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The role of cGAS-STING
signaling in rheumatoid
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to therapeutic targets
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Rheumatoid arthritis (RA) is a systemic autoimmune disease primarily

characterized by erosive and symmetric polyarthritis. As a pivotal axis in the

regulation of type I interferon (IFN-I) and innate immunity, the cyclic GMP-AMP

synthase-stimulator of interferon genes (cGAS-STING) signaling pathway has

been implicated in the pathogenesis of RA. This pathway mainly functions by

regulating cell survival, pyroptosis, migration, and invasion. Therefore,

understanding the sources of cell-free DNA and the mechanisms underlying

the activation and regulation of cGAS-STING signaling in RA offers a promising

avenue for targeted therapies. Early detection and interventions targeting the

cGAS-STING signaling are important for reducing the medical burden on

individuals and healthcare systems. Herein, we review the existing literature

pertaining to the role of cGAS-STING signaling in RA, and discuss current

applications and future directions for targeting the cGAS-STING signaling in

RA treatments.
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1 Introduction

Rheumatoid arthritis (RA) is an autoimmune disease caused by the breakdown of

immune homeostasis, affecting women more frequently than men. Clinical features of RA

primarily include joint swelling, pain, stiffness, weakness, deformity, and fatigue (1).

Pathologically, RA is characterized by chronic inflammation of the joint synovium,

formation of pannus, and infiltration of lymphocytes, macrophages, and neutrophils (2).

Common treatments for RA include non-steroidal anti-inflammatory drugs (NSAIDs),

synthetic disease-modifying antirheumatic drugs (DMARDs), biological DMARDs,

traditional Chinese medicine, and surgical interventions (3, 4). Representative

therapeutic options available for patients include celecoxib, methotrexate (MTX),

glucocorticoids, tumor necrosis factor (TNF) inhibitors, IL-6R inhibitors, Janus kinases
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(JAKs) inhibitors, and anti-B cell antibodies, patients may require

multiple drugs with different modes of action to address the

heterogeneity of RA (5). Despite these therapies, the clinical

symptoms of certain patients remain unrelieved, underscoring the

need for a deeper understanding of RA’s pathogenic mechanisms to

explore novel treatment options.

Innate immunity plays a critical role in the pathogenesis of RA,

including various innate immune cells and components (6). For

example, increased expression of toll-like receptors (TLRs, TLR2/3/

4/7) has been reported in RA. Ligand-stimulated TLRs activate the

intracellular MyD88-dependent and MyD88-independent pathway,

resulting in the induction of various pro-inflammatory cytokines in

RA (7). An increased interferon gene signature was observed in

patients with early RA (eRA), which predicted a poor response to

the initial therapies in the first 6 months after diagnosis (8). Also,

there was a correlation between baseline interferon gene signature

and disease activity score 28 at 6 months. Further exploration

demonstrated that interferon-a played an important role in

therapeutic resistance by regulating site-specific DNA methylation

in B and T cells (9). Thus, dysregulated IFN-I potentially plays a role

in the pathogenesis and therapeutic resistance of RA (10).

The cyclic GMP-AMP synthase-stimulator of interferon genes

(cGAS-STING) signaling pathway is crucial for cells to recognize

and respond to cytosolic double-stranded DNA (dsDNA), serving

as a primary driver for the establishment of innate immunity

through the induction of IFN-I (11). TNF-a is a pathogenic

cytokine in RA, which has been demonstrated to increase DNA

damage and nuclear DNA release, accompanied by reduced STING

degradation (12). Thus, it is reasonable to speculate that TNF can

regulate RA progression through cGAS-STING signaling. Here, we

delve into the role of cGAS-STING signaling in RA from the origin

of cell-free DNA (cfDNA) to the final effects. Also, the potential

therapeutic applications of cGAS-STING signaling in RA treatment

will be discussed, aiming to provide new insights for the future

research on RA.
Abbreviations: RA, rheumatoid arthritis; IFN-I, type I interferon; cGAS, cyclic

GMP-AMP synthase; STING, stimulator of interferon gene; NSAIDs, non-

steroidal anti-inflammatory drugs; DMARDs, disease-modifying antirheumatic

drugs; MTX, methotrexate; TNF, tumor necrosis factor; JAKs, Janus kinases;

TLR, toll-like receptor; dsDNA, double-stranded DNA; cfDNA, cell free-DNA;

ISGs, interferon-stimulated genes; cGAMP, cyclic GMP-AMP; ER, endoplasmic

reticulum; ERGIC, ER-Golgi intermediate compartments; TBK1, TANK binding

kinase 1; IRF3, interferon regulatory factor 3; NF-kB, nuclear factor-kB; NETs,

neutrophil extracellular traps; FLSs, fibroblast-like synoviocytes; CIA, collagen-

induced arthritis; CFA, complete Freund’s adjuvant; CII, type II collagen; OA,

osteoarthritis; FTO, fat mass and obesity-associated protein; AIA, adjuvant-

induced arthritis; CMPK2, cytidine/uridine monophosphate kinase 2; MMP,

matrix metalloproteinase; Pol b, polymerase b; cNPs, cationic nanoparticles;

PEG, polyethylene glycol; NiH, nanomedicine-in-hydrogel; AMDs, antimalarial

drugs; HCQ, hydroxychloroquine; LEF, leflunomide; PEI-PDA, polyethyleimine-

polydopamine; TP, triptolide; ITA, itaconate.
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2 An overview of the cGAS-STING
signaling pathway

The cGAS-STING signaling pathway is widely distributed in

immune cells, non-immune cells, tumor cells, and other tissue-

derived cells (13–15). The primary function of cGAS-STING

signaling is to trigger the innate immune response by inducing

IFN-I production and subsequent interferon-stimulated gene (ISG)

expression (16, 17). This signaling also plays roles in other cellular

activities, including autophagy, pyroptosis, metabolism, and cellular

senescence (18–21). Moreover, the cGAS-STING signaling can be

modulated by cellular molecules, RNA virus-derived components,

and post-translational modifications to maintain homeostasis

under normal conditions, with its dysregulation potentially

contributing to disease development (22–24).

cGAS, acts as a cytosolic DNA sensor, recognizing DNA in the

cytoplasm that originates from pathogens, mitochondria,

micronuclei, and dead cells (25). The activation of cGAS is

triggered by its interactions with dsDNA, which is dependent on

the length of DNA (>45 nucleotides) rather than the sequence (26).

The availability of longer dsDNA fragments allows for the

attainment of a certain signaling threshold (27, 28). Upon cGAS

activation, cyclic GMP-AMP (cGAMP) is synthesized from GTP

and ATP, which is responsible for eliciting the downstream

signaling (29). In addition, the DNA-RNA hybrids can also

induce the activation of cGAS (30). It is also noteworthy that

cGAS can reside in the nucleus (31). Studies have shown that

nuclear cGAS binds to nucleosomes (mainly H2A-H2B), which

prevents the cGAS-DNA binding and cGAS dimerization, thereby

maintaining cGAS in an inactive conformation and consequently

limiting autoreactivity (32–34).

STING, initially identified before cGAS, is a 379 amino acid

protein located on the endoplasmic reticulum (ER) membrane (35,

36). cGAMP binds to STING, resulting in profound conformational

changes that trigger STING oligomerization. Subsequently,

tetramers of STING translocate to Golgi compartments through

the ER-Golgi intermediate compartments (ERGIC). STING then

facilitates the recruitment of TANK binding kinase 1 (TBK1), which

promotes TBK1 autophosphorylation and STING phosphorylation.

This process further triggers the recruitment and phosphorylation

of interferon regulatory factor 3 (IRF3). Phosphorylated IRF3

undergoes dimerization and translocates to the nucleus, initiating

the expression of IFN-I. Ultimately, IFN-I induces the expression of

ISGs through IFNAR. Additionally, STING also induces the

activation of IKK, leading to the nuclear entry of nuclear factor-

kB (NF-kB) and subsequent the expression of inflammatory factors

(Figure 1) (16, 17). Interestingly, a previous study revealed that

interferon production could be induced by membrane fusion in a

STING-dependent but cGAS-independent manner (37).

cGAS-STING signaling activation and IFN-I production are

involved in multiple pathological and physiological processes.

During viral infections, IFN-I promotes the clearance of the virus,

but it may also cause immunosuppression during chronic infections

(38). However, excessive expression of IFN-I enhances the

autoreactive T cell- and B cell-mediated responses, ultimately

resulting in the occurrence of autoimmunity (16, 39). Although
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other branch activations are also involved in RA, such as the cGAS-

PI3K-Akt signaling pathway, this review will primarily focus on the

cGAS-STING signaling pathway in the following sections (40, 41).
3 cGAS-STING signaling in the
progression of RA

3.1 Elevated levels of cfDNA, cGAS, and
STING in RA

There was a study that systematically reviewed the level and

origin of cfDNA in RA (42). As early as 1973, cfDNAwas confirmed

to be elevated in the serum of RA patients (43). Later, the increased

level of cfDNA was also detected in the synovial fluid. Moreover,

there was an association between cfDNA levels and disease activity
Frontiers in Immunology 03
(44, 45). Potential sources of cfDNA include neutrophil

extracellular traps/neutrophil ETosis (NETs/NETosis), pyroptosis,

and micronuclei (46–48). In vitro, RA synovial fluid enhanced the

production of NETs by neutrophils, as evidenced by the increased

levels of DNA in culture supernatants and extracellular DNA on

NETs (48). A significant association between gasdermin E

(GSDME) and cfDNA has been observed in RA patients, further

experiments have demonstrated that NETs triggered NF-kB/
Caspase 3/GSDME-mediated pyroptosis in fibroblast-like

synoviocytes (FLSs), indicating that pyroptosis is a source of

cfDNA (46). Micronuclei, which also serve as a crucial source of

cfDNA, have been found to be elevated in RA patients (47). This

increase in micronuclei has been observed in both active and

inactive RA patients, accompanied by the reduced levels of

superoxide dismutase and glutathione peroxidase (49). Increased

micronucleus levels were also detected in collagen-induced arthritis
FIGURE 1

Depiction of cGAS-STING signaling. cGAS, a cytosolic DNA sensor, is able to detect cytoplasmic DNA from exogenous and endogenous sources,
including DNA viruses, retrovirus, bacteria, dead cells, extracellular vesicles, micronuclei, and mitochondria. When cGAS binds to double-stranded
DNA (dsDNA), it triggers the activation of its own catalytic activity, resulting in the synthesis of 2’,3’-cyclic GMP-AMP (cGAMP) from ATP and GTP.
cGAMP binds to STING at the endoplasmic reticulum (ER), then STING undergoes oligomerization and translocates from the ER to Golgi
compartments. Then, STING is palmitoylated and serves as a platform for the recruitment of TBK1 and IKK. TBK1 phosphorylates STING, which in
turn recruits IRF3 for TBK1-mediated phosphorylation. Phosphorylated IRF3 translocates to the nucleus and turns on the expression of type I
interferons. Meanwhile, STING also activates IKK to facilitate NF-kB-mediated transcription of pro-inflammatory cytokines, thereby activating
inflammatory responses. Moreover, secreted IFN-I can be recognized by IFNAR, which induces the activation of JAK-STAT signaling, resulting in the
expression of IFN-stimulated genes (ISGs).
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(CIA) mice, a mouse model established by immunization with an

emulsion of complete Freund’s adjuvant (CFA) and type II

collagen (CII). Notably, rituximab treatment suppressed

micronucleus formation, paralleled by a decline in serum 8-

hydroxydeoxyguanosine, indicating that enhanced oxidative stress

might contribute to DNA damage and micronucleus formation in

RA (50). Previous research found that MTX enhanced the

generation of micronuclei in rat bone marrow cells (51, 52). In

contrast, another study found no difference in micronucleus levels

between patients who received MTX treatment and those who did

not, suggesting that the generation of micronuclei was associated

with RA itself (47). Collectively, both the disease itself and the

pharmacological treatments have the potential to induce the

formation of micronuclei in RA, thereby providing a basis for the

generation of cfDNA. Consequently, the presence of cfDNA may

act as the initiator for the activation of cGAS-STING signaling

during RA progression.

Compared with the osteoarthritis (OA) patient-derived FLSs,

the levels of cGAS mRNA and cGAS protein were higher in RA-

FLSs. Moreover, overexpression of cGAS in RA-FLSs enhanced

both the proliferation of these cells and the expression of pro-

inflammatory factors (41). As for STING, RA patients exhibited the

highest concentrations of intracellular STING when compared to

those with OA, psoriatic arthritis, calcium pyrophosphate crystal-

induced arthritis, and OA with calcium pyrophosphate crystals

(53). Furthermore, intracellular STING positively correlated

with inflammatory parameters, such as white blood cells,

polymorphonuclear cells, IL-1b, IL-8, and IL-6 (53). Sting1+/−

mice, which have a reduced expression of phosphorylated TBK1,

showed a decreased severity of arthritis and improved histological

changes compared to control mice (54). These findings suggest that
Frontiers in Immunology 04
cfDNA-triggered cGAS-STING signaling plays a significant role in

the pathogenesis of RA (Figure 2).
3.2 TNF triggers the release of mtDNA and
the activation of cGAS-STING signaling
in RA

TNF, a multifunctional cytokine for homeostasis and disease

pathogenesis, is highly expressed in rheumatoid joint tissues (55).

TNF is also the first cytokine validated as a therapeutic target for

RA, and several types of TNF inhibitors have been applied in the

clinical treatment (56). A previous study revealed that TNF could

enhance IFN responses by activating cGAS-STING signaling,

thereby supporting the joint inflammation (57). Specifically, TNF

inhibited PTEN-induced kinase 1 -mediated mitophagy, leading to

functional alterations in mitochondria and an increase in

cytoplasmic mitochondrial DNA (mtDNA) levels. Consequently,

mtDNA bound to cGAS and activated the downstream signaling

that mimicked the functions of macrophages from RA patients,

contributing to the pathogenesis of RA (57). Additionally, TNF-a
stimulation has been demonstrated to increase the expression of

cGAS in FLSs, further supporting the involvement of TNF in RA

progression through cGAS-STING signaling (41).

Growing evidence has indicated that obesity plays a pivotal role in

multiple aspects of RA (58–60). A trend toward increased risk of RA

was observed among overweight and obese women, particularly

women diagnosed with RA at earlier ages (≤55 years) (59).

Moreover, obesity has been revealed to reduce the effectiveness of

TNF inhibitors, resulting in lower chances of achieving remission or

low disease activity (58, 60). Increased fat mass and obesity-associated
FIGURE 2

Activation of cGAS-STING signaling promotes the pathogenesis of RA. (A) TNF inhibits mitophagy and then results in increased levels of mtDNA.
(B) TNF suppresses the expression of DNaseII in FLSs, leading to the accumulation of cytosolic dsDNA. (C) Pol b deficiency promotes DNA damage
and dsDNA leakage, resulting in the increased levels of cytosolic dsDNA. All these contribute to the activation of cGAS-STING signaling and
subsequent expression of pro-inflammatory factors, thereby supporting the joint inflammation in RA.
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protein (FTO) expression has been detected in FLSs from RA patients

and synovial cells from adjuvant-induced arthritis (AIA) mice (a

mouse model induced by intradermal injection of CFA). The elevated

expression of FTO was involved in mtDNA-mediated synovial

inflammation (61). In detail, TNF-a-induced mtDNA expression

was decreased when FTO was knocked down in RA-FLSs.

Furthermore, FTO knockdown suppressed the activation of TNF-a-
induced cGAS-STING signaling, accompanied by the decreased

expression of inflammatory cytokines such as IL-6 and IL-18,

subsequently alleviating AIA (61). Mechanistically, these effects

el ic i ted by FTO were dependent on cytidine/uridine

monophosphate kinase 2 (CMPK2). The inhibition of CMPK2

expression following FTO reduction led to decreased mtDNA

production and cGAS-STING signaling activation, thereby

suppressing inflammatory cytokine expression and ameliorating

arthritis (61). Therefore, TNF can contribute to the pathogenesis of

RA in a cGAS-STING signaling-dependent manner by disrupting

mitochondrial homeostasis, and this process can be regulated by FTO.
3.3 cGAS-STING signaling participates in
the abnormal activation of FLSs

FLSs exhibit abnormal activation and proliferation in the synovium

of RA patients, serving as primary effector cells responsible for

mediating joint destruction and synovitis (62). In vitro, transfection

of dsDNA upregulated the expression of IFN-a and IFN-b in RA-FLSs,
suggesting that cytosolic dsDNA accumulation enhanced the IFN-I

signature. Additionally, stimulation with dsDNA upregulated the

production of pro-inflammatory cytokines and matrix

metalloproteinase (MMP) 13 in FLSs. TNF-a-induced DNaseII

reduction might be responsible for the accumulation of dsDNA in

FLSs, as TNF-a stimulation decreased both the mRNA and protein

levels of DNaseII (63). Mechanistically, cGAS-STING signaling was

implicated in the cytosolic dsDNA-triggered responses in FLSs.

Knockdown of cGAS or STING significantly suppressed the dsDNA-

induced pro-inflammatory cytokines secretion (63). Additionally,

another study demonstrated that dsDNA-triggered cGAS-STING

signaling augmented the migratory and invasive capabilities of RA-

FLSs, which were suppressed by cGAS or STING short hairpin RNA

treatment (64). In this study, scientists found that activation of cGAS-

STING signaling increased the levels of mitochondrial reactive oxygen

species, which induced the phosphorylation of mammalian sterile 20-

like kinase 1 and then activated forkhead box1, subsequently

promoting FLS migration and invasion (64). Thus, cGAS-STING

signaling appears to be essential for the pathogenic activities of FLSs,

and this signaling represents a promising target to prevent the aberrant

activation of FLSs for RA treatments.
3.4 Other factors regulate cGAS-STING
signaling in RA

The cGAS-STING-NF-kB signaling, which represents another

arm of the STING signaling network, has been documented to

induce macrophage pyroptosis, a process that holds significant

importance in RA (65). In this study, they found that DNA
Frontiers in Immunology 05
polymerase b (Pol b) regulated RA pathogenesis through STING-

NF-kB signaling-induced macrophage pyroptosis (65). In both

active RA patients and CIA mice, the levels of Pol b underwent a

significant downregulation, and Pol b-deficient CIA mice exhibited

exacerbated disease severity. Further investigations revealed that

deficiency of Pol b promoted an augmented inflammatory response

and macrophage pyroptosis in CIA mice (65). This process was

mechanistically linked to enhanced DNA damage and the

accumulation of dsDNA, which triggered the activation of cGAS-

STING signaling. Then, NF-kB signaling was activated and NF-kB-
p65 nuclear translocation was enhanced, ultimately enhancing the

expression of NLRP3, IL-1b, and IL-18. These events contributed to
macrophage pyroptosis and the progression of arthritis (65).

The role of the tumor suppressor gene p53 in RA pathogenesis has

been explored in AIA rats (66). Overexpression of p53R211*
significantly alleviated arthritis symptoms and joint destruction in

AIA rats, which were similar to those observed in MTX-treated rats.

Beyond inhibiting T-cell activation and Th17 cell differentiation, the

interaction between p53R211* and TBK1 disrupted the formation of

the trimeric TBK1-IRF3-STING complex. Thus, the phosphorylation

and nuclear localization of IRF3 were inhibited, ultimately suppressing

the autoimmunity and ameliorating inflammatory arthritis (66).
3.5 cGAS-STING signaling: RA onset and
chronic inflammation

According to the existing literature, it seems that cGAS-STING

signaling predominantly contributes to the chronic inflammation in

RA. For example, there was no significant difference in the clinical

scores between CIA-modeled Sting1+/- mice and wild-type mice on

days 27, 30, and 33 after the first immunization, although the clinical

scores of both groups were increased. Notably, the clinical scores of

Sting1+/- mice were significantly lower than those of wild-type mice

from day 36, indicating the promoting effects of STING during

disease progression (54). Moreover, another study has revealed that

joint injection of DNA fragments increases the arthritic score and

hind paw volume in AIA rats, which may be due to the upregulation

of cGAS-STING signaling (67). For disease onset, it has been

demonstrated that TREX1 reduction and cfDNA accumulation can

be risk factors for the onset of RA in elderly through activating the

cGAS signaling cascade, and these characteristics have been observed

in elderly RA patients and AIA rats. On day 12, the first symptomwas

observed in AIA rats injected intravenously with DNA fragments,

indicating that intravenous injection of DNA promoted the disease

onset (67). Although the pathogenesis is complex, targeting cfDNA

and cGAS-STING signaling may open a new window for prevention

and treatment strategies for RA.
4 cGAS-STING signaling: be protective
in RA?

Contrary to the pathogenic effects previously mentioned,

one study suggested that STING might be a “negative” regulator
frontiersin.org
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in the CIA model by modulating B cell functions (68). STING-

deficient mice showed disease progression comparable to wild-

type mice, including incidence, arthritis scores, histopathological

changes, and other inflammatory parameters such as B220+ cells,

CD4+ cells, and IL-6 (68). However, STING-deficient mice

exhibited elevated levels of anti-CII IgG and IgG2c after three

weeks of the first immunization. Gene expression profiles

suggested that the disease progression in CIA mice might not

have a direct correlation with IFN. Instead, the B cell receptor

emerged as a significant factor, suggesting the involvement of B

cells (68). B cells from STING-deficient mice exhibited enhanced

survival capabilities compared to wild-type B cells, accompanied

by similar cell proliferation. Furthermore, STING activation

resulted in B cell death and increased Fas expression (68).

Therefore, STING played a regulatory role during the

development of arthritis by modulating B cell functions, and it

would be interesting to explore whether the function of B cell

subtypes (such as regulatory B cells) could be regulated by cGAS-

STING signaling in RA. Given the conflicting results, it is

reasonable to speculate that the balance of STING signaling

activation in different cells may influence the disease

progression, such as in B cells and FLSs. Collectively, the

role of the cGAS-STING pathway in RA suggests that

further investigation is needed to clarify the underlying

molecular mechanisms.
Frontiers in Immunology 06
5 cGAS-STING signaling: a target for
RA treatment

According to the above description, cGAS-STING signaling

primarily plays a pathogenic role in RA. Increasing studies have

reported the application of pharmacologic modulators targeting

cGAS-STING signaling (54, 69–71) (Figure 3). As the stimulator of

cGAS-STING signaling, clearance of cfDNA is promising in RA

therapies. Moreover, we mainly discuss representative cGAS-

STING inhibitors that have been studied in RA, and other

inhibitors of cGAS-STING pathway have also been summarized

in Table 1.
5.1 Scavengers of cfDNA

Cationic nanoparticles (cNPs) are composed of the diblock

copolymer of poly(lactic-co-glycolic acid) (PLGA) and poly(2-

(diethylamino)ethyl methacrylate) (PDMA), which have shown

high DNA binding efficiency and the ability to scavenge cfDNA

from RA patients (96). To decrease the risk of dissociation and

toxicity, a series of silica particles grafted with PDMA (SiNP@

PDMA) brush were developed. SiNP@PDMA was able to scavenge

cfDNA, accompanied by the prolonged retention time in joints (97).

Bioinspired nanogel composed of DNase I and a polylysine
FIGURE 3

Inhibitors and their targets in the cGAS-STING pathway. Cationic nanoparticles, bioinspired nanogels, and vesicle-based scavengers serve as efficient
tools to capture dsDNA, thereby preventing cGAS from activation. Representative inhibitors specifically targeting cGAS-STING pathway primarily
function through the following mechanisms:① by disrupting the interaction between cGAS and dsDNA. ② by impeding the association between
GRPase-activating protein-(SH3 domain)-binding protein 1 (G3BP1, a facilitator of cGAS oligomerization) and cGAS. ③ by binding to the active site of
cGAS. ④ by occupying the cyclic dinucleotide (CDN)-binding site of STING. ⑤ by suppressing the activation of cGAS-STING signaling via post-
translational modifications (PTMs).
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dendrimer (G3K) showed potent DNA trapping abilities while

retaining nearly 90% of the biological activity of DNase I, making

it effective in scavenging cfDNA (98). Recently, some novel

scavengers that may be used for joint injection have been

explored (99, 100). cNP-pp-PEG was designed to ensure the

release of cations when polyethylene glycol (PEG) was removed

by MMP2, an enzyme highly expressed in inflamed joints (99).

Similarly, exosomes from M2 macrophages were modified with

oligolysine and MMP-cleavable PEG, allowing the release of

positively charged oligolysine to effectively scavenge cfDNA
Frontiers in Immunology 07
within inflamed joints (100). Although these studies have not

directly explored the effects of scavengers on cGAS-STING

signaling, it is possible to speculate that cGAS-STING signaling is

involved in the therapeutic effects of DNA scavengers in arthritis.
5.2 Modulators of cGAS

The exploration of engineering and delivery mechanisms for

modulators targeting cGAS, aimed at immunotherapy for RA, has
TABLE 1 Other inhibitors of cGAS-STING signaling pathway and their effects.

Modulators Targets Effects Cell lines/Animal models Applications in preclinical
or clinical RA

References

PF-06928215 cGAS binds to the active site
of cGAS

Sf9 cells – (72)

RU.521 cGAS binds to the active site
of cGAS

RAW cells and BMDMs from
AGS mice

attenuates tumor-like biologic
behaviors of FLSs

(40, 73)

Compound S3 cGAS binds to the active site
of cGAS

– – (74)

G chemotype
compounds (G150)

cGAS binds to the active site
of cGAS

THP-1 cells and primary
human macrophages

– (75)

Suramin cGAS displaces DNA from cGAS THP-1 cells reduces inflammation and repairs
joint destruction in CIA rats

(76, 77)

X6 cGAS displaces DNA from cGAS THP-1 cells and Trex-/- mice – (78, 79)

A151 cGAS interacts with the dsDNA-
binding domain of cGAS

THP-1 cells and Trex-/- cells – (80)

Cyclopeptide
inhibitors
(XQ2B)

cGAS binds to the DNA binding site
of cGAS

THP-1 cells and HSV-1 infected mice – (81)

Aspirin cGAS acetylates cGAS PBMCs from AGS patients, THP-1
cells, Trex-/- mice

has been used as NSAIDs (82, 83)

CU-32, CU-76 cGAS – THP-1 cells – (84)

Astin C STING binds to the CDN-binding site
of STING

Trex-/- BMDMs and Trex-/- mice – (85)

SN-011 STING binds to the CDN-binding
pocket of STING

HSV-1-infected HFFs, 293T cells,
Trex-/- BMDMs, Trex-/- mice

– (86)

Compound 18 STING binds to the CDN-binding site
of STING

– – (87)

C-178, C-176,
H-151

STING binds to STING
palmitoylation sites

293T cells, Trex-/- mice inhibits the formation and activation
of osteoclasts

(88, 89)

BPK-21/5 STING binds to STING
palmitoylation sites

PBMCs – (90)

NO2-FAs STING modifies STING by
nitro-alkylation

RAW264.7 cells, THP-1 cells – (91)

Gelsevirine STING promotes K48-linked poly-
ubiquitination of STING

Murine chondrocytes, OA mice – (92)

Nitisinone STING suppresses the cGAS-STING-
NF-kB pathway

Murine chondrocytes, OA mice – (93)

TGP STING attenuates STING-
IRF3 interaction

THP-1 cells and BMDMs improves disease severity and reduces
inflammation levels

(94, 95)
Sf9 cells, Spodoptera frugiperda cell line; BMDMs, bone marrow-derived macrophages; AGS, Aicardi-Goutières syndrome; THP-1 cells, Tohoku Hospital Pediatrics-1; Trex-/- mice, transcription
export-deficient mice; PBMCs, peripheral blood mononuclear cells; HSV-1, herpes simplex virus-1; CDN, cyclic dinucleotide; HFFs, human foreskin fibroblasts; OA, osteoarthritis; TGP, total
glucosides of paeony; -, not mentioned.
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been conducted in recent studies (71, 101). At first, they found

that cfDNA and cGAS expression in lymph nodes or spleen from

CIA mice and RA patients were upregulated. As described above,

cNPs could inhibit cGAS activation and pro-inflammatory

responses via scavenging cfDNA. A nanomedicine-in-hydrogel

(NiH) system was devised to concurrently deliver the cGAS

inhibitor (RU.521) and cNPs, which could prolong the release

and retention of cNPs and RU.521 in lymphoid tissues (71, 101).

Loading RU.521 to cNPs resulted in a profound reduction in ifnb,

Nos2, and Tnfa in macrophages, indicating the enhanced

inhibitory effects on cGAS activation and pro-inflammatory

responses (101). In CIA mice, NiH ameliorated arthritis

progression and reduced arthritis severity. Moreover, NiH

supported the immunosuppression in CIA mice, as indicated by

the reduced production of pro-inflammatory cytokines, along

with a decrease in the proportions of pro-inflammatory cells

and an expansion of immunomodulatory cells (71, 101).

Moreover, subcutaneous administration of NiH could also

achieve the above effects, not only in lymph nodes, but also in

peripheral blood (71).

Anti-malarial drugs (AMDs) are commonly applied in

malaria treatment and have also shown beneficial effects on

autoimmune diseases over the past decades (69, 102).

According to earlier research, the majority of RA patients

responded to hydroxychloroquine (HCQ) treatment, as

evidenced by improvements in joint score, pain, and grip

strength. Only a small part of patients experienced a flare after

the initial improvement (103, 104). HCQ could suppress

autoimmunity by blocking MHC II-mediated autoantigen

presentation and downregulating TLR signaling, and it was

observed that AMDs might also regulate the activity of cGAS

(102). In silico studies predicted that HCQ and other AMDs

interacted with cGAS-DNA complex at a site necessary for

binding to cGAS and its activation by DNA, and in vitro

experiments confirmed that quinacrine blocked the binding

between dsDNA and cGAS (78). Interestingly, the interaction

between quinoline- and acridine-based antimalarial drugs (QA-

AMDs) and dsDNA manifested in three modes: intercalation,

groove binding, and covalent binding (105). Thus, AMDs might

impair DNA-stimulated cGAS activation and subsequent pro-

inflammatory cytokine expression, thereby alleviating RA

progression. The combination of AMDs and other therapeutic

drugs for RA therapy has been explored (106, 107). Compared

with the methotrexate/leflunomide (MTX/LEF) group, MTX/

HCQ-treated patients had a higher level of remission rate,

accompanied by a rapid remission. Remarkably, more patients

treated with MTX/HCQ were able to withdraw glucocorticoid

exposure than those treated with MTX/LEF (107). A novel

Pluronic® F-127 nanomicelle co-loaded with HCQ and MTX

exhibited therapeutic effects against murine arthritis, which

efficiently suppressed the osteoclastogenesis (106). Now, there

are more potent anti-inflammatory drugs and biological agents,

which may limit the application of AMDs in RA treatments (3).
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5.3 Modulators of STING

Recent studies have delved into compounds that modulate

STING activity and their potential utilization in the treatment of

RA (54, 70). C-176, a covalent small-molecule inhibitor with the

ability to antagonize STING and suppress IFN-I production, has

been demonstrated to attenuate the disease development and

reduce the bone erosion in CIA mice. Mice treated with of C-176

displayed reduced disease scores, accompanied by the decreased

level of tartrate-resistant acid phosphatase-expressing osteoclasts

(88). There was a study that confirmed the efficacy of

polyethyleimine-polydopamine (PEI-PDA)@C-176 NPs in

adsorbing DNA and inhibiting STING, suggesting their potential

application in the treatment of RA (54). In vitro, PEI-PDA@C-176

NPs suppressed the phosphorylation and activation of TBK1 and

IRF3, leading to a notable reduction in IFN-b, TNF-a, and IL-6

expression in human primary FLSs (54). In dsDNA-induced

arthritis and CIA models, PEI-PDA@C-176 NPs effectively

alleviated inflammation, which was evidenced by improved ankle

swelling, reduced histological scores, and other disease indexes (54).

Mechanistically, these therapeutic effects were dependent on the

STING signaling pathway, because PEI-PDA@C-176 NPs only

slightly reduced the clinical score in CIA-modeled Sting1+/− mice

without improvements in synovitis (54).

Triptolide (TP), the pharmacological component of the herb

Tripterygium wilfordii Hook F (TWHF), has shown therapeutic

effects in RA. Previous studies revealed that TP exerted therapeutic

effects in RA by targeting RA-associated proteins (such as NF-kB,
MMP-9 and JNK), accompanied by reduced activity of FLSs and

Th17 differentiation (108–110). Interestingly, a recent study has

reported that TP can exerts immunomodulatory effects by

regulating cGAS-STING signaling (70). FDL@TP is formed by

encapsulating TP with an amphiphilic polymer (FDL) composed of

folic acid and lauric acid, which has been investigated in RA

treatment (70). FDL@TP exhibited the ability to specifically target

joints and efficiently promoted the uptake of TP by M1macrophages.

FDL@TP reduced the expression of cGAS and STING, which further

led to the reduction in TNF-a, IL-1b, and IL-6 production (70).

Importantly, FDL@TP was more effective than the same dose of TP

alone in controlling inflammatory responses, also with reduced side

effects (70). In recent years, nanodrugs based on TP have been

developed for RA therapy, including folate-modified TP liposomes,

TP nanoemulsion gel, and TP-carrying dendritic cell-derived

exosomes, which are promising for localized treatment with

reduced toxicity (111–113). However, their effects on cGAS-STING

signaling remain to be investigated.
5.4 Other modulators of cGAS-STING
signaling pathway

Additional modulators primarily target the downstream

signaling of cGAS-STING signaling pathway, and some of them
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have been studied in animal models. CS12192, a small molecule

inhibitor of JAKs, primarily targets JAK3/1 and has inhibitory

effects on TBK1. This leads to the reduced activation of IRF3 and

downregulation of IFN-I. In preclinical models of arthritis, CS12192

has been reported to ameliorate the disease severity and bone

destruction, along with immunomodulatory effects such as the

suppression of CD4+ T cell activation and reduction in pro-

inflammatory cytokine production (114). Itaconate (ITA) is an

endogenous metabolite from the tricarboxylic acid cycle, which

has been confirmed to suppress osteoarthritis by reducing the

activation of STING-dependent NF-kB pathway. In a preclinical

model of RA, ITA reduced arthritis severity and bone erosion by

suppressing the proliferation and migration of FLSs. In addition,

mice lacking immunoresponsive gene 1 (Irg1) failed to express

endogenous ITA and showed more severe arthritis, underscoring

the role of ITA in modulating inflammation (115, 116). Auranofin,

a gold compound approved by U.S. Food and Drug Administration

for RA treatment, has been demonstrated to act as a small-molecule

inhibitor of IRF3 (117). In this study, they demonstrated that

auranofin promoted the degradation of IRF3 by inducing cellular

autophagy, thereby suppressing the transcriptional activities of

IRF3 (117).

Although these modulators exhibit potential in inhibiting RA

progression, efficacy improvement remains an important task.

Moreover, considering the long course of RA, strategies to

prolong the release and consumption of these inhibitors (such as

the use of a hydrogel system) are important areas for future

clinical research.
6 Conclusions and prospects

Hitherto, it is clear that innate immunity holds a pivotal

position in the development of autoimmune diseases. In the past

few years, there has been a significant increase in interest and

understanding surrounding the cGAS-STING signaling, which is a

main danger-sensing mechanism of innate immunity. Although

there is still much to be learned in autoimmune diseases, it is

promising to target cGAS-STING signaling for treatments given the

abnormal activation of cGAS-STING signaling by cfDNA (16).

With the deepening of research, the significance of cGAS-

STING signaling in rheumatoid arthritis has been gradually

recognized. For instance, TNF has been shown to induce the

release of mitochondrial DNA (mtDNA), which then activates

cGAS-STING-mediated IFN responses, contributing to the

progression of arthritis. This effect can be suppressed by FTO

knockdown through a CMPK2-dependent manner (57, 61). In

addition, dsDNA-induced cGAS-STING signaling has been

shown to promote the development of arthritis through the

induction of inflammatory factors in FLSs, accompanied by

enhanced migration and invasion (63, 65). Notably, there was a

study pointed out that deficiency of STING promoted CIA

progression by enhancing B cell survival and autoantibody

production (68). However, fewer studies are available to further

confirm the roles of cGAS-STING signaling in the differentiation

and function of B cells during RA development.
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Considering the critical roles of TNF in DNaseII reduction,

mtDNA release, and cGAS expression, TNF inhibitors may also

inhibit the cGAS-STING signaling. For cfDNA clearance, several

scavengers (such as cNPs and cNP-pp-PEG) have been developed

and exhibit strong DNA-capturing abilities (96, 99). Current

pharmacological modulators targeting cGAS-STING signaling

mainly include NiH, PEI-PDA@C-176 NPs, and FDL@TP, and

these inhibitors have been confirmed to be effective in both in vitro

experiments and murine arthritis (54, 70, 71). Due to challenges in

medicinal chemistry, one antagonist (VENT-03, targeting cGAS)

has been advanced into phase I clinical trials, which aims to evaluate

the safety of VENT-03 in healthy volunteers, and subsequent trial

plans will target the treatment of autoimmune diseases (118). Thus,

there is still a lack of evidence in treating human RA. Collectively,

future explorations should pay more attention to the following

fields: 1) molecular mechanisms regulating the activation of cGAS-

STING signaling during RA; 2) the development of novel drugs

targeting the cGAS-STING signaling pathway, with emphasis on

clinical applications. These efforts may provide new insights into

the therapies for RA and other autoimmune diseases.
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