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Background: Hepatocellular carcinoma (HCC) is heterogeneous and refractory

with multidimensional features. This study aims to investigate its molecular

classifications based on multidimensional molecular features scores (FSs) and

support classification-guided precision medicine.

Methods: Data of bulk RNA sequencing, single nucleotide variation, and single-

cell RNA sequencing were collected. Feature scores (FSs) from hallmark

pathways, regulatory cell death pathways, metabolism pathways, stemness

index, immune scores, estimate scores, etc. were evaluated and screened.

Then, the unsupervised clustering on the core FSs was performed and the

characteristics of the resulting clusters were identified. Subsequently, machine

learning algorithms were used to predict the classifications and prognoses.

Additionally, the sensitivity to immune therapy and biological roles of

classification-related prognostic genes were also evaluated.

Results:We identified four clusters with distinct characteristics. C1 is characterized

by high TP53 mutations, immune suppression, and metabolic downregulation,

with notable responsiveness to anti-PD1 therapy. C2 exhibited high tumor purity

and metabolic activity, moderate TP53 mutations, and cold immunity. C3

represented an early phase with the most favorable prognosis, lower stemness

and tumor mutations, upregulated stroma, and hypermetabolism. C4 represented

a late phase with the poorest prognosis, highest stemness, higher TP53 mutations,

cold immunity, and metabolic downregulation. We further developed practical

software for prediction with good performance in the external validation.

Additionally, FTCD was identified as a classification-specific prognostic gene

with tumor-suppressing role and potential as a therapeutic target, particularly for

C1 and C4 patients.
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Conclusions: The four-layer classification scheme enhances the understanding

of HCC heterogeneity, and we also provide robust predictive software

for predicting classifications and prognoses. Notably, C1 is more sensitive to

anti-PD1 therapies and FTCD is a promising therapeutic target, particularly for

C1 and C4. These findings provide new insights into classification-guided

precision medicine.
KEYWORDS
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1 Introduction

Primary liver cancer remains a global health challenge, leading

to 905,677 new cases and 830,180 deaths worldwide in 2020,

especially a major threat to Asia and Africa (https://gco.iarc.fr)

(1). The majority of primary liver cancers are hepatocellular

carcinomas (HCC) (2). The major factors that contribute to the

onset and progression of HCC include chronic viral hepatitis,

alcohol intake, non-alcoholic fatty liver disease, and exposure to

aflatoxins (3, 4). The appropriate therapies for HCC depend on the

tumor stage, hepatic functional reserve, and the general condition of

the patients. For patients with early-stage HCC, the curative

therapies include surgical resection, liver transplantation, or

radiofrequency ablation. Intermediate-stage HCC is typically

managed with transarterial chemoembolization and radiation

therapy, either as monotherapy or in combination with systemic

therapies. Advanced-stage HCC requires systemic therapies,

including traditional chemotherapy and emerging precision

medicine approaches such as immune checkpoint inhibitors or

molecular targeted therapies (5, 6). Despite these treatments, HCC
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remains a highly refractory disease with approximately 70% of the

5-year recurrence rate after curative therapies and a 5-year overall

survival (OS) of less than 15% (7, 8).

Given the heterogeneity of HCC, understanding its molecular

characteristics and classifications is essential for precise clinical

management. So far, several typing schemes for HCC have been

proposed, yet they typically rely on specific dimensions (9–12), or

are tailored to particular subtypes, such as HBV-related HCC (13).

Moreover, few schemes performed validation with external cohorts

and provided user-friendly software. These factors restrict their

ability to comprehensively capture the complex features of tumors

and impede practical implementation in clinical settings.

To make out the molecular features of HCC comprehensively,

we conducted evaluations and classifications for HCC based on

multidimensional feature scores (FSs). These FSs included 50

hallmark pathways from the Molecular Signatures Database

(MSigDB, https://www.gsea-msigdb.org/gsea/msigdb) (14), 7

regulatory cell death pathways (15–20), immune cell infiltration

(21), mRNA stemness index (mRNAsi) (22), estimate score (23),

stromal score, tumor purity, immune score, immune checkpoint

score (24), tumor immune dysfunction and exclusion (TIDE) score

(25–27), and a merged metabolic pathway from the MSigDB

database. We also systematically characterized the response to

anti-PD1 therapy for each subtype, as well as their single

nucleotide variation (SNV), tumor immune microenvironment

(TIME), drug sensitivity, pseudo-temporal trajectory, intercellular

communication, etc. In this study, we also developed practical

software for predicting the molecular subtypes and prognosis

based on individual transcriptomic data (https://github.com/

OliveryYL/oncoClassSurv). In addition, our study identified

formiminotransferase cyclodeaminase (FTCD) as a classification-

specific prognostic gene with anti-tumor effects in HCC, serving as

a potential therapeutic target for specific molecular classifications

through bioinformatics screening and experimental evidence.

Therefore, this study provides a comprehensive global landscape

of HCC from multiple perspectives, which can provide support to

therapeutic decision-making based on classifications, individualized

disease evaluation, and further scientific research (Figure 1).
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2 Materials and methods

2.1 Research scheme

The research scheme is illustrated in Figure 2. Further details on

analytic processes and experimental methods are provided in the

Supplementary Materials.
2.2 Data collection and feature
score calculation

Bulk RNA sequencing (RNA-Seq) data were obtained from the

Cancer Genome Atlas-Liver Hepatocellular Carcinoma (TCGA-

LIHC) and the International Cancer Genome Consortium (ICGC-

LIRI-JP) projects. A total of 89 feature scores (FSs) were calculated,

including gene set variation analysis (GSVA) scores (28), curated

scores, and immune cell infiltration metrics. GSVA scores

encompassed 50 hallmark gene sets and another 11 crucial gene

sets (Supplementary Table S1). Six curated scores—mRNAsi, TIDE,
Frontiers in Immunology 03
estimate score, immune score, stromal score, and tumor purity—

were calculated based on previous studies (22, 25, 26). Immune cell

infiltration was estimated using the R package “immunedeconv”,

which involves six algorithms: Cibersort, Quantiseq, Timer,

MCPcounter, XCell, and EPIC (21). Specifically, the proportions

of 22 immune cell types calculated by the Cibersort algorithm were

enrolled in the 89 FSs above.
2.3 Clustering and characterization

Differential, prognostic, and Venn analyses were performed to

identify consistently significant FSs in HCC. These FSs were then

used for the unsupervised clustering analysis (29). The

characteristics of clusters were analyzed, including key signal

pathways, immune evaluation, pseudo-temporal trajectory, single

nucleotide variation (SNV), drug sensitivity, and single-cell RNA

sequencing (scRNA-Seq). Moreover, to make out the association

among diverse classification criteria, we compared the proportion of

different stages and MFP subtypes among clusters, respectively (30).
FIGURE 1

The graphic overview of the molecular classification system in the current study.
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2.4 Classifier development and validation

Cluster-specific marker genes were identified employing the

“FindAllMarkers” function from the “Seurat” package (31). A

classifier was developed using the random forest (RF) algorithm

based on these marker genes in the TCGA-LIHC training

cohort and externally validated with the ICGC-LIRI-JP cohort. To

validate the reliability of our classifier, characteristics of the

predicted classifications in the external cohort were compared

with those of the clusters in the TCGA-LIHC cohort.

Additionally, datasets GSE202069 and PRJEB34724 were used to

validate the responses to anti-PD1 therapy based on our

classifier (12, 32, 33).
2.5 Prognostic nomogram

A novel prognostic nomogram was developed using cluster-

specific marker genes in the TCGA-LIHC training cohort and

externally validated with the ICGC-LIRI-JP cohort.
Frontiers in Immunology 04
2.6 Software development

The practical software was developed for individualized

predictions of molecular classifications and prognoses using

external transcriptomic data.
2.7 Classification-related therapeutic
target identification

Significant therapeutic targets were identified through Venn

analysis, differential expression analysis, and prognostic analysis of

genes from several prognostic models. Lentiviral transduction was used

to establish overexpressing Huh7 cell lines for the target gene and its

negative control. The biological roles of the gene were evaluated by

means of cell proliferation, colony formation, transwell migration,

apoptosis, cell cycle assays, and tumorigenicity assays in nude mice.

All animal procedures were approved by the Ethics Committee

of Zhejiang Cancer Hospital and conducted in accordance with the

ethical guidelines.
FIGURE 2

The main analytical scheme of the current study.
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3 Results

3.1 Identification for critical FSs and
unsupervised clustering analysis.

After calculating the 89 FSs, differential and prognostic analyses

were performed to identify the most critical FSs in the TCGA and

the ICGC cohorts. The differential analysis results are presented in
Frontiers in Immunology 05
the heat maps (Figures 3A, B) and Supplementary Table S2, while

the Kaplan-Meier survival analysis results are provided in

Supplementary Table S3. The forest plots of the univariable Cox

regression analyses are shown in Supplementary Figure S1. The

results of the Kaplan-Meier survival analysis were incorporated into

the subsequent screening. Finally, Venn analysis for the differential

and the prognostic FSs identified 37 critical FSs closely related to

HCC biological behavior (Figure 3C).
FIGURE 3

Identification for critical FSs and unsupervised clustering analysis. (A) Differential heat map of FSs in the TCGA cohort. (B) Differential heat map of FSs
in the ICGC cohort. (C) Selection of consistently differential and prognostic FSs using Venn analyses. (D) The consensus CDF plot of the
unsupervised clustering analysis. (E) The delta area plot of the unsupervised clustering analysis. (F) Consensus matrix plot of the unsupervised
clustering analysis when K = 4. FSs, feature scores; TCGA, the Cancer Genome Atlas; ICGC, the International Cancer Genome Consortium; CDF,
consensus cumulative distribution function.
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Using the 37 critical FSs, we performed unsupervised clustering

analysis on 374 tumor samples from the TCGA-LIHC cohort,

identifying four clusters: C1, C2, C3, and C4 (Figures 3D–F).
3.2 Prognostic characteristics
among clusters

Significant survival differences were observed across the

clusters. Patients in C3 had the most favorable prognosis, with a

median overall survival (OS) of 81.9 months, followed by C2

(median OS: 71 months), C1 (median OS: 45.7 months), and C4

(median OS: 30 months) (P < 0.001, Figure 4A).
3.3 Association among clusters, tumor
stages, and MFP classifications

The results showed that C3 had the highest proportion of stage I

tumors (58.14%) and the lowest proportion of stage III (12.79%),

while C4 had the highest proportion of stage III tumors (35.44%)

and the lowest proportion of stage I (31.65%). C1 was

predominantly MFP-IE (37.50%), whereas C2 and C4 were
Frontiers in Immunology 06
mainly MFP-D (64.29% and 72.15%, respectively). C3 showed the

highest frequency of MFP-F (47.67%) (Figure 4B).
3.4 Pseudo-temporal trajectory analysis

To investigate the evolutionary relationships among clusters, we

performed a pseudo-temporal trajectory analysis. As illustrated in

Figure 4C, the lower-right subpopulation, representing normal

samples, was designated as the starting point, while the top-left

subpopulation marked the endpoint. The analysis revealed that

cluster C3 was closest to normal tissue, followed by C2, C1, and C4,

which aligns closely with their prognostic characteristics (Figure 4D).
3.5 Characteristics of key gene expression
and FSs among clusters

Significant differences in gene expression and FSs were observed

among clusters. The expression of MKI67 and AFP was significantly

upregulated in C1 and C4 than that of C2 and C3. Compared to the

normal samples, samples with upregulated AFP in HCC tumorsmostly

occurred in C1 and C4, not C2 and C3 (Supplementary Figure S2;
FIGURE 4

Characterization among clusters based on bulk RNA-seq in the TCGA cohort. (A) Survival curves among clusters. (B) Association among clusters,
stages, and MFP classifications using Sanky plot. (C) Pseudo-temporal trajectory analyses by tumor stages. (D) Pseudo-temporal trajectory analyses
by clusters. (E) Heat map of the key FSs enrolled in the unsupervised clustering analysis among clusters in the TCGA cohort. TCGA, the Cancer
Genome Atlas; MFP, molecular functional portrait.
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Supplementary Table S4). The significant feature scores (FSs) in the

heat map can be mainly categorized into three parts: stemness

proliferation, microenvironment (immune/stroma), and metabolism.

In terms of stemness proliferation, notable FSs include the mRNAsi

score, MYC targets, E2F targets, G2M checkpoint, PI3K AKT mTOR

pathway, and DNA repair activity. The microenvironment category

encompasses the estimate score, stromal score, immune checkpoint

score, immune score, complement score, immunogenic cell death

score, tumor purity, and TIDE score. The metabolism category

includes various metabolic-related pathway scores. These categories

help to delineate the roles and impacts of FSs within the context of

tumor biology.

C1 was characterized by upregulated activities in MYC targets,

E2F targets, G2M checkpoint, and PI3K AKT mTOR. In addition,

C1 had a high estimate score, hot immunity (such as immune

checkpoint score, immune score, complement score, and

immunogenic cell death score), and high disulfidptosis, while its

tumor purity and TIDE score were low, as well as hypometabolism;

C2 was characterized by downregulated PI3K AKT mTOR activity,

cold immunity, high tumor purity, and hypermetabolism; C3

exhibited the lowest stemness, high estimate score and stromal

score, hot immunity, low tumor purity, low DNA repair activity,

and hypermetabolism; C4 showed the highest stemness, high G2M,

high DNA repair, but low PI3K AKT mTOR activity, cold

immunity, low estimate score and stromal score, high tumor

purity, and hypometabolism (Figure 4E; Supplementary Table S5).
3.6 Gene set enrichment analysis

GSEA revealed significant pathway alterations among the clusters.

In C1, there was upregulation in pathways such as epithelial-

mesenchymal transition (EMT), interferon response, and antigen

processing, while pathways like adipogenesis, fatty acid metabolism,

and oxidative phosphorylation were downregulated. Conversely, C2

exhibited the opposite trends in these pathways compared to C1. C3

showed upregulation in EMT, interferon response, coagulation, and

complement pathways, with downregulation observed in the unfolded

protein response, G2M checkpoint, E2F targets, and MYC targets. In

C4, significant upregulation was observed in the G2M checkpoint, E2F

targets, ribosome, and oxidative phosphorylation pathways, while its

peroxisome, immune, and metabolic pathways were significantly

downregulated (Supplementary Figure S3; Supplementary Table S6).
3.7 Characteristics of immune
microenvironment among clusters

We characterized the immune landscape among the four

clusters to infer their responses to immunotherapy. Immune and

stromal cell infiltration was evaluated using six computational

methods: XCell, MCPcounter, Timer, Quantiseq, EPIC, and

Cibersort (Supplementary Figure S4A). Overall, clusters C1 and

C3 had higher levels of immune and stromal cells compared to C2

and C4. Notably, C1 exhibited the highest abundance of CD8+ T

cells and the highest cytotoxicity score, indicating a strong anti-
Frontiers in Immunology 07
tumor immune response. C3 showed the highest abundance of

cancer-associated fibroblasts (CAF) and endothelial cells,

suggesting a tumor-promoting microenvironment. In addition,

C1 and C3 had the highest abundance of myeloid dendritic cells

and macrophages, which have complex roles in antigen

presentation and tumor progression.

Further investigation into the expression of human leukocyte

antigen (HLA) genes and immune checkpoint genes (ICGs)

revealed significant upregulation of multiple HLA genes and ICGs

in C1, including HLA-A, HLA-B, HLA-C, PDCD1, CD274, CTLA-

4, HAVCR2, LAG3, CD80, CD86, TIGIT, etc. In contrast, although

C3 had upregulated expression of HLA genes, its ICGs expression

was weak (Supplementary Figure S4B).

These findings indicate that C1 is in an immunosuppressive

state, potentially making it more responsive to immune checkpoint

blockade (ICB) therapies by alleviating this inhibition and thereby

inducing an immune response.
3.8 Single nucleotide variation landscape
among clusters

Considering that SNV can drive tumor progression by altering

the structure of encoded proteins or regulating gene expression,

therefore, we investigated the SNV landscape among clusters.

The SNV analysis showed that C1 exhibited high-frequency

TP53 missense mutations (29.58%), low frequencies of TTN

(15.49%) and CTNNB1 (15.49%) missense mutations; C2

harbored multiple high-frequency mutations, especially TTN

(28.00% missense mutations and 13.00% silent mutations) and

CTNNB1 (43.00% of missense mutations), with moderate TP53

mutations (13.00% of missense mutations); Notably, C3 had the

lowest overall mutations among the four clusters; C4 was mainly

characterized by high frequencies of TP53 (33.78% missense

mutations) and TTN (25.68% missense mutations) mutations,

while the frequency of CTNNB1 mutations was not significantly

increased (27.03% missense mutations) (Figure 5).
3.9 Drug sensitivity evaluation
among clusters

To evaluate the differences in drug sensitivity among clusters, we

calculated the half-maximal inhibitory concentration values for 198

drugs. The results revealed distinct drug sensitivities for each cluster.

C1 exhibited increased sensitivity to several drugs: gemcitabine,

which interferes with DNA synthesis; cisplatin, which induces

DNA cross-linking and damage; irinotecan, which inhibits

topoisomerase I; and talazoparib, which inhibits poly ADP

ribose polymerase (PARP). C2 was primarily sensitive to TAF1

inhibitor TAF1_5496_1732, which inhibits transcription; MCL-1

inhibitor AZD5991_1720, which promotes apoptosis; and

mitochondrial inhibitor Dihydrorotenone_1827. C3 showed

heightened sensitivity to nutlin-3a, which inhibits MDM2;

selumetinib, which inhibits MEK1/2; mitoxantrone, which inhibits

topoisomerase II, and gemcitabine. C4 was sensitive to Sepatronium
frontiersin.org
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bromide_1941, which inhibits survivin; Daporinad_1248, which

inhibits nicotinamide phosphoribosyltransferase (NAMPT); and

MK−1775_1179, which inhibits WEE1 and PLK1 in the cell cycle

pathway (Supplementary Figure S5A; Supplementary Table S7).

We further investigated the correlation between drug sensitivity

and TP53 mutations. The results showed that the expression of

TP53 and MDM2 was higher in wild-type TP53 patients compared

to those with TP53 mutations. Most patients in the C3 subtypes met

the conditions of wild-type TP53 and high expression of MDM2,

which could explain the sensitivity of nutlin-3a in C3 patients

(Supplementary Figures S5B, C).
3.10 Single-cell analysis for
characterization among clusters

To gain deeper insights into clusters at the cell-subpopulation

level, we performed single-cell analyses. Following quality control,

dimensionality reduction, clustering, and cell annotation, we

identified eight distinct cell subpopulations (Supplementary

Figure S6; Figures 6A, B).

We evaluated the significantly upregulated marker gene sets of

C1–C4 using the GSVA algorithm in single cells (Figure 6C). The

results showed that the activity of the characteristic gene set of C1

was upregulated in various immune cell types, yet exhibited

downregulated activity in malignant cells. In contrast, the activity

of the characteristic gene set of C2 was significantly upregulated in

malignant cells. The characteristic gene set of C3 showed

pronounced activation in CAF, whereas the C4 characteristic gene

set displayed activation across various cell types, predominantly in

TEC, but showed diminished activity in B cells and CAF.

Cell-cell communication analysis revealed that tumor-associated

macrophages (TAM) played a pivotal role in intercellular interactions
Frontiers in Immunology 08
within HCC (Figure 6D). The intercellular-interaction gene sets

were used as reference gene sets for the GSEA enrichment analysis

of C1–C4 based on bulk RNA-seq clustering (Figure 6E). The results

showed upregulations of TAM-mediated and CAF-mediated

intercellular communication in C1, a downregulation of CAF-

mediated intercellular communication in C2, and an upregulation

of intercellular communication mediated by CAF in C3 (P < 0.05).

However, there was no significant enrichment of intercellular

communication observed in C4.
3.11 Development of the classifier and
validation for response to anti-PD1 therapy

To efficiently identify the molecular subtypes of patients in real-

world settings, we developed a classifier using the random forest

(RF) algorithm (Figure 7A).

We identified 521 cluster-specific marker genes using the

“FindAllMarkers” function (Supplementary Table S8). Based on

these marker genes, the RF classifier achieved an overall prediction

accuracy of 81.82% with a 95% confidence interval (CI) of 73.33%–

88.53% in the TCGA internal validation cohort. The prediction

accuracy for each subtype by the RF classifier is presented in Figure 7B.

In the ICGC external validation cohort, the molecular

classifications were predicted using the RF classifier. Compared to

the TCGA cohort, the predicted classifications in the ICGC cohort

exhibited consistent prognostic characteristics (median OS: C3 > C2

> C1 > C4, P < 0.001, Figure 7C). We also evaluated the

characteristics of FSs (Figure 7D), immune cell infiltration

(Supplementary Figure S7A), and immune genes (Supplementary

Figure S7B) in the ICGC cohort. These validation results were

consistent with the characteristics in the TCGA cohort, which

further confirmed the robustness and reliability of our classifier.
FIGURE 5

Single nucleotide variation analysis among clusters in the TCGA cohort. (A) Single nucleotide variation landscape among clusters. (B) Single
nucleotide variation frequency among clusters.
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Using our classifier, we further tested the hypothesis that C1 is

more sensitive to anti-PD1 therapy in two external cohorts including

81 patients. Among them, the PRJEB34724 cohort enrolled 40 patients

(6 responders and 34 non-responders), and the GSE202069 cohort

enrolled 17 patients (8 responders and 9 non-responders).

The results showed that the immune cell infiltration and ICG

expression profiles among the four subtypes were highly similar to

the corresponding subtypes in the TCGA cohort (Figure 8A).

Notably, we confirmed that patients in the C1 subgroup had a

higher anti-PD1 response rate of 47.37% (9/19, P = 0.01), especially

in the GSE202069 cohort with a response rate of 75% (6/8).

Moreover, none of the C3-subtype responders were found in

either of the two cohorts (Figures 8B, C).
3.12 Development of the
prognostic nomogram

To develop the prognostic nomogram, we identified 70 genes based

on the intersection of cluster-specific marker genes and HCCDB

prognostic genes. Then seven models were evaluated using the

random survival forest (RSF) (Supplementary Figures S8A–C),

the least absolute shrinkage and selection operator (LASSO)

combining 10-fold cross-validation (Supplementary Figures S8D, E),

and stepwise Cox regression. The details of covariables included in the

seven models are shown in Supplementary Table S9.
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Using the 3-fold 1000-time-repeation cross-validation, the

median concordance index (C-index) of the LASSO combined with

stepwise Cox regression and tumor staging (LASSO-Stage) model

achieved 0.770 in the training cohort and 0.810 in the TCGA inner

validation cohort (Supplementary Figure S8F). In addition, we

compared the time-dependent receiver operating characteristic

curves and found that the LASSO-Stage model had higher values of

area under curves at different time points (Supplementary Figures

S8G–J). Therefore, the 9-variable LASSO-Stage model was relatively

simple and accurate, and accordingly was used to develop the

prognostic nomogram (Figure 9A). The C-index of the nomogram

was 0.782 (95% CI, 0.709–0.855) in the external ICGC validation

cohort. The calibration curves demonstrated good consistency

between the nomogram predictions and actual outcomes

(Figures 9B–E).

Decision curve analysis indicated that the 9-variable nomogram

model was almost as effective as the 26-variable Step-Cox model.

Patients could benefit from the nomogram when the risk thresholds

range from 0.036 to 0.66 (Supplementary Figures S9A, B).

Using the nomogram, the risk scores were calculated for all

patients, and the iterative stratification method was used to divide

the training cohort into three stratifications (P < 0.001). Using the

thresholds of the training cohort, patients in the validation cohorts

could be divided into significant prognostic stratifications (P < 0.01)

(Supplementary Figures S10A–C). The risk curves and survival

status demonstrated that the risk scores of patients predicted by the
FIGURE 6

Characterization among clusters using scRNA-Seq data. (A) The tSNE plots of cell annotation for single-cell clusters. (B) Single-cell subpopulations
and their annotation genes. (C) GSVA scores of upregulated marker gene sets of C1–C4 among the single-cell subpopulations. (D) Network of
intercellular communication among single-cell subpopulations. (E) The activation level of intercellular communications among clusters in the TCGA
cohort using the GSEA algorithm. tSNE, t-distributed stochastic neighbor embedding; GSVA, gene set variation analysis; TCGA, the Cancer Genome
Atlas; GSEA, gene set enrichment analysis; NES, normalized enrichment score.
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nomogram were positively related to their death risk

(Supplementary Figures S10D–F).

To facilitate classification and prognosis prediction, we

developed an R package called “oncoClassSurv” (https://github.

com/OliveryYL/oncoClassSurv), which has a corresponding

desktop executable version (https://github.com/OliveryYL/

oncoClassSurv_Expansion/) and a web-based Shiny calculator

(https://oncomanager.shinyapps.io/oncoClassSurv/).
3.13 Target gene screen and
characterization of biological functions

We identified four crucial prognostic genes through Venn

analysis of multiple models (Figure 10A). Protein expression

profiling and immune fluorescence indicated that FTCD was

significantly downregulated in HCC (P < 0.001, Figures 10B, C).

Survival analysis revealed that patients with elevated FTCD

expression had a significantly improved prognosis compared to

those with diminished expression in the TCGA cohort (P < 0.001,

Figure 10D). FTCD expression was relatively upregulated in C2 and

C3 with a favorable prognosis, while it was downregulated in C1

and C4 with a poorer prognosis (Supplementary Figure S11).

We established FTCD-overexpressing Huh7 cell lines (Huh7-

FTCD) and negative control (Huh7-NC) via lentiviral transduction
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(Figure 10E). Cell proliferation assays indicated that FTCD

overexpression significantly inhibited the viability of Huh7 cells

(Figure 10F). Colony formation assays demonstrated a reduced

clonogenic ability in Huh7-FTCD cells (Figure 10G); Transwell

assays revealed a significantly decreased migration ability in Huh7-

FTCD cells (Figure 10H). Apoptosis assays showed no significant

difference betweenHuh7-FTCD andHuh7-NC cells (Figure 10I), while

the Huh7-FTCD cells exhibited G2/M cell cycle arrest compared to

Huh7-NC cells (Figure 10J). Subcutaneous tumorigenicity assay in

nude mice indicated that tumor progression originating from the

Huh7-FTCD cells was significantly slower than that from the

Huh7-NC cells (Figure 10K).
4 Discussion

HCC is a highly heterogeneous disease with complex biological

characteristics. In the emerging era of precision medicine, it is

essential to identify the classifications based on their molecular

characteristics. Although several schemes for HCC have been

proposed, they often have some limitations. These include a

narrow focus on specific dimensions, a lack of validation with

external cohorts, and impracticality due to the absence of user-

friendly software or overly complex metrics. Thus, the current study

was mainly designed to comprehensively characterize HCC
FIGURE 7

Construction of classifier using the RF algorithm. (A) Error rates of the RF model using the 521 cluster-specific marker genes. (B) The accuracy in the
TCGA internal validation cohort by the RF classifier. (C) Survival curves by the RF classifier in the ICGC external validation cohort. (D) Characteristics
of key feature scores among classifications predicted by the RF classifier in the ICGC external validation cohort. ****P < 0.0001. RF, random forest;
TCGA, the Cancer Genome Atlas; ICGC, the International Cancer Genome Consortium.
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heterogeneity across multiple dimensions, develop practical

predictive software, and explore the potential therapeutic

strategies customized for different subtypes.

Previous studies have proposed several molecular classifications

of HCC. A proteogenomic study conducted by Qiang Gao and Jia

Fan, et al., categorized hepatitis B virus-associated HCC patients

into three distinct subgroups: the metabolic subgroup (S-Mb), the

microenvironment dysregulation subgroup (S-Me), and the

proliferative subgroup. S-Mb showed enrichment in cancer

metabolism and had a favorable prognosis. In contrast, S-Me

exhibited enrichment in immunity-related features, with a worse

prognosis compared to S-Mb (13). Other classifications mainly

focused on a few certain pathways, such as immune or metabolic-

related pathways. Chen Yang et al. proposed a three-layered

classifier based on the metabolic gene sets (9), while Binghua Li

et al. developed a three-layered classifier based on the fatty acid

degradation pathway (12); Additionally, Jiao Gong et al. developed

a three-layered classifier based on the immunologic and hallmark

gene sets (10). Montironi et al. described the immune genome

background of HCC, dividing it into inflammatory and non-

inflammatory tumors (11). Recently, the study by Shimada S et al.

summarized the past development of molecular classifications of

HCC, highlighting the importance of characterizing HCC subtypes

(34). Our study contributes to this field by developing a molecular

typing system with four subtypes based on proliferation,

microenvironment (immune/stromal), and metabolic activity. We

compared our subtypes with previously identified subtypes and

found interesting overlaps. For instance, our C1 subtype shares
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similarities with previously reported subtypes like MFP-IE,

inflammatory, or FAD-F1 subtype, while C2, with its CTNNB1

mutations and immune therapy response patterns, is consistent

with previous findings. This comparison helps explain our

classification system and provides insights into HCC heterogeneity.

We appreciate their groundbreaking studies. However, these

schemes also have acknowledged limitations, as mentioned

previously. To characterize the complex heterogeneity of HCC, we

conducted comprehensive analyses across multiple FSs dimensions.

In addition, we integrated single-cell data analysis and combined the

TIME-MFP typing system to scrutinize the characteristics of

subtypes. Among the initial 89 FSs, the selected signal pathways act

as significant roles across various malignancies (35–40); mRNAsi can

represent the stemness characteristics closely related to tumor

proliferation and progression (41, 42); Metrics such as TIDE score,

MFP typing, immune score, immune checkpoint, and immune cell

infiltration can reflect the TIME and contribute to clarifying the

relationship between subtypes and immune response (25–27, 30).

The integrated tumor metabolic score can reflect the metabolic

reprogramming characteristics of HCC, and the m6A and m5C

gene sets are hot fields involving RNA modification (43–45). The

37 key FSs were rigorously selected from the initial FSs through

differential expression and survival analyses to ensure their relevance

to HCC’s biological characteristics. Therefore, our classification

system encompasses multiple critical dimensions, providing robust

evidence for precise management and research.

In this study, we performed unsupervised clustering analysis on the

FSs derived from TCGA-LIHC and generated a clustering heatmap of
FIGURE 8

The response to anti-PD1 therapy among classifications in two external validation cohorts. (A) The heat map showed the classifications predicted by
the RF classifier and the details of response to anti-PD1 therapy. (B) The correlation between the response to anti-PD1 therapy and classifications
predicted by the RF classifier. (C) Subgroup analysis showed the response to anti-PD1 therapy in each cohort. RF, random forest.
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the FSs (Figure 4E). After predicting molecular classifications on the

ICGC-LIRI-JP dataset using our tool, we generated another clustering

heatmap (Figure 7D). According to the FSs clustering heatmaps, HCC

exhibited complex heterogeneity and could be stratified into four

subtypes (C1–C4) from the three major fields: stemness proliferation,

metabolism, and microenvironment (stroma-riched or immunity-

riched). Stemness-proliferation-related FSs include G2M, MYC, E2F,

PI3K AKT mTOR, mRNAsi, and DNA repair activity, etc. From the

perspective of stemness proliferation, both C1 and C4 exhibited high

G2M, MYC, E2F activities, and MKI67 expression levels. Besides, C1

had high PI3K AKT mTOR activity, while C4 had high mRNAsi and

DNA repair activity. Therefore, both C1 and C4 exhibited high

stemness-proliferation characteristics. In contrast, C2 and C3 had

lower levels of MKI67, mRNAsi, G2M, MYC, and E2F, indicating a

low proliferative phenotype. Metabolism-related FSs include

HALLMARK BILE ACID METABOLISM, HALLMARK

XENOBIOTIC METABOLISM, HALLMARK ADIPOGENESIS, and

HALLMARK FATTY ACID METABOLISM, etc. From the

perspective of metabolism, C1 and C4 were hypometabolic, while C2
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and C3 were hypermetabolic. Microenvironment-related FSs can be

divided into two subcategories: immune-related FSs and stroma-related

FSs. Immune-related FSs include immune cell infiltration proportions,

immune score, TIDE, RCD immunogenic cell death, HALLMARK

COMPLEMENT, immune checkpoint, and HALLMARK

INTERFERON GAMMA RESPONSE. Stroma-related FSs include

stromal score, estimate score, and tumor purity. From the

perspective of microenvironment, both C1 and C3 exhibited rich

microenvironment phenotypes. C1 was particularly immune-rich

with high lymphocyte infiltration and overexpression of multiple

HLA genes and suppressive immune checkpoint genes. Most of C1

belonged to the MFP-IE subtype (37.50%) with a high potential for

response to anti-PD1 therapy (30); C3 was mainly a stroma-rich

subtype, rich in CAF, with overexpression of HLA genes, and

diminished expression of suppressive immune checkpoint genes.

Most patients of C3 were MFP-F subtype (47.67%) and MFP-IE

subtype (32.56%). C2 and C4 were stroma-desert, immune-desert,

and highly tumor-purity subtypes, with most of C2 (64.29%) and C4

(72.15%) belonging to the MFP-D subtype. Thus, considering the
FIGURE 9

Prognostic nomogram and calibrations in the training and validation cohorts. (A) The prognostic nomogram. (B–E) The calibration plots of the
nomogram in the TCGA all cohort (B), the TCGA training cohort (C), the TCGA inner validation cohort (D), and the ICGC external validation cohort (E).
*P < 0.05, ***P < 0.001. TCGA, the Cancer Genome Atlas; ICGC, the International Cancer Genome Consortium.
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correlation with immune and MFP classifications, it can be inferred

that C1 may be more suitable for anti-PD1 treatment.

Considering the characteristics of pseudo-temporal trajectory,

staging, and prognosis, C3 was the closest subtype to normal tissue

and in the early phase of the disease, with the most favorable

prognosis. C2 was in the middle phase of the disease with a good

prognosis, only inferior to C3. C1 was in the middle or late phase of

the disease with a poor prognosis. C4 was in the late phase of the

disease with the worst prognosis.

Gene mutations are known to drive various tumors (46).

Multiple studies have indicated that TP53 mutation is an

important tumor driver associated with poor prognosis (47–49).

In the current study, the mutation frequency of TP53 (C4 > C1 > C2

> C3) was closely correlated with the prognosis of different subtypes
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(median OS: C4 < C1 < C2 < C3). Previous studies suggested that

patients with wild-type TP53 and high expression of MDM2 would

be more sensitive to MDM2 inhibitors (50). Interestingly, most C3

patients fit this condition, which accounted for their high sensitivity

to nutlin-3a (Supplementary Figure S5); In addition, the mutation

rates of CTNNB1 were higher in C2, while they were both lower in

C1 and C3. CTNNB1 encodes b-catenin, and the previous study

suggested its mutations can activate the WNT/b-catenin signaling

pathway, which is commonly found in immunotherapy-

unresponsive individuals (32). Accordingly, we made the

following inference that C2 is relatively not suitable for anti-PD1

therapy due to their immune-desert characteristics and higher

CTNNB1 mutations. This inference can be verified by external

cohorts experiencing anti-PD1 therapy in the following analysis.
FIGURE 10

Expression differences, prognostic roles, and biological functions of FTCD. (A) Identification of prognostic key genes through Venn analysis. (B) The
protein expression difference in FTCD was assessed by the CTPAC proteomic database. (C) The protein expression difference in FTCD was assessed
by the immunofluorescence experiment. (D) Survival curves of FTCD expression levels in the TCGA database. (E) Protein expression of FTCD-
overexpressing Huh7 cell lines by Western blot. (F) The Cell Counting Kit-8 (CCK-8) assay assesses the cell viability. (G) Colony formation assay
assesses the clonogenic ability of cells. (H) The transwell assay was used to evaluate the cell migration ability. (I) Flow cytometry was used to
evaluate changes in cell apoptosis. (J) Flow cytometry was used to assess alterations in the cell cycle. (K) Subcutaneous tumorigenicity assay in nude
mice was used to evaluate the impact on the progression of tumors. **P < 0.01, ***P < 0.001, ****P < 0.0001, ns, not significant.
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Moreover, we identified the most sensitive drugs for each subtype,

which could provide references for further research.

We further investigated the cluster characteristics at the single-

cell level. The results of the single-cell analysis exhibited high

consistency among clusters with the immune-related findings

from the bulk RNA-Seq data in the TCGA cohort. For instance,

C1 is enriched in immune cells, while C3 is enriched in CAF. C2 is

predominantly composed of malignant cells with a lack of immune

cells. These findings provide insights into the varied responses to

anti-PD1 therapy among clusters from the single-cell perspective.

To verify our inference of sensitivity to immune therapy in

external cohorts, we first needed to accurately predict their

classifications. To achieve this, we constructed a four-layer classifier

based on the TCGA cohort using the RF algorithm, which performed

well in the external ICGC cohort. The predicted classifications of the

external ICGC cohort showed consistent characteristics, including

prognostic outcomes and FSs among distinct classifications,

compared to the TCGA cohort. Using the robust classifier, we

further conducted another external validation in two datasets

experiencing anti-PD1 therapies to evaluate the response to anti-

PD1 therapy. The encouraging results confirmed our inference that

the C1 subtype has the highest response to anti-PD1 therapy.

We conducted multivariate analyses to assess the prognostic values

of the selected genes using machine learning algorithms. The critical

classification-specific prognostic genes were selected and used to

develop a prognostic nomogram. This nomogram has excellent

prediction ability and can provide personalized prognostic evaluations.

Based on the above investigations, we further developed practical

prediction software that can be applied to evaluate the classifications

and prognosis of HCC, including three versions: local R program,

desktop executable software, and web-based application. These tools

can also utilize customized expression profiles and classification-

specific marker genes to expand to other diseases.

Furthermore, we propose that the functional characterization

for molecular typing marker genes can serve as a novel anti-tumor

target screening approach. This screening strategy holds promise

for precise patient screening and decision-making based on

molecular classifications in the future. To explore targets with

high potential therapeutic values, we performed Venn analysis

and expression profiling differential analysis for the prognostic

genes, and identified FTCD as a critical prognostic gene with

significant expression differences.

In the clinical cohort, FTCD expression is downregulated in C1

and C4 subtypes, which is correlated with increased tumor malignancy

and poorer patient outcomes. In contrast, C2 and C3 subtypes exhibit

FTCD overexpression with more favorable prognoses.

A previous study indicated that hepatocyte-specific knockout of

FTCD can promote chronic diethylnitrosamine-induced and

spontaneous HCC in mice. The Loss of FTCD upregulated

peroxisome proliferator-activated receptor (PPAR)g and sterol

regulatory element-binding protein 2 (SREBP2) by regulating the

PTEN/Akt/mTOR signaling axis, leading to lipid accumulation and

hepatocarcinogenesis (51).

Our investigation into FTCD’s biological roles further revealed its

tumor-suppressive function. A series of cell and animal experiments

suggested that FTCD overexpression can significantly inhibit the
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progression both in vitro and in vivo (Figure 10). Thus, diminished

FTCD expression is a key driver of disease progression in C1 and C4

subtypes. Enhancing FTCD expression in these patients may lead to

substantial therapeutic gains. In future scientific research and clinical

management, we may refine tumor biological behavior and patient

outcomes through targeted delivery methods, such as mRNA-

liposome nanomedicine, to boost FTCD expression levels in HCC

tissues. Accordingly, the FTCD gene emerges as a viable therapeutic

target for C1 and C4 patients. Certainly, these findings warrant

further investigation for validation.
5 Conclusions

In summary, we proposed a novel molecular classification

scheme for HCC based on the multidimensional FSs. The four-

layer classification scheme reveals the complex heterogeneity of HCC

through comprehensive characterization. We also developed and

validated predictive software. Notably, our research confirmed that

the C1 subtype is more responsive to anti-PD1 treatment, and

identified FTCD as a promising therapeutic target, particularly for

C1 and C4. These findings provide robust evidence for individualized

disease evaluation, decision-making, and further scientific research.
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