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Gamma/delta T (gd T)cells possess a unique mechanism for killing tumors,

making them highly promising and distinguished among various cell therapies

for tumor treatment. This review focuses on the major histocompatibility

complex (MHC)-independent recognition of antigens and the interaction

between gd T cells and solid tumor cells. A comprehensive review is provided

regarding the classification of human gamma-delta T cell subtypes, the

characteristics and mechanisms underlying their functions, as well as their

r545egulatory effects on tumor cells. The involvement of gd T cells in

tumorigenesis and migration was also investigated, encompassing potential

therapeutic targets such as apoptosis-related molecules, the TNF receptor

superfamily member 6(FAS)/FAS Ligand (FASL) pathways, butyrophilin 3A-

butyrophilin 2A1 (BTN3A-BTN2A1) complexes, and interactions with CD4, CD8,

and natural killer (NK) cells. Additionally, immune checkpoint inhibitors such as

programmed cell death protein 1/Programmed cell death 1 ligand 1 (PD-1/PD-L1)

have the potential to augment the cytotoxicity of gd T cells. Moreover, a review on

gamma-delta T cell therapy products and their corresponding clinical trials

reveals that chimeric antigen receptor (CAR) gamma-delta T therapy holds

promise as an approach with encouraging preclinical outcomes. However,

practical issues pertaining to manufacturing and clinical aspects need

resolution, and further research is required to investigate the long-term clinical

side effects of CAR T cells. In conclusion, more comprehensive studies are

necessary to establish standardized treatment protocols aimed at enhancing the

quality of life and survival rates among tumor patients utilizing gd T

cell immunotherapy.
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1 Introduction

gd T cells are a crucial cell population within the immune

system, participating in both innate and non-specific immune

responses. They have the ability to recognize antigens

independently of MHC molecules, and are able to directly

recognize a variety of molecules, such as MHC-like molecules,

heat shock proteins, DNA repair related proteins, and lipid

antigens. These antigens bind to receptors on gd T cells and

trigger tissue-specific activation regulated by natural killer

receptors (NKR) and toll-like receptors (TLR) signaling pathways.

Among these cells, the Vg9Vd2 T subtype is commonly employed

for tumor eradication through the release of lysed particles from

target cells and secretion of cytokines. Additionally, this subtype

plays a significant role in immunotherapy by directly eliminating

target cells while indirectly modulating other immune cell

functions. gd T cells contribute to anti-tumor effects via diverse

mechanisms involving the adenosine 5’-monophosphate (AMP)-

activated protein kinase (AMPK) metabolic pathway. However,

under certain circumstances, gd T cells may exhibit tumor-

promoting effects primarily mediated by interleukin 17 (IL-17)

pathways. Interactions among cellular networks within the tumor

microenvironment also modulate the functionality of gd T cells,

including regulatory T (Treg) cells that exert inhibitory effects on gd
T cell activity. Current strategies for tumor immunotherapy

involving gd T cells encompass adoptive cell therapy and in vitro

expansion of Vg9Vd2 T cell populations. In the field of cancer

therapy, gd T cells demonstrate significant potential; however, their

precise role is contingent upon the distinct characteristics exhibited

by different subtypes within the tumor microenvironment.
2 Subtype classification and function
of gd T cells

T cells are classified into ab T cells and gd T cells according to

the differences in the types of their cell receptors. The differentiation

of gd T cells occurs subsequent to robust stimulation by T cell

receptor (TCR) signals and rearrangement of the g, d, b chain,

following their transition from CD4/CD8 double negative (DNT)

cells (1). In contrast to ab-T cells, gd T cells exhibit distinctive

attributes beyond the recognition of peptide-MHC complexes (2, 3).

Due to differences in receptor structure, there are four gd T

subtypes, Vd1 T, Vd2 T, Vd3 T, Vd5 T, different subtypes exist in

different tissues and organs, resulting in different functional effects.

Vd1 T cells are predominantly found in the thymus and mucosal

epithelium, constituting approximately 10% -15% of gd T cells. In

addition to recognizing CD1c and the lipid-presenting MHC-like

molecule CD1d via the TCR, Vd1 T cells can also respond to stress-

induced MHC cass I associated molecules A/B (MICA/B) through

the synergistic effect of TCR and natural killer cell group 2D

(NKG2D). The Vd3 T subgroup is present in liver tissue and

constitutes only 0.2% of the total T cells in the human body,

paired with Vg2 or Vg3 (4), respond to CD1d and express the

degranulation marker CD107a (5). The Vd5 T cell subpopulation
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predominantly resides in the peripheral blood and is stimulated by

endothelial protein C receptor (EPCR) (6). Furthermore, a diverse

repertoire of paired Vg genes exists to effectively recognize ligands

and elicit their functional outcomes (7).

As the predominant subtype, Vd2 T cells are highly

concentrated in peripheral blood and constitute approximately

50% to 90% of gd T cells. They possess the ability to directly

recognize and eliminate multiple tumor targets in a phosphate

antigen (pAg)-dependent manner (8). Vg9Vd2+ T cells in fetal

blood originate from the fetal thymus, whereas T cells in adult blood

predominantly arise through independent production postnatally

(9). Several studies have indicated that NKG2A is expressed at high

levels in postnatal thymocytes, and during the early postnatal

period, human Vd2 T cells exhibit enhanced sensitivity and

cytotoxicity (10). However, recent studies have demonstrated

that functional Vg9Vd2 T cells predominantly arise in the

thymus postnatally, undergo a triphasic developmental

process, and mature to acquire enhanced cytokine secretion and

cytotoxicity (11).

Vg9Vd2 T cells are frequently employed subtypes in cellular

immunotherapy, exhibiting the ability to release perforin,

granzyme, and other cytolytic factors while also secreting

interferon-gamma (IFN-g) and tumor necrosis factor a (TNF-a).
Moreover, they indirectly modulate the activity of NK cells, B cells,

CD4+, CD8+, and other immune cell populations to effectively

eliminate tumors (12–15). The activation of the apoptosis pathway

in tumor cells can be facilitated by the upregulation of death

receptor ligands, such as FASL and tumor necrosis factor-related

apoptosis-inducing ligand (TRAIL), thereby exerting potent anti-

tumor effects (16). Furthermore, activation of AMPK under

metabolic stress can lead to upregulated expression of butyrate

2A1 and 3A1, while Vg9Vd2 T cells exhibit cytotoxicity against

target tumor cells by recognizing the phosphorylated antigen-

induced BTN2A1-BTN3A1 complex (17–19). Vg9Vd2 T cells also

employ Antibody-dependent Cellular Cytotoxicity (ADCC) as an

effector mechanism for tumor eradication. CD16 is predominantly

expressed on circulating gamma-delta T lymphocytes, which

recognize target cells through the ADCC pathway upon binding

of antibodies (20). Upon activation, Vg9Vd2 T cells upregulate

CD16 expression, thereby facilitating ADCC-mediated killing of

target cells following antibody-based treatments such as

monoclonal antibodies targeting human epidermal growth factor

receptor 2 (HER2), B-lymphocyte antigen CD20-specific

monoclonal antibodies, or bispecific antibodies that bind to both

TCR complexes and HER2 (21–23). Recent research has elucidated

the structures of two human gd TCR-CD3 complexes and revealed

their different assembly mechanisms. The Vg5Vd1 TCR-CD3

complex forms a dimeric structure that is critical for T cell

activation. In contrast, the Vg9Vd2 TCR-CD3 complex exists as a

monomer with a flexible conformation, and the length of the bound

peptide can modulate ligand binding and subsequent T cell

activation (24). Furthermore, analogous cholesterol molecules in

the transmembrane region were found to inhibit TCR signaling,

which may account for the unique and irreplaceable nature of

Vg9Vd2 T cells. These findings provide a compelling new rationale

for future immune-intervention therapies.
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3 The mechanism of action of gd
T cells

The gd T cells not only play a pivotal role in the innate immune

response, but also constitute an integral component of the non-

specific immune defense. gd T cells possess an MHC-independent

antigen recognition mechanism, enabling direct recognition of

antigens. They exhibit not only the ability to recognize intact

polypeptide molecules but also demonstrate specific affinity

towards MHC-like molecules and heat shock proteins (25).

gd T cells demonstrate a degree of tissue-specificity in antigen

recognition. gd T cells derived from the same tissue may express

analogous TCRs to recognize antigens with analogous properties,

whereas gd T cells from disparate tissues typically express disparate

TCRs to identify antigens with distinct characteristics. Nevertheless,

the precise mechanism by which gd T cells recognize antigens is

rather intricate and not solely dependent on the differences in

TCRs, but also influenced by multiple other factors collectively (26).

gd T cells have the capacity to recognize a diverse array of antigens,

including but not limited to MHC and MHC-like molecules, heat

shock proteins (HSPs), phosphorylated antigens, as well as lipid

antigens bound to members of the CD1 family of MHC class I-

related proteins such as CD1a, CD1c, and CD1d. The interaction

between these antigens and T cell receptors or NK cell receptors on

the surface of gd T cells triggers the activation of gd T cells.

Furthermore, it is possible that receptors such as NKR and TLR

may also deliver co-stimulatory signals and participate in the

process of activation (27). gd T cells can be either specific or non-

specific in their immune response.

The cytotoxic effect of gd T cells on tumor cells is mediated by

two primary mechanisms: direct cytotoxicity and indirect

cytotoxicity. A comprehensive understanding of the interplay

between these two mechanisms is crucial to unlocking the full

potential of gd T cells in cancer immunotherapy.

Direct killing is a process whereby gd T cells recognize and bind

to specific antigens on the surface of tumor cells via their surface

receptors. This leads to the expression of cytotoxic molecules, such

as granzyme and perforin, by gd T cells, which subsequently release

cytotoxic substances that induce apoptosis or necrosis in tumor cells

(28). For example, in certain types of tumors, gd T cells have the

capacity to recognize and adhere to specific markers on the surface

of tumor cells, such as MICA andMICB, which results in the release

of granzyme and perforin (29).

On the contrary, the indirect elimination of gd T cells involves

their interaction with other immune cells or molecules, including

the secretion of cytokines such as TNF-a and IFN-g, to modulate

the tumor microenvironment. These cytokines can impede tumor

cell proliferation, facilitate immune cell activation, and augment the

cytotoxicity of other immune cells against tumor cells (30, 31).

Furthermore, in the context of acute myeloid leukemia, gd T cells

are capable of boosting the activity of other immune cells such as ab
T cells through the inhibition of regulatory T cells (32).

Nevertheless, gd T cells have been demonstrated to exert

protective effects in certain malignant tumors. It has been
Frontiers in Immunology 03
observed that IL-17+gd T cells infiltrate tumor tissues (33). IL-17

+gd T cells expressing IL-1 b, IL-23, and/or IL-7 downregulate the

expression of cc chemokine receptor 6 (CCR6), thereby promoting

CCR2-dependent IL-17 production and migration of gd T cells due

to co-expression of CCR2 in these cells (34). The upregulation of IL-

17 may stimulate VEGF-dependent angiogenesis (35), induce

neutrophil recruitment, and employ other mechanisms to

promote tumorigenesis, mobilization of pathological myeloid-

derived suppressor cells(PMN-MDSCs) (36) and directly activates

tumor cells through the PI3K/AKT signaling pathway (37).

Subsequent research has demonstrated that tumor-infiltrating

Vd1+ cells secrete IL-17, which is associated with higher rates of

recurrence, lymph node metastasis and mortality (38). Conversely,

in breast cancer, tissue-resident Vd1+ T cells have been

demonstrated to favor cytolysis and IFN-g production over IL-17

secretion (39). Furthermore, glioblastoma(GBM) patients with high

levels of IL-17 expression exhibited longer survival compared to

those with low levels of IL-17 expression (40). These findings

indicate that the cytokine profile of the gd T cell subpopulation is

significantly influenced by the tumor microenvironment and

cellular interactions.

One of the current methods of using gd T cells for tumor

immunotherapy is adoptive cell therapy, which involves in vitro

expansion of Vg9Vd2 T cells through adoptive transfer, synthesis of

phosphate antigen analogues, or in vivo stimulation with amino

succinic acid (41). The in vitro expansion of Vg9Vd2 T cells is easy

for Vd1 cells. Amino bisphosphonates such as pamidronate and

zoledronate, as well as synthesized phosphate antigen analogues,

serve as ligands for gd TCR and can induce the production of

pyrophosphate intermediates in tumor cells by upregulating the

mevalonate pathway (42). Both domestically and internationally gd
T autologous/allogeneic reinfusion has been used in preclinical and

clinical studies on multiple cancer types, including pancreatic

cancer (43), cholangiocarcinoma (44), non-small cell lung cancer,

gastric cancer, etc. (Table 1). The research results indicate that in

vitro expanded Vg9vd2 T cells have excellent tumor killing ability,

and adoptive therapy is safe and well tolerated, but its clinical

efficacy still needs to be verified. For this significant difference,

researchers believe that the pharmacokinetics of bisphosphonates

may hinder their systemic efficacy in tumor immunotherapy (45).

The human body rapidly removes bisphosphonates and other

drugs from circulation through renal excretion and bone

absorption, making it difficult to retain them in tumor tissue

(46). Consequently, the extent of gd T cell activation by

bisphosphonates in tumor infiltration remains elusive. Similarly,

limited evidence exists to support the transportation or retention of

in vitro activated gd T cells within tumors (47). Indeed, the

activation of Vd2+ T cells by pAg is closely associated with their

depletion/energy status, and due to the antigen-presenting

capability of Vd2+ T cells, it can induce the upregulation of

chemokine receptors involved in lymph node homing (15, 48–

51). In view of the dual function of gd T cells in tumor regulation,

we have provided a comprehensive summary of our observations, as

illustrated in Figure 1.
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TABLE 1 Summary of Clinical Trials on Gamma Delta T Cell Therapy for Tumors.

Innate T cell type Start
Year

Targeting cancer Outcome Main ID Other procedure Publications

Autologous gamma/delta
T lymphocytes

2006 Non-Small Cell Lung Cancer 6SD,6PD JPRN-
C000000336

(108, 128)

gd T cells 2007 Bone metastases JPRN-
UMIN000000628

Radiotherapy

Gamma/delta T cell 2007 Colorectal cancer JPRN-
UMIN000000854

(129)

Gamma/delta T cell 2007 Hepatocellular Carcinoma NCT00562666

Autologous gamma/delta T cell 2007 Pancreatic cancer JPRN-
UMIN000000931

Resection and gemcitabine

Autologous gamma/delta T cell 2008 Esophageal cancer JPRN-
UMIN000001419

Autologous gamma/delta T cell 2008 Hepatocellular carcinoma JPRN-
UMIN000001418

Autologous gamma/delta T cell 2008 Intrahepatic
cholangiocarcinoma or biliary

tract cancer

JPRN-
UMIN000001417

Autologous gamma/delta T cell 2009 Stage2A (T2N0,T3N0)
esophageal cancer

JPRN-
UMIN000002839

After resection

Autologous gamma/delta T cell 2010 CD20-positive B-cell lymphoma JPRN-
UMIN000003641

Rituximab

Autologous gamma/delta T cell 2010 Refractory gastric cancer
with ascites

JPRN-
UMIN000004130

(28)

Autologous gamma/delta T cell 2010 Hepatitis C virus-related
hepatocellular carcinoma

JPRN-
UMIN000004583

Radiofrequency
ablation therapy

2-Methyl-3-Butenyl-1-
Pyrophosphate-

Stimulated Gamma Delta

2011 Stage IV Renal Cell Carcinoma JPRN-
UMIN000004482

Zoledronate-expanded
autologous gamma/delta

T cells

2011 Non-small cell lung cancer
refractory

to standard treatment.

JPRN-
UMIN000006128

2-Methyl-3-Butenyl-1-
Pyrophosphate-

Stimulated Gamma Delta

2011 PSA biochemical failure after
radical prostatectomy

JPRN-
UMIN000006617

Auto-gamma/delta T cell 2012 Multiple myeloma JPRN-
UMIN000007878

Gamma-delta T Cells 2012 Epithelial Ovarian
Cancer IClyCO

NCT01606358

Autologous gamma/delta T cell 2012 Esophageal cancer JPRN-
UMIN000008097

Docetaxel/cisplatin/
fluorouracil (DCF)

Gamma-delta T cell 2012 Malignant tumor JPRN-
UMIN000009422

Immunotherapy

2-methyl-3-butenyl-1-
pyrophosphate-stimulated

gamma delta T cells

2013 Non-invasive bladder cancer JPRN-
UMIN000010942

Autologous gamma/delta T cell 2013 Hepatocellular Carcinoma JPRN-
UMIN000011184

Gamma Delta T
Immune- Cells

2014 Excision Impossible
Pancreatic Cancer

JPRN-
UMIN000013794

PepTivator(R) WT1-
added autologous

2014 Cancer JPRN-
UMIN000015410

(Continued)
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TABLE 1 Continued

Innate T cell type Start
Year

Targeting cancer Outcome Main ID Other procedure Publications

gamma/delta T cell
2-Methyl-3-Butenyl-1-

Pyrophosphate-
Stimulated Gamma Delta

T Cells

2015 Advanced Renal
Cell Carcinoma

JPRN-
UMIN000016793

gd T + DC-CIK 2015 Breast cancer NCT02418481

gd T cells 2015 Hepatocellular liver cancer NCT02425735 tumor reducing surgery

gd T + DC-CIK 2015 Non Small Lung Cancer NCT02425748

gd T+CIK 2015 Gastric cancer NCT02585908

Anti-CD19-CAR gd T 2016 B-Cell Lymphoma, ALL
and CLL

NCT02656147

gd T cells 2017 Locally Advanced
Pancreatic Cancer

NCT03180437 IRE surgery

gd T cells 2017 Breast Cancer NCT03183206 Cryosurgery, IRE
surgery,surgery

gd T cells 2017 Liver Cancer NCT03183219 Cryosurgery or IRE surgery

gd T cells 2017 Lung Cancer NCT03183232 Cryosurgery or IRE surgery

Expanded/Activated Gamma
Delta T-cell

2017 ALL/AML/CML NCT03533816 Hematopoietic Stem Cell
Transplantation

and Cyclophosphamide

Autologous gamma/delta
T lymphocytes

2019 Advanced Hepatitis B Related
Hepatocellular Carcinoma

NCT04032392

Adoptive Cell Transfer of
NKG2DL-targetting
Chimeric Antigen

Receptor-grafted Gamma
Delta T cell

2019 Nasopharyngeal Carcinoma/
Colorectal

Cancer/Sarcoma/Triple
Negative/Breast Cancer/Prostate

Cancer/Gastric Cancer

NCT04107142

Gamma-Delta T Cell 2019 Glioblastoma DRI NCT04165941

Gamma delta T cells 2020 lung cancer ChiCTR20000291
02

Ex-vivo expanded allogeneic gd
T cells

2020 Phase 1
Hepatocellular Carcinoma

NCT04518774

Ex-vivo expanded allogeneic gd
T cells

2021 Non-Hodgkin’s Lymphoma
(NHL)/Peripheral T Cell
Lymphomas (PTCL)

NCT04696705

CAR - gd T 2021 CD7 Positive T cell-derived
malignant tumors

NCT04702841

ADI-001 Anti-CD20 CAR-
engineered Allogeneic Gamma

Delta T Cells

2021 Adults With B
Cell Malignancies

NCT04735471 Cyclophosphamide/
Fludarabine

LAVA-1207(Humanised

bispecific immunoglobulin

VHH fragments against
PSMA and

Vgamma9Vdelta2 T-cell
receptor)

2021 Therapy refractory metastatic
castration resistant
prostate cancer

EUCTR2021-
001789-39-NL

Gamma Delta T-cell 2021 Acute Myeloid Leukemia at
High Risk of Relapse

NCT05015426

(Continued)
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4 Application and mechanism of
different kinds of CAR-gd T cells

At the time of writing this article, in the context of solid tumor

gd T immunotherapy, aside from autologous cell adoptive transfer

therapy, Adicet Bio, BMS (Bristol Myers Squibb), and Century

Therapeutics have developed clinically effective application CAR-gd
T treatment methods. Furthermore, Gadeta, IN8bio, and CytoMed

Therapeutics in Singapore have all conducted clinical trials related

to engineering gd T cells.

CAR-mediated gd T cells demonstrate heightened efficacy against

tumor cells expressing engineered receptor structural target antigens,

encompassing Vd1 and Vd2 subsets. It is noteworthy that CAR-gd T
cells also retain their antigen presentation function in vitro (52).

Concurrently, disialoganglioside (GD2)-directed CAR-gd T cells also

exhibit heightened cytotoxic potential compared to unmodified gd T
cells (53).

CAR-Vg9Vd2 T cells targeting mucin-1 have also been

engineered to suppress the subcutaneous growth of mouse

metastatic gastric cancer cell lines. In comparison to abT cells,

CAR-Vg9Vd2 T cells exhibit enhanced in vitro cytotoxicity.

However, prolonged exposure to tumor cells appears to necessitate
Frontiers in Immunology 06
IL-2 supplementation for the restoration of their cytotoxic activity

(54). Furthermore, the utilization of chimeric antigen receptors

(CARs) targeting cell surface NKG2D ligands in Vg9Vd2 T cells

has demonstrated an extended survival period in murine xenograft

models of ovarian cancer (55). Clinical trials have also been

conducted to assess the clinical effectiveness of allogeneic gd T cell

immunotherapy targeting NKG2D ligands in patients with recurrent

and/or refractory metastatic solid tumors.

Vd1 T cells exhibit a diminished propensity for activation-

induced cell death, and, in comparison to Vd2 T cells, demonstrate

prolonged in vivo persistence (56). The Phase I trial results of

CD20-targeted CAR Vd1 T cells in humans are promising (57),

while another CAR Vd1 T cell product targeting glycan-3

(overexpressed in various solid tumor types) has been developed

and further modified to produce soluble IL-15 (58, 59).

In addition, considering that different subtypes of gd T cells may

be regulated differently in TME, and concurrent chemotherapy or

radiotherapy with cell therapy may affect the sensitivity of tumor cells

to gd T cells (13). Studies have shown that anti CTLA4 antibody

therapy increases the frequency of Vd2+ T cells in melanoma patients

(60), suggesting that different drug combinations may have a positive

effect on the anti-tumor function of gd T. Of course, there are also
TABLE 1 Continued

Innate T cell type Start
Year

Targeting cancer Outcome Main ID Other procedure Publications

CAR–gd T cells 2022 AML NCT05388305

Allogeneic Expanded Gamma
Delta T Cells

2022 Relapsed or Refractory
Neuroblastoma Aflac-NBL-2002

NCT05400603 GD2
Chemoimmunotherapy

ACE1831(Allogeneic
CD20-conjugated

Gamma Delta T-cell)

2022 Relapsed/Refractory CD20-
expressing B-cell Malignancies

NCT05653271

Allogeneic or Autologous gd
T Cells

2022 Recurrent or Newly
Diagnosed Glioblastoma

NCT05664243

Gamma Delta T Cell 2023 Stage 4 Metastatic Non-Small
Cell Lung Cancer

NCT06069570 Low Dose Radiotherapy

Allogeneic CAR Gamma- Delta
T Cells

2023 Relapsed/Refractory
Solid Tumors

NCT06150885 (111)

Autologous Gamma Delta T
Cells Genetically
Engineered With a

2023 Metastatic Castration Resistant
Prostate Cancer

NCT06193486

Chimeric Receptor
Autologous gd T adoptive

immune cells

2023 Inoperable or metastatic biliary
pancreatic malignancies

ChiCTR23000747
94

Gemcitabine-based
standard first-line
chemotherapy

Allogeneic Gamma-delta
T Cells

2024 Hepatocellular Carcinoma
Resistant to PD-1

Monoclonal Antibody

NCT06364800 Targeted Therapy
and Immunotherapy

Allogeneic Gamma-delta
T Cells

2024 Hepatocellular Carcinoma NCT06364787 Targeted Therapy
and Immunotherapy

Anti-EGFR Conjugated
Gamma-delta T Cell

2024 Metastatic Solid Tumor/Locally
Advanced Solid Tumor

NCT06415487
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negative cases (61), so activation is necessary gd T cell first may be

more important (62). Some companies also hope to regulate

endogenous gd T cells levels in patients by using monoclonal

antibodies (MABs) and bispecific antibody drugs. Adaptate and

ImCheck Therapeutics activate Vg9Vd2 T through monoclonal

antibody agonists cells, while Lava activate Vg9vd2 T through a

specific membrane antigen targeting the prostate gland as a cell

conjugate (63).

By combining the extracellular domain of tumor-responsive

Vg9Vd2 TCR with CD3 binding fragments (GABs), bispecific

molecules can be engineered to mimic the mode effect mediated by

Vg9Vd2 TCR. In a subcutaneous bonemarrow tumor xenograft model,

GABs significantly inhibit in vivo tumor growth. Furthermore, T cell

adapter bispecific antibodies may enhance the effectiveness of adoptive

transfer of gd T cells. The newly developed Vd2 x PD-L1 can redirect

Vg9Vd2 T cells to PD-L1 positive tumor cells and induce their killing.

The binding of Vd2 x PD-L1 with adoptive metastatic Vg9Vd2 T cells

inhibits the growth of existing tumor xenografts while increasing the

number of Vg9Vd2 T cells on the tumor bed (64). Lava-051 is a 27kD

humanized bispecific single domain antibody (VHH) that directly

targets CD1d, and the Vg9Vd2 TCR chain mediates efficient killing of

CD1d-expressing tumor cells. Furthermore, they also found the

stimulation of Vg9Vd2 T cells through cross-linking with prostate-

specific membrane antigen (PSMA) induces potent and selective killing

of PSMA-positive tumor cells. In brief, gd T cells’ current applications

are illustrated in Figure 2.
Frontiers in Immunology 07
Hence, to advance novel immunotherapy approaches and

expand treatment options for cancer patients, further

investigation into the role of gd T lymphocytes in solid tumor

immunotherapy is of paramount importance.
5 Effectiveness of gamma/delta T-cell
therapy in solid cancers

gd T cells not only exert anti-tumor effects by recruiting T cells

and natural killer cells, secreting cytokines, but also promote tumor

progression and spread due to the infiltration of the tumor

microenvironment and the utilization of cytotoxic mechanisms by

cancer cells. Here we summarize the effectiveness of gd T cells in

several types of solid tumors.
5.1 Breast cancer

The incidence of female breast cancer has surpassed that of lung

cancer, making it the most prevalent form of cancer worldwide (65).

With the ongoing urbanization in China, there is a potential for an

annual increase in the incidence and mortality rates of young

women (66).

The progression of breast cancer is influenced by the

production of gd IL-17A, which is a key factor for various
FIGURE 1

The anti-tumor and pro-tumor mechanisms of gamma delta T cells involve the TCR PI3K, AKT, INF-DC (Inflammatory dendritic cells), PMN-MDSC,
CCR2 (Chemokine receptor-2), and BTN.
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subtypes of gd T cells (67). In breast tumor-bearing mice, type I IFN

directly suppresses the activity of tumor-infiltrating gd17 T cells,

while indirect inhibition of gd17 T cell-activating factor IL-7

reduces IL-17A secretion through two pathways, thereby

impeding tumor progression (68). gd T cells can also induce the

upregulation of MICA/B and ICAM1 expression on the surface of

sensitive strain SkBr7, facilitating its interaction with NKG2D

receptors on the surface of gd T cells, leading to alterations in

intracellular protein kinases such as AKT and extracellular signal-

regulated kinase(ERK) that are associated with cellular

proliferation. Concurrently, the phosphorylation levels of signal

transduction and transcription activating factor 3 (STAT3)

decrease, while the expression levels of pro-apoptotic molecules

PARP and Caspase3 increase. gd T cells exhibit a significant

inhibitory effect on tumor formation in the sensitive strain SkBr7,

as evidenced by accelerated tumor cell apoptosis, inhibited

angiogenesis, and reduced tumor burden. Furthermore, the

secretion of chemokines and infiltration of tumor macrophages

also contribute to these processes. They collectively bolster tumor

immune surveillance and augment their anti-tumor efficacy (69). gd
T cells stimulate the upregulation of MHC class I and CD54/

intercellular adhesion molecule-1 (ICAM-1) expression in cancer

stem cell (CSC)-like cells, thereby enhancing the susceptibility of

CD8+ T cells to antigen-specific killing (70, 71). Conversely,

through the induction of IL-17 expression in gd T cells, IL-1 b
facilitates the lymph node and lung metastasis of cancer cells (36).
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Human Vd1+ T cells suppress dendritic cell (DC) maturation,

diminish IL-2 production, and contribute to immune evasion in

tumors (72). A high dosage of anti-VEGFR2 can stimulate the

PI3K-AKT pathway and promote the expression of IL-17A (73).

Furthermore, the Vd1+ subgroup is capable of suppressing

conventional T cell proliferation and facilitating tumor

progression via CD73/adenosine-dependent pathways (74).

Research on the mechanism of gd T cell-mediated tumor killing

via ADCC reveals that the combination of trastuzumab and

phosphoantigen-activated gd T lymphocytes augments the efficacy

of trastuzumab against HER2+ breast carcinoma cell lines in vivo

(22). Although the combination of neoadjuvant therapy and

phosphate may not lead to an overall local tumor response,

zoledronic acid demonstrates significant efficacy in breast cancer

patients with low gd T cell frequency (75, 76). Furthermore,

numerous clinical trials with unpublishable results are currently

in progress (NCT02418481, NCT03183206, NCT04107142).
5.2 Head and neck cancer

Neuroblastoma(NB) is one of the most common solid tumors in

children (77), with poor prognosis and a 5-year survival rate of less

than 50% in high-risk NB patients (78).

Unlike other tumors, the amplified in vitro Vd1+and Vd1-Vd2-
gd T cells also exhibit clinically effective cytotoxicity towards them
FIGURE 2

Utilization of gd T cells in the treatment of tumor cells involves isolating allogeneic gd T cells from a healthy donor and autologous ones from the
patient’s own cells. Following isolation, various strategies such as CAR utilization, T cell receptor (TCR) transfer, and cell engager are employed to
expand and engineer gd T cells. Subsequently, these engineered gd T cells are administered directly to the patient or utilized as a form of
immunotherapy to achieve their therapeutic function.
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(79). Besides, Vd2+ T cells can be manipulated to link to an

endodomain that provides the NKG2D adaptor protein DAP10

co-stimulation but no TCR signal with a CAR comprising

conventional ectodomain targeting GD2, which may avoid

cytotoxicity to normal cells expressing same target (80). However

gd T adoptive immunotherapy requires a sufficient number of cells

to achieve therapeutic effects, and IL-15 can increase the survival

rate of human gd T cells by regulating the expression of myeloid cell

leukemia 1 (Mcl-1) (81). Anti GD2- gd T can also activate

downstream signaling domains by recognizing tumor PAG

antigen or GD2, exerting specific anti-tumor effects and effectively

cleaving NB cells without affecting normal cells (82). However, gd T
cells can also facilitate the proliferation and migration of NB tumor

cells by generating IL-17 and releasing cytokines such as IL-

17A (83).
5.3 Tumors of the digestive system

5.3.1 Pancreatic cancer
Pancreatic cancer is characterized by rapid progression,

resulting in a high mortality rate and a median survival time of

less than one year (84, 85). Research has demonstrated that the

combination of gd T cells, IL-2, and [(HER2) 2Vg-9] was employed

in the treatment of tumor-bearing models established using the

pancreatic cancer cell line PancTu-I and SCID Beige mice, resulting

in significant inhibition of tumors in all mice (21). IL-17B induces

the upregulation of Chemokine Ligand 20 (CCL20), chemokine

ligand 1(CXCL1), IL-8, and Trefoil Factor 1 (TFF1) chemokines via

the ERK1/2 pathway, thereby facilitating cancer metastasis and

enhancing viability in distant organs (86). Receiving IL-17RB

monoclonal antibody treatment has the potential to inhibit tumor

metastasis and enhance overall survival rates (87). PDA infiltration

leads to gd T cell overexpression, resulting in ligand depletion and

subsequent activation of ab T cells, which exerts tumor-protective

effects. Additionally, PDA expresses programmed cell death ligand

1 (PD-L1) and galactin-9 to inhibit cytotoxic T cells (88). In

addition, endothelin can enhance the infiltration of NK, NKT,

and gd T cells while reducing PMN-MDSCs infiltration, thereby

modulating the tumor immune microenvironment and suppressing

tumor growth (89).

5.3.2 Cholangiocarcinoma
As a primary liver tumor, cholangiocarcinoma demonstrates

high malignancy and heterogeneity, resulting in a 5-year survival

rate of only 20% and a poor prognosis (90).

The clinical efficacy of gd T cells in treating cholangiocarcinoma

has been demonstrated. Based on current clinical trial results, there

have been reports of eight instances where infusion of allogeneic

Vd2+ T cells successfully reduced lymph node metastasis in patients

with cholangiocarcinoma (44). Furthermore, the combination of

local ablation and gd T adoptive transfer has exhibited promising

clinical efficacy in the treatment of intrahepatic cholangiocarcinoma

(ICC) (91).
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5.3.3 Colorectal cancer
The incidence and mortality rates of colorectal cancer are

among the highest in the world, with the highest incidence rate

observed in East Asia (92, 93).

gd T cells represent the predominant lymphocyte subset in

colorectal cancer(CRC), and their interaction with NK cells via NK

ligands constitutes a crucial mechanism for gd T cells to exert anti-

tumor effects. Experiments have shown that the killing effect of

Vg9Vd2 T cells on most colon cancer cells is related to the

accumulation of IPP and the expression of ICAM-1 (94). The

engagement of NKG2D receptors with MICA/B and ICAM-1 on

the surface of colon cancer cells triggers activation, leading to the

release of perforin and granzyme B by activated gd T cells. These

cytotoxic effector molecules, along with IFN-g and TNF-a
cytokines, mediate the elimination of colon cancer cells through

pathways such as TRAIL and FAS/FASL (95). While Vg9Vd2 T cells

exert cytotoxic effects on most colon cancer cell lines, Vd1T cells

demonstrate superior in vitro cytotoxicity against adherent and

spherical human colon cancer cells compared to Vd2T cells (96).

The proportion of tumor-infiltrating Vd1+T cells increases, which

can enhance tumor eradication by engaging NK cells via ligands

such as NKP46, NKG2C, and NKG2D (97, 98). On the contrary,

gd17 T cells play a contrasting role in the context of colon cancer.

Upon activation by INF-DC, these cells secrete IL-8, tumor necrosis

factor, and GM-CSF, thereby promoting the accumulation of

immunosuppressive PMN-MDSCs and faci l i tat ing the

progression of colon cancer. Furthermore, in addition to

infiltrating gd T cells, mouse experiments show those expressing

Vg4+ and Vg6+ also contribute to tumor progression (48, 99).
5.4 Respiratory system tumors

The progression of lung cancer may also be associated with IL-

17. Research indicates that in early non-small cell lung cancer, the

primary source of IL-17 is tumor-infiltrating gd T cells, and a higher

abundance of gd T cells has been observed in lymph node

metastases of non-small cell lung cancer patients (100).

Furthermore, the transfer of gd T cells and supplementation with

IL-17A has been shown to diminish the size of murine lung tumors

and decrease the number of lung tumor foci (101). Enhanced anti-

tumor activity against pulmonary melanoma is attributed to the

heightened presence of gd17 T cells in aged lungs (102). The

experimental results demonstrate that gd T cell immunotherapy

upregulated the release of perforin and granzyme B through the

Bax/Bcl-2 signaling pathway. Additionally, gd T cell-mediated lysis

of A549 cells involves the PI3K/AKT pathway, thereby augmenting

cytotoxicity against lung cancer cells (103). In addition, Vd1 T cells

isolated from NSCLC patients exhibit enrichment of CD45RA and

CD27 TEM subsets, which are potent producers of IFN-g.
Conversely, the absence of IL-10 amplifies cellular proliferation,

resulting in an elevated frequency of IL-17+ gd T cells and an

increased level of IL-17A in murine malignant tumors (MPEs).

However, further validation is necessary in human immunology. It
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is evident that gd T exhibits both anti-tumor and pro-tumor effects

simultaneously (104, 105). Human Vd1 T cells consistently display

a Tc1 phenotype associated with tumor rejection during in vitro

activation (106). Wuhan YZY Biopharmaceutical Co., Ltd. has

developed a bispecific antibody (PD-L1 x CD3) Y111 that targets

PD-L1 and CD3, effectively facilitating the interaction between T

cells and tumor cells expressing PD-L1. Experiments have

demonstrated that Y111 can enhance the cytotoxicity of Vg9Vd2
T cells against various non-small cell lung cancer cells and suppress

the growth of xenografts in NPG mice (107).

Given the efficacy of gd T cells in the treatment of non-small cell

lung cancer by adoptive transfer therapy in humans has been

limited (108). This is likely due to the predominant focus on

Vd2+ T cells in research efforts. For example, a multicenter Phase

II study conducted in 2020 involved autologous infusion therapy

with Vg9Vd2 T cells for 25 lung cancer patients, resulting in partial

relief observed in 1 case (109), which means we truly need more

research on how to improve the therapeutic efficacy of gd T cells for

cancer patients.
5.5 Other solid tumors

There are kinds of engineering gd T cells being studied to get

over various tumors. In addition to the ones mentioned above, CD-

19 targeted CAR-gd T cell therapy in B-lymphocytic tumor patients

showed a complete remission rate (110), and CD20 targeted CAR-

gd T cell therapy is also promising with complete remission

observed in 4 out of the initial 6 patients (57), In hepatocellular

carcinoma(HCC) xenograft models, single infusion of GPC-3

specific transgenic T cells (CAR) and soluble IL-15 engineered

ready-made Vd1+ gd T cells can control tumor growth (59) Besides,

Lava Therapeutics is currently conducting a Phase I/IIa clinical trial

to assess Lava-1207, a Gamma body, in patients with metastatic

castration-resistant prostate cancer and the efficacy remains to be

observed(NCT05369000).
6 Discussion

gd T cells recognize antigens independently of MHC, and their

substantial anti-tumor potential is garnering increasing attention.

Currently, numerous global clinical trials have been conducted on

gd T cells (28, 111, 112), particularly demonstrating promising

results for the allogeneic transfusion of anti-tumor cell products.

The current understanding of the classification of human gd T cells

and their specific subtypes, as well as their interactions with solid

tumor cells, remains incomplete. Furthermore, the characteristics

and mechanisms of tumor cells in reversing the regulation of gd T

cell function have also been elucidated (113, 114). Currently, the

investigation of the roles played by various subtypes of gd T cells in

tumor development and migration represents a prominent focus in

fundamental research, through molecules associated with apoptosis

such as FAS/FASL pathways, BTN3A-BTN2A1 complexes, and

their interactions with CD4, CD8, and NK cells have emerged as

potential targets for activating Vg9Vd2 T cells (42, 115). As the fetus
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develops into an adult, Vg9Vd2 T gradually becomes the main

subpopulation of peripheral blood gd T cells. Compared to Vg9Vd2
T cells isolated from umbilical cord blood, isolating from peripheral

blood monocytes is more convenient and effective. Due to the

requirements for cell quantity, survival rate, and cytotoxicity in cell

adoptive therapy, it is necessary to perform in vitro expansion of

Vg9Vd2 T. However, according to currently published studies, the

existing expansion methods cannot fully guarantee consistent

purity. Hence, the exploration of antibodies and small molecule

drugs that target the interaction between Vg9Vd2 T cells and cancer

cells represents a promising avenue for research. However, their

clinical applicability remains to be assessed.

Immune checkpoint inhibitors, such as PD-1 and PD-L1

inhibitors, are currently a focal point in the field of tumor

treatment. Furthermore, in the realm of gd T cell research, it has

been observed that the utilization of PD-1 inhibitors can augment

their cytotoxic activity against tumor cells (116, 117), and this

synergistic effect will provide more options for the treatment of

tumors by gd T cells. The current cutting-edge research on CAR-T

methods has also been extended to the application of gd T cells. CAR-

gd T cells exhibit tissue-specific residency and distinct in vivo homing

capabilities, thereby offering broad prospects for gd T cell therapy

(118, 119). Correspondingly, the clinical trial proportion of related

products is relatively high. However, practical considerations

regarding the manufacturing and clinical aspects of CAR-gd T cells

have also garnered significant attention. For instance, the persistent

depletion of gd T cells in the organism may result in residual tumor

progression, necessitating multiple infusions of CAR-gd T cells to

augment the host’s immunogenicity towards CAR (120), besides, the

single recognition mechanism of antigens in CARs results in poor

ability to distinguish between normal cells and tumor cells, exhibiting

targeted non tumor cell toxicity. Especially in the treatment of T-cell

malignancies, the interaction between CAR-T cells targeting common

antigens and lethal T-cell aplasia make clinical application difficult

(121). To date, there has been no formal study comparing the toxicity

of CAR-T cells in ab T, gd T, and NK cells, which also impedes the

widespread application of such products. Thus, further research is

warranted to enhance our understanding of the role of CAR-gd T

cells in the tumor microenvironment characterized by

immunosuppression, hypoxia, and metabolic competition, as well

as to investigate the long-term clinical implications of CAR-T cell

therapy. These efforts will strengthen the rationale for utilizing CAR-

gd T cell therapy in the treatment of solid tumors.

Due to the potential tumorigenic effect of total gamma delta T

cells, they may stimulate the activation of immunosuppressive

regulatory T cells, thereby promoting tumor growth (122, 123).

Additionally, gd T cells are associated with various autoimmune

diseases (124–127), and further research is needed to investigate the

safety of gd T cell therapy in future studies. Our research center has

rigorously studied gd T cell infusion (ChiCTR2300074794) for

safety and efficacy, with ongoing trials showing promising results.

Based on current data, we are highly confident in this

treatment approach.

In conclusion, further comprehensive and detailed research is

needed for the immunotherapy of solid tumors with gd T cells,

along with the establishment of standardized screening and
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treatment protocols to enhance both the quality of life and survival

prospects for tumor patients.
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