level of model genes was further analyzed using

single-cell data. Finally, the expression and function of ASNS, a key gene for this

trait, were detected in vitro.

Results: In our study, based on identifiable changes in the expression of marker

genes, this feature can be used to classify patients with COAD. Kaplan-Meier

survival analysis indicated that those with elevated risk scores in each cohort

experienced inferior outcomes. There is good validation in both the training

queue and the validation queue. The results of the immune infiltration analysis

showed that the immune infiltration rate was significantly increased in the high-

risk group. After the knockdown of ASNS, an important gene in the signature, the

activity and migration capacity of SW620 and RKO cell lines and colony

formation capacity were dramatically reduced in cell tests.
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Conclusion: We screened ubiquitination-related genes and constructed

ubiquitination-related features, which can be used as reliable prognostic

indicators of COAD. ASNS was identified as a possible biomarker for COAD.
KEYWORDS

colon adenocarcinoma, prognostic signature, single-cell transcriptome sequencing,
ASNS, immunotherapy
1 Introduction

As per the GLOBOCAN 2022 report from the International Agency

for Research on Cancer (IARC), colon adenocarcinoma holds the third

position in global cancer incidence, following lung cancer and female

breast cancer. In terms of mortality, it ranks second globally, trailing only

lung cancer in the spectrum of cancer-related deaths (1, 2). Surgical

excision, radiotherapy, chemotherapy, targeted therapy, and

immunotherapy can significantly improve the treatment outcome of

COAD patients, but the prognosis of patients with advanced COAD

remains poor (3). Therefore, it is critical to explore the tumor

microenvironment of colon adenocarcinoma and develop new

biomarkers to aid in the prognostic assessment and treatment of COAD.

In eukaryotic systems, post-translational modifications like

ubiquitination, phosphorylation, acetylation, and glycosylation play

crucial roles in upholding the biological functions of proteins (4, 5).

Ubiquitination, centrally involved in numerous cellular processes,

influences functions such as cell proliferation, apoptosis, differentiation,

andDNA replication repair (6). Cells regulate protein degradation through

protein quality control (PQC) signaling pathways that recognize substrates

and direct their refolding or removal, thereby avoiding the accumulation of

abnormal proteins in the cell (7, 8). Dominating the degradation of

misfolded proteins, the ubiquitin-proteasome system (UPS) stands as the

primary pathway for protein breakdown, participating in over 80% of

intracellular protein degradation. Wang et al. found that UBE2J1 inhibits

colorectal cancer progression by promoting ubiquitination and

degradation of RPS3 (9). Wang et al. found that immune-associated

NRC-SOX9-4 promotes colorectal cancer progression by inhibiting YBX1

polyubiquitination and degradation (10). Consequently, it is prudent to

investigate the role of ubiquitination in COAD (11, 12).

Within tumor cells, the processes of ubiquitination and

deubiquitination play pivotal roles in orchestrating the metabolic

reprogramming observed in cancer cells (13). The metabolic

adaptation of cancer cells has been associated with the ubiquitination

of various molecules, namely mTOR, AKT, AMPK, c-Myc, p53, NRF2,

KRAS, and HIF (14–16). In addition, ubiquitination in cancer cells is

also associated with autophagy (17). For example, polyubiquitination

modification of the K63 junction of ULK1 complex and type III PI3K

complex can promote the stability of the complex and thus promote

the activation of autophagy. Of course, there are many other functions

associated with ubiquitination/deubiquitination (18).
02
Single-cell transcriptomics and bioinformatics analysis play a

key role in cancer research (19, 20). They combine high-throughput

techniques to deeply explore the transcriptome characteristics of

individual tumor cells and reveal the distribution of intra-tumor

heterogeneity and cell subsets, contributing to the understanding of

the mechanisms of cancer development, invasion, and metastasis

(21). Bioinformatics analysis can process and interpret these

massive data, helping us to deeply understand the biological

characteristics of tumors at the global and cellular level, providing

an important basis for precision medicine (22).

In this study, we combined bioinformatics analysis of COAD data

from TCGA and GEO data to investigate the involvement of

ubiquitination-related genes in COAD. Ubiquitination-related

prognostic features were developed to classify COAD patients into

high-low risk groups. Moreover, within the context of COAD,

ubiquitin signatures offer a means to detect alterations in immune

infiltration as well as immune checkpoint activity (23). Our

investigation aims to enrich prognostic evaluations and facilitate the

advancement of treatments for COAD.
2 Materials and methods

2.1 Data obtainability

In this research, scRNA-seq data for 23 COAD tumor samples and 8

normal sampleswere sourced from theGSE132465 database available on the

GEO website. The training and validation cohort included RNA expression

data and corresponding clinical details for COAD from the TCGA database

andGEOdatasetsGSE39582 (https://portal.gdc.cancer.gov/). Furthermore,

a scrutiny encompassed 2634 ubiquitination-associated genes (URGs)

sourced from the GeneCards database, each demonstrating a

correlation score greater than 3.
2.2 Data processing

The analysis commenced with a differential assessment to

discern the variances in gene expression between tumor and

normal samples in TCGA, subsequently culminating in the

generation of a heatmap and a volcano plot. Subsequently, we
frontiersin.org

https://portal.gdc.cancer.gov/
https://doi.org/10.3389/fimmu.2024.1466286
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wang et al. 10.3389/fimmu.2024.1466286
combined the COAD samples from TCGA and GSE39582 into a

merged cohort. The function normalize between arrays in R was

employed to remove batch effects, and data were converted to a log2

scale before the analysis. The overall survival (OS) of the merged

cohort was analyzed using a univariate Cox regression, identifying

prognostically significant URGs at a p-value of less than 0.05.
2.3 Identification of ubiquitination-related
molecular subtypes

Utilizing gene expression profiles, 1017 COAD samples were

stratified into distinct molecular subtypes. This classification was

conducted using the ConsensusClusterPlus package, which

incorporates a K-means clustering algorithm to organize the

samples into robust clusters, with the maximum number of

clusters set at nine (maxK = 9). Employing the cumulative

distribution function (CDF) curve analysis and the CDF delta

area curve, the identification of the optimal number of

ubiquitination-associated subtypes was undertaken, in addition to

the generation of a consensus matrix heatmap to visually depict

cluster affiliations. Further analysis was undertaken to explore the

spatial distribution and relationship among the identified subtypes.

Incorporated within this analysis were PCA and UMAP, furnishing

a graphical portrayal of subtype dispersion across the samples.

Additionally, differential expression of URGs and survival

disparities among the subtypes were investigated using a heatmap

for gene expression visualization and the ‘survival’ package for

survival analysis, respectively.
2.4 Enrichment analysis

Utilizing R packages “clusterProfiler” and “org.Hs.eg.db,” the

analysis of differentially expressed genes across various subtypes

involved leveraging Kyoto Encyclopedia of KEGG, GO enrichment,

and GSEA (24). Furthermore, ssGSEA was utilized to quantify

enrichment scores related to immune cell infiltration and

immune functions.
2.5 The establishment and validation of a
prognostic risk signature were undertaken

Subjects with comprehensive clinical data were randomly

divided into training and testing cohorts at a 1:1 ratio. Utilizing

the R package “survival,” a univariate Cox regression analysis was

conducted to pinpoint genes associated with prognosis (25). These

genes formed the foundation for constructing a prognostic model

linked to ubiquitination, employing Lasso and multivariate Cox

regression methodologies (26). Post-construction, individuals were

categorized into high- and low-risk groups depending on their

median risk scores. Each individual’s risk score was calculated using

a specific formula: Risk   score =o
n

i=1
bi*expi, where expi represents
Frontiers in Immunology 03
the expression level of each URG, and bi denotes the respective gene
coefficient within the signature. The Kaplan-Meier method was

then used to examine overall survival (OS) differences between the

two risk groups. Furthermore, the signature’s predictive accuracy

was appraised with the ROC curve. Additionally, multivariate Cox

regression analyses were performed in both cohorts to verify the

risk score’s role as an independent prognostic marker (27).
2.6 Nomogram formulation

The creation of a nomogram involved integrating the risk score,

age, and pathological stage as independent prognostic variables for

evaluating the likelihood of overall survival (OS) at 1, 3, and 5 years

(28). To appraise the nomogram’s predictive precision, we

employed the ROC, calibration, and cumulative hazard curves.
2.7 Tumor immune characteristics

Utilizing the CIBERSORT algorithm, we computed the

proportions of immune infiltrating cells in each COAD sample.

Based on this data, we assessed the differences in immune cell

expression across various risk groups, analyzed the correlations

among immune cells, and examined their relationships with risk

scores. Additionally, comparisons of tumor microenvironment

(TME) scores were conducted using the R package “estimate”

(29). The activation of immune checkpoints between the two

groups was visualized using a barplot.
2.8 Therapies and drugs

We utilized the ‘oncoPredict’ package to compute the IC50

values for various chemotherapy drugs across the two patient risk

groups, aiming to gauge their sensitivity to chemotherapy.

Variations between subtypes were analyzed using theWilcoxon test.
2.9 Processing scRNA-seq data and
annotating cells

The cell types annotated within the GSE132465 dataset were

derived from prior studies. We conducted quality control on the

scRNA-seq data using the “Seurat” and “SingleR” R packages. We

included cells that had less than 10% of mitochondrial gene

expression, more than 200 overall genes, and genes that were

expressed in at least three cells, with expression levels ranging

from 200 to 7000, to ensure the data's quality remained high.

Subsequent analyses were conducted using the “Seurat” R

package. We identified the top 2000 highly variable genes (HVGs)

and employed the top 15 principal components in conjunction with

these HVGs (30). Dimensionality reduction and visualization were

achieved through UMAP to classify each cell type. Distinct cell
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types, such as T cells, B cells, and epithelial cells, were identified

based on marker genes (31, 32).
2.10 CellChat analysis

We employed CellChat to assess the primary signaling inputs and

outputs across all cell clusters, utilizing CellChatDB.human as the

reference database. Subsequently, we applied the netVisual_circle

function to illustrate the relative strength of cell-cell communication

networks among the different cell clusters.
2.11 qRT-PCR

The tissue specimens were provided by Anqing First People’s

Hospital affiliated with Anhui Medical University and preserved at

-80°C. Ten tissue pairs, including tumor tissue (T) and precancerous

tissue (N), were collected from CORD patients who underwent colon

tumor resection between May 2023 and May 2024. This experiment

was performed according to the previous research. All primers, along

with their precise sequences, were provided by Tsingke Biotech

(Beijing, China) and are detailed in Supplementary Table 1.
2.12 Cell proliferation assay

For the assessment of cell proliferation, we employed the CCK-

8; Vazyme, Nanjing, China). Cells were seeded at a density of 5×103

cells per well in 96-well plates. Subsequently, the plate underwent a

two-hour incubation in the absence of light at 37°C with 10 ml of
CCK-8 labeling reagent per well. Cell viability was evaluated by

measuring the absorbance at 450 nm using an enzymatic label

reader (A33978, Thermo, USA) at intervals of 0, 24, 48, 72, 96, and

120 hours (33).
2.13 Wound healing

Upon reaching 95% confluency, the transfected cells were

transferred to 6-well plates. A sterile pipette tip (200 mL) was

used to create a straight line, followed by gentle rinsing with PBS

to eliminate unattached cells and debris. The serum-free medium

was then substituted to sustain cell culture. Images were taken at 0

and 48 hours in the identical position (34).
2.14 Colony formation

After transfecting 1000 cells, we incubated them in 6-well plates

for about 14 days. At the end of this period, the cell clones became

visible to the naked eye. Subsequently, the cells underwent a 15-

minute fixation in 4% paraformaldehyde (PFA). Following this,

staining with Crystal Violet (Solarbio, China) was conducted for 20

minutes, and the cells were air-dried at room temperature before

being counted per well.
Frontiers in Immunology 04
3 Results

3.1 Identification of subtypes of COAD
based on ubiquitination-related genes.

The flowchart of our study is shown in Figure 1. We first screened

581 differential expressed genes (DEGs) from a set of ubiquitination-

related genes Supplementary Figures 1, 2. Using 137 ubiquitination-

related prognostic genes derived from univariate Cox regression

analysis, consensus clustering was employed to identify the optimal

number of ubiquitination-related subtypes Supplementary Figure 3.

The cumulative distribution function (CDF) diagram indicated that the

CDF curve stabilized at K = 2, reflecting a robust clustering consistency.

Additionally, the area under the CDF curve demonstrated notable

slope alterations beyond the K values of 2 and 3. Consequently, K = 2

was selected as the most appropriate number of clusters (Figure 2A).

Subsequently, 1017 colon cancer samples were segregated into two

distinct clusters. Cluster A comprised 706 samples, while Cluster B

included 311 samples. Dimensionality reduction techniques such as

PCA and UAMP confirmed that the clusters occupied divergent

positions and were distinctly separable, affirming the reliability of the

clustering results (Figure 2B). Examination of gene expression and

survival disparities between the clusters showed that ubiquitination-

related genes were markedly upregulated in Cluster A (Figure 2C).

Survival analysis further highlighted a significant difference in survival

outcomes between the two subtypes (P < 0.001), with Cluster B

exhibiting poorer survival (Figure 2D).
3.2 Enrichment analysis

Gene Ontology (GO) enrichment analysis was conducted on the

DEGs, revealing their involvement in several biological processes

(BP) such as nuclear division and organelle fission. Regarding cellular

components (CC), they were primarily associated with the collagen-

containing extracellular matrix and chromosomal region.

Concerning molecular function (MF), the differentially expressed

genes (DEGs) were predominantly linked to extracellular matrix

structural constituent and glycosaminoglycan binding (Figures 3A,

B). Importantly, the activity of glycosaminoglycan binding has been

reported to be associated with the prognosis of colon

adenocarcinoma. Concerning KEGG analysis, we found that

differential genes are mainly enriched in cell cycle and focal

adhesion pathways (Figures 3C, D). Additionally, Gene Set

Enrichment Analysis (GSEA) was conducted on both clusters,

leading to the identification of enriched pathways in cluster A, such

as cell cycle, DNA replication, and spliceosome (Figure 3E). A

comparison of hallmark pathway gene signatures between the two

clusters revealed distinct patterns. In contrast, cluster B exhibited

enrichment in ECM-receptor interaction, focal adhesion, and cell

adhesion molecule pathways as the top three signatures (Figure 3F).

The single sample gene set enrichment analysis (ssGSEA) scores of

immune cells in group A and group B were compared. The ssGSEA

scores in group B were higher, and the immune infiltration and risk

scores were consistent (Figure 3G).
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3.3 Establishment of a prognostic-
related signature

Initially, a univariate Cox proportional hazards regression analysis

was conducted on a merged dataset from TCGA and GEO, identifying

137 ubiquitination marker genes significantly associated with overall

survival (OS, P<0.05). These genes formed the basis of a prognostic

signature. The most beneficial prognostic genes were selected using a

LASSO Cox regression model, and a final set of 12 genes was

established through multivariate Cox regression analysis (Figures 4A,

B). A heatmap of model gene expression is shown in Supplementary

Figure 4. The risk score was then calculated using the formula: “

(-0.815)*USP26 + (-0.193)*MYC + 0.345*OGT + (-0.408)*PRMT1 +

0.546*SNAI1 + 0.566*RPS17 + (-0.45)*RPN2 + (-0.394)*ACACA +

0.419*RNF112 + 0.503*ASNS + 0.333*MC1R + 0.46*FBXO39”. This
Frontiers in Immunology 05
scoring algorithm was also applied to the combined validation and

overall datasets. Patients were categorized into high- and low-risk

groups based on themedian risk score. Notably, cluster B, as previously

defined, also exhibits a higher risk score in this model (Figure 4C).

Kaplan-Meier survival curves illustrated that individuals in the high-

risk category experienced significantly worse overall survival (OS)

compared to those in the low-risk group (P<0.05) (Figures 4D–F).

The areas under the ROC curves for 1, 2, and 3 years were 0.697, 0.722,

and 0.732 for the training cohort; 0.702, 0.679, and 0.673 for the testing

cohort; and 0.698, 0.698, and 0.700 across all cohorts, respectively

(Figures 4G–I). The independence of the risk score from clinical

characteristics was confirmed through multivariate Cox regression

analyses, as depicted in Figure 4J. The Multi-Cox regression analysis

unveiled that solely age and the risk score stood as autonomous

variables, wherein the hazard ratio for the risk score was determined
FIGURE 1

The flowchart of our study.
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to be 1.180 (P<0.05). The concordance index curve also underscored

that the risk signature provided better predictive accuracy than other

clinical features (Figure 4K). Furthermore, a three-dimensional scatter

plot of PCA analysis illustrated the ability of the 12-gene Prognostic

Risk Score (PRS) to discriminate COAD samples effectively, indicating

its superior discriminatory power (Figure 4L).
Frontiers in Immunology 06
3.4 Clinical phenotypes and
Nomogram formulation

In our effort to elucidate distinctions between risk groups, we

analyzed clinical data from our merged cohort. A chi-squared test

revealed significant differences in the distribution of COAD cohorts
FIGURE 2

The ubiquitination-related molecular subtypes of COAD. (A) Consensus clustering was performed on 1017 samples from the TCGA and GEO
databases based on genes related to ubiquitination. The cumulative distribution function (CDF) plot indicated that the curve remained relatively flat
at K = 2. The relative change in the area under the CDF curve between K and K-1 showed a more pronounced slope change after K values of 2 and
3. Consequently, K = 2 was selected as the optimal number of clusters, and the consistency matrix was presented. (B) Principal component analysis
(PCA) and uniform manifold approximation and projection (UMAP) diagrams illustrated the two clusters. (C) The expression heatmap of
ubiquitination-related genes was shown for the two clusters, along with clinical features. (D) Survival curves for the two clusters were depicted.
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across age groups (P < 0.05) between varying risk groups, alongside

notable variations in TNM stages (Figure 5A). Older age and more

advanced TNM stages typified the high-risk cohort. To illustrate, 17%

of individuals within the high-risk category were designated as stage

M1, in contrast to only 10% in the low-risk subset (Figures 5B–E).

The construction of a nomogram aimed to assess patient risk by

amalgamating clinical particulars with risk classification. Figure 5F

provides a comprehensive overview of patient characteristics, including

gender, age, T, N, and M stages, and risk classification. This predictive

tool enables a more accurate estimation of patient risk and aids in

formulating tailored therapeutic strategies (Figure 5G). The cumulative

hazard curve indicates that patients with elevated nomogram risk

exhibit a greater hazard (Figure 5H). To rigorously assess the predictive

accuracy of the nomogram, a prognostic ROC analysis was performed,

demonstrating superior performance compared to other clinical

models and risk scores. The AUC values were 0.802, 0.789, and

0.760 at 1, 3, and 5 years, respectively (Figures 5I–L).
3.5 Immune analysis and therapy analysis

The figure illustrates that we used the CIBERSORT method to

quantify and compare immune cell infiltration levels between the
Frontiers in Immunology 07
two risk groups employing the Wilcoxon test (Figure 6A). The

violin plot presented in the study clearly demonstrates that there

is a significant increase in the proportion of resting CD4 memory

T cells within the low-risk group when compared to their

counterparts in the high-risk group. This finding suggests a

potential immune profile that is more favorable in the low-risk

cohort, highlighting the importance of resting CD4 memory T

cells in this context. Conversely, the high-risk group exhibited

markedly higher levels of both M2 macrophages and activated

mast cells, with statistical significance indicated by a p-value of

less than 0.05 (Figure 6B). These observations can provide

valuable insights into the differing immune landscapes present

in varying risk categories. Furthermore, Figure 6C elaborates on

the relationship between the risk score and the relative abundance

of several immune cell types. It was observed that the risk score

exhibited an inverse correlation with the presence of activated

CD4 memory T cells, resting CD4 memory T cells, and regulatory

T cells, indicating that as the risk score increases, the abundance

of these beneficial T cell populations tends to decrease. In

contrast, the risk score showed a positive correlation with the

levels of eosinophils, neutrophils, and M2 macrophages,

suggesting that higher risk scores are associated with an

increase in these cell types. This differential distribution of
FIGURE 3

Enrichment analysis of different subtypes. (A, B) The Gene Ontology (GO) enrichment analysis results are presented in bar plots and bubble plots,
categorized into biological process (BP), cellular component (CC), and molecular function (MF). The top five significant GO enrichment results are
displayed. (C, D) The Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment results are shown using bar plots and bubble plots. (E, F) Gene
Set Enrichment Analysis (GSEA) indicated that the cell cycle was particularly active in cluster (A, G) Single-sample Gene Set Enrichment Analysis
(ssGSEA) scores for immune cells were compared between cluster A and cluster B groups, with higher ssGSEA scores observed in the cluster B.
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immune cells based on risk scores points toward underlying

mechanisms that may influence disease progression and patient

outcomes.. In the model, the expression of the ASNS gene is

inversely correlated with naive B cells, potentially indicating that

the ASNS gene modulates changes in TME by regulating B cell

proliferation (Figure 6D). We explored the relationship between

risk scores and frequently identified immunotherapy biomarkers

in the combined cohort. The analysis revealed that nearly all
Frontiers in Immunology 08
immune checkpoint genes (ICGs), including CD28 and CD70,

were significantly overexpressed in the high-risk group

(Figure 6E). The ESTIMATE methodology was employed to

evaluate immune infiltration among various risk cohorts. The

corresponding Figure 6F substantiated the preceding study,

demonstrating that the high-risk cohort exhibited elevated

estimate, stromal, and immune scores in comparison to

another group.
FIGURE 4

Establishment and identification of the risk signature. (A, B) The potential prognostic genes underwent LASSO-Cox regression analysis in the training
cohort to develop a prognostic risk signature. (C) The risk scores for the two clusters were computed using the derived scoring formula. (D–F) To
validate the reliability of the risk model, survival analysis was conducted between the high-risk and low-risk groups in the training cohort, the testing
cohort, and the all cohort. (H, I) The ROC curves for patient survival over different years were plotted for the training, testing, and all cohorts.
(J) Multivariate Cox regression analysis demonstrated that the risk score was an independent prognostic factor in BRCA patients. (K) The
concordance index curve indicated that the risk signature offered strong predictive accuracy. (L) PCA analysis showcased the proficiency of the PRS
in distinguishing COAD samples.
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3.6 Single-cell

After processing and refining the data, gene expression profiles

from 53844 cells of 12 COAD samples were gathered for further

analysis. Employing dimensionality reduction and log-normalization,

26 distinct cell clusters were identified (Figure 7A). The

characterization of cell types within each cluster was achieved by

comparing differentially expressed genes with canonical markers
Frontiers in Immunology 09
(Figure 7B). Differential expression of marker genes was employed

to differentiate between various cellular groupings, as illustrated in

Figure 7C. We then studied the ASNS gene in the model in detail. In

Figures 7D, E, it is evident that the ASNS gene is highly expressed in

the epithelial cells of the tumor sample. In Figure 7F, epithelial cells

and stromal cells have strong cellular communication, suggesting that

ASNS genes may be involved in the interaction between epithelial and

stromal cells to regulate the development of colon adenocarcinoma.
FIGURE 5

The clinical characteristics of two risk groups and the formulation of a nomogram. (A) A heatmap displayed the correlation between clinical factors and the
risk groups. (B–E) The proportions of samples in the two risk groups were compared across various clinical data. (F) A nomogram was constructed by
integrating clinical features with the risk score. (G) Calibration plots assessed the consistency between actual overall survival (OS) rates and predicted survival
rates, with the 45° line indicating perfect prediction. (H) The cumulative hazard curve was used to evaluate the nomogram’s predictive performance. (I–L)
ROC curves for 1, 3, and 5 years illustrated the AUC values for various clinical factors and nomogram scores.
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3.7 Drugs sensitivity

Additionally, by utilizing the GDSC database, we forecasted the

responsiveness of 198 drugs concerning the two risk cohorts. Within

this analysis, 52 drugs exhibited varying degrees of sensitivity based on

the risk stratification of the cohorts (Figures 8A–L). Drugs that are
Frontiers in Immunology 10
more sensitive to high-risk groups and have therapeutic significance are

selected and shown in Figure 8. Studies have found that potent and

selective CDK9 inhibitors target transcriptional regulation in triple-

negative breast cancer (35). Mitoxantrone and gemcitabine are effective

in the treatment of metastatic breast cancer (36). JQ-1 (carboxylic acid),

BET bromine domain inhibitors have a strong killing effect on triple-
FIGURE 6

Analysis related to immune between two groups. (A) The proportions of immune cells in each sample were analyzed using CIBERSORT. (B) A violin
plot compared the fractions of immune cells between the two subtypes, with statistical differences tested using the Wilcoxon test (P < 0.05). (C) The
correlations between the risk score and various immune cell types were evaluated. (D) Correlations between immune cells/functions and risk
signature genes were examined. (E) The expression levels of immune checkpoint genes differed between the two groups, with higher expression
observed in the high-risk group (***P<0.001). (F) Immune-related scores, including stromal score, immune score, and ESTIMATE score, were
compared between the two risk groups.
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negative breast cancer cells (37). Topotecan is useful in lung

cancer (38).
3.8 Biological function and ASNS
expression in melanoma are confirmed

We knock down the ASNS gene in both SW620 and RKO cells.

Figure 9A shows the transfection efficiency of the two cell types.

To verify the expression level of ASNS in 10 pairs of tissues, the
Frontiers in Immunology 11
results showed that ASNS was highly expressed in colon cancer

tissues (Figure 9B). Following in vitro testing, we gained

additional insights into the function of ASNS. The CCK-8 study

observed a notable decrease in proliferative activity in ASNS

knockdown cells (Figures 9C, D). Similarly, the healing and

migration ability of the examined cell lines were notably

diminished following ASNS knockdown (Figures 9E, F).

Moreover, the colony formation experiments indicated a

significant reduction in the proliferation capacity of colon

cancer cells after ASNS knockdown (Figures 9G, H).
FIGURE 7

Single-cell classification and cell chat. (A) The UMAP plot displayed all the cells divided into 26 clusters. (B) Another UMAP plot indicated that COAD
samples can be classified into 6 cell types. (C) Marker genes were identified for each cluster. (D) A feature plot illustrated the distribution of the gene
ASNS across each cluster. (E) A violin plot depicted the expression levels of ASNS in each cluster. (F) Cell-cell communication between the six main
cell types was analyzed using CellChat.
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4 Discussion

Colon adenocarcinoma represents a prevalent malignant

digestive tract tumor, posing a significant threat to human health

due to its heterogeneity (39). With the rapid development of

medical technology, precision diagnosis, and treatment have

become an important focus and have developed rapidly (40). The

development of personalized treatment strategies requires an in-

depth understanding of the molecular characteristics of COAD to

provide patients with more effective and personalized treatment

options (41). On the road to exploring COAD precision diagnosis
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and treatment, the application of various biomarkers and

technologies continues to lead the innovation and optimization of

diagnosis and treatment strategies (42).

We utilized univariate Cox regression to identify 12 ubiquitin-

related genes with prognostic significance. USP26, a member of the

specific ubiquitin protease family, is closely associated with

tumorigenesis, development, and other pathological processes due

to its abnormal regulation (43). MYC, a broad-acting transcription

factor, modulates cell differentiation and proliferation through

various mechanisms, including transcriptional expansion of target

genes (44).
FIGURE 8

Prediction of COAD patients’ sensitivity to chemotherapeutic drugs. (A–L) IC50 values of patients in the high-low risk group.
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O-linked N-acetylglucosamine transferase (OGT) is a key

protein in post-translational modification of O-linked n-

acetylglucosamine (O-GlcNAc) that regulates multiple biological

processes by linking GlcNAc of glycosyl donors to protein Ser/Thr

residues (45). Protein arginine methyltransferase 1 (PRMT1), a

member of the arginine methyltransferase family, is often a marker

of transcriptional activation and is involved in gene transcription

control, mRNA splicing, protein stability regulation, DNA damage

signaling, and cell fate determination (46). SNAI1, a nuclear

protein, plays a crucial role in the induction of epithelial-
Frontiers in Immunology 13
mesenchymal transition, formation, and sustenance of embryonic

mesoderm, growth arrest, as well as the regulation of cell survival

and migration (47). RPS17 is a large RNA molecule that codes for a

protein that plays an important biological function in cells and is

also a drug target (48). Ribosome binding glycoprotein 2 (RPN2) is

a highly conserved glycoprotein that is localized primarily in the

rough endoplasmic reticulum (49). Acetyl-CoA carboxylase 1 is a

protein encoded by the ACACA gene in the human body. Catalyze

rate-limiting reactions during the biological production of long-

chain fatty acids (50). RNF112 belongs to the RNF1 family, which
FIGURE 9

In vitro experiment about ASNS. (A) Transfection efficiency of ASNS gene. (B) Expression level of ASNS gene in tissues. (C, D) CCK-8. After ASNS
knockdown, the proliferative ability of SW620 and RKO cell lines decreased significantly. (E, F) Healing test. After ASNS knockdown, the migration
ability of SW620 and RKO cell lines decreased significantly. (E, F) Healing test. After ASNS knockdown, the migration ability of SW620 and RKO cell
lines decreased significantly. (G, H) Clone formation. After ASNS knockdown, the proliferative ability of the two cell lines decreased significantly.
(*p<0.05, **p<0.01, ***p<0.001, ****p<0.0001.)
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includes a variety of transcription factors that play an important

role in the regulation of intracellular signaling pathways (51). In a

variety of diseases, RNF112 has been shown to have important

biological functions (52). Melanocortin 1 receptor (MC1R) is an

important gene controlling melanin synthesis in animals (53). The

protein encoded by the FBXO39 gene is a member of the F-box

protein family and plays a role in regulating protein degradation in

cells (54). FBXO39 interacts with the SCF (Skp1-Cullin-F-box)

complex through its F-box structure to mediate the ubiquitination

degradation of waste proteins (55). Asparagine synthase (ASNS) is a

key enzyme in endogenous de novo biosynthesis of asparagine (56).

ASNS expression is significantly up-regulated in a variety of human

tumors, including liver cancer, lung cancer, and other malignant

tumors (57). By activating the expression of oncogene KRAS, ASNS

promotes the malignant proliferation of tumor cells and leads to

tumor progression (58). In our study, ASNS was also found to be a

potential target for COAD.

Our study's significant findings hold profound clinical

implications. By employing Lasso regression to identify

ubiquitination-related gene features in colon adenocarcinoma

(COAD), the researchers were able to calculate individualized risk

scores for each patient. This risk score not only serves as a tool for

risk stratification but also assists clinicians in devising personalized

treatment plans to optimize patient outcomes. Moreover,

immunological analyses revealed marked differences in immune

infiltration levels between the high-risk and low-risk groups.

Although the high-risk group demonstrated increased expression

of immune checkpoint-related genes, it also exhibited lower

microsatellite instability. This may suggest that the tumor

microenvironment of the high-risk group possesses characteristics

that suppress immune responses. These findings could provide

crucial insights for the development of immunotherapy strategies,

particularly for high-risk patients, emphasizing the need to address

immune evasion mechanisms to formulate more effective

therapeutic approaches (59, 60). The single-cell analysis further

enables a comprehensive understanding of gene expression across

different cell types within the identified features, aiding in the

elucidation of COAD's heterogeneity and the complexity of its

immune microenvironment. This cell-level analysis lays the

groundwork for identifying potential therapeutic targets,

especially through the exploration of the ASNS gene, which

demonstrates a critical role in COAD. This indicates that ASNS

may not only function as a biomarker but also emerge as a novel

target for therapeutic intervention.

While immunotherapy has shown initial success in various

solid tumors and is a groundbreaking advancement in cancer

treatment, its application in COAD is limited, and our

comprehension of the COAD immune microenvironment

remains inadequate. Consequently, further research on the

immune microenvironment of COAD is crucial for advancing

immunotherapy. The study revealed higher expression of immune

checkpoint-related genes in high-risk COAD patients, along with

lower microsatellite instability. This insight can serve as a basis for

COAD immune stratification and guide COAD immunotherapy.
Frontiers in Immunology 14
5 Conclusions

In summary, ubiquitin-associated prognostic markers in COAD

facilitate robust patient stratification and comprehensive

immunological evaluation. This research holds the potential to inspire

novel strategies for COAD detection and therapeutic intervention.
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