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Ovarian cancer (OC) is a significant cause of cancer-related mortality in women

worldwide. Despite advances in treatment modalities, including surgery and

chemotherapy, the overall prognosis for OC patients remains poor, particularly

for patients with advanced or recurrent disease. Immunotherapy, particularly

immune checkpoint blockade (ICB), has revolutionized cancer treatment in

various malignancies but has shown limited efficacy in treating OC, which is

primarily attributed to the immunologically. Tertiary lymphoid structures (TLSs),

which are ectopic aggregates of immune cells, have emerged as potential

mediators of antitumor immunity. This review explores the composition,

formation, and induction of tumor associated TLS (TA-TLS) in OC, along with

their role and therapeutic implications in disease development and treatment. By

elucidating the roles TA-TLSs and their cellular compositions played in OC

microenvironment, novel therapeutic targets may be identified to overcome

immune suppression and enhance immunotherapy efficacy in ovarian cancer.
KEYWORDS

tertiary lymphoid structures, ovarian cancer, tumor microenvironment, immune
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1 Introduction

Ovarian cancer remains one of the most lethal gynecologic malignancies and is

characterized by late-stage diagnosis and high recurrence rates (1, 2). Despite advances

in surgical techniques and chemotherapeutic regimens, the prognosis for ovarian cancer

patients remains poor, necessitating the exploration of novel therapeutic approaches (3).

One promising area of research is the immune microenvironment of ovarian tumors, which

plays a crucial role in tumor progression and patient outcomes. The immune

microenvironment in ovarian cancer is a complex network of immune cells, cytokines,

and chemokines that interact with tumor cells to influence disease progression.

Understanding the tumor microenvironment (TME) is essential for developing

effective immunotherapies.

Traditional immunotherapy research often focuses on monocellular populations in

TME. In recent years, immune therapies have focused heavily on CD8+ cytotoxic T
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lymphocytes (CTLs). Within this area, chimeric antigen receptor T-

cell (CAR-T) therapy, T-cell receptor T-cell (TCRT) therapy and

ICB therapy have achieved tremendous success and revolutionized

cancer treatment (4). However, under the shadow of immune

therapies, the role of the humoral immune response has long

been overlooked. Many studies have shown that compared to the

elevated infiltration of CD8+ CTLs, the co-infiltration of B and T

cells, which is indicative of the presence of TLSs, is associated with

increased survival in patients with ovarian cancer (5, 6).

Tertiary lymphoid structures (TLSs) are ectopic lymphoid

structures that resemble secondary lymphoid organs but arise in

nonlymphoid tissues during chronic inflammatory diseases,

including cancer, infections, autoimmunity and aging (7, 8). TLSs

were initially documented in inflammatory diseases. For example, TLSs

triggered by infections elicit beneficial antipathogen immune responses

in the host (9). Conversely, in autoimmune diseases, such as

rheumatoid arthritis, Sjögren syndrome TLSs facilitate the activation

of autoreactive lymphocytes, leading to the production of

autoantibodies, and their presence is correlated with an unfavorable

prognosis (10, 11). Recent studies have highlighted the significance of

tumor-associated tertiary lymphoid structures (TA-TLSs) in the TME.

Numerous studies have demonstrated that TA-TLSs can

provide a specialized immune niche for T/B-cell infiltration and

proliferation, enhancing local antitumor immunity by promoting

interactions between cellular and humoral immunity (12, 13). The

presence of TA-TLSs has been associated with favorable prognosis

in various cancers, including ovarian cancer (14–17). Given the

complexity of TLS biology, deeper exploration of TLS formation,

function, and detection within the TME is necessary. The

importance of TA-TLSs and the crosstalk of lymphocytes within

them has gained increasing attention. Therefore, investigating the

function and characterization of TLSs in the TME is a crucial

research direction for ovarian cancer immunotherapy.

Studies have shown that TA-TLSs and their constituents play

significant roles in ovarian cancer prognosis and immune therapy.

Commencing the cellular composition and function of TA-TLSs, we

reviewed their roles in OC and summarized their identification and

induction methods, aiming to provide reliable evidence for the

study and application of TA-TLSs in ovarian cancer.
2 TLS formation and function in
ovarian cancer

2.1 Mechanisms underlying TLS formation

TLSs are defined as ectopic lymphatic aggregates with similarities

to secondary lymphoid organs (SLOs). TLSs are most commonly

found in regions with inflamed environments, such as autoimmune

diseases (18), transplanted organs (19), chronic inflammation (20),

and tumor sites (7, 21). Although the specific composition of TLSs

may vary among cancer types (22), T cells, B cells, dendritic cells

(DCs), macrophages and stromal cells are usually observed (7).

However, the mechanisms governing the formation, maintenance,

and function of TLSs are not fully understood. It seems that a specific

set of cells and chemokines orchestrates TLS formation. Due to the
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structural and functional similarities between TLS and SLO, it was

previously assumed that they followed a similar formation

mechanism. However, the detailed mechanisms and variations

depending on the TME context remain unresolved.

SLO originates in embryonic lymphoid tissue through the

interaction of a lymphoid tissue inducer cell (LTi) with a

lymphoid tissue organizer cell (LTo). Usually, LTi cells express

RORgt and Id2 and drive the initial steps of SLO formation by

activating LTo cells (23). LTo cells in lymph nodes are

mesenchymal cells that later differentiate into follicular dendritic

cells (FDCs) and fibroblastic reticular cells (FRCs) in a tumor

necrosis factor (TNF) family member, especially in a

lymphotoxin-dependent manner (21). TLSs were observed in

adult nonlymphoid tissues, which lack embryonic-derived LTi

cells. Thus, with respect to the upstream initiation of TLSs, there

is a major question: who flipped the switch? Current studies have

suggested that LTi and LTo cells are alternative for TLSs. However,

the exact origin of these cells in humans is not clear.

Several surrogate LTi and LTo cells have been observed in

mouse models. Unlike the bona fide LTi cells in SLOs the surrogate

LTi cells in TLS such as T cells, B cells, NK cells, macrophages may

be attracted to the inflammatory site by CXCL13 and IL-7 from

inflammatory microenvironment and activate potential LTo cells

(mostly stromal or immune cells) in a TNF family receptor (LTR/

TNFR)-dependent manner (7). In addition, TNF family-

independent LTo activation was observed in murine lung TLSs.

For instance, TLS formation in microbially stimulated murine lungs

can be initiated by interleukin-17 (IL-17) derived from T cells by

promoting LTa-independent CXC-chemokine ligands 13

(CXCL13) expression (24, 25). Unlike the bona fide LTi cells,

innate lymphoid cell 3, in SLOs, the surrogate LTi cells in TLSs

were found to be immune cells such as T cells and B cells (7).

In both SLOs and TLSs, LTo cells play a critical role in

organizing the immune response. By producing a variety of

chemokines, adhesion molecules, and survival factors, LTo cells

help recruit and guide immune cells to the site of immune activity

and facilitate vascularization, which supports the immune response

(26, 27). The chemokines produced by LTo cells, including CC-

chemokine ligands (CCL19 and CCL21), CXC-chemokine ligands

(CXCL10 and CXCL13), are crucial for attracting different immune

cells. These chemokines create gradients that guide these cells to

specific locations within the lymphoid structures. Additionally,

adhesion molecules such as vascular cell-adhesion molecule 1

(VCAM-1), intercellular adhesion molecule 1 (ICAM-1), mucosal

addressing cell-adhesion molecule 1 (MAdCAM-1), and peripheral

node addressin (PNAd) helps tether circulating immune cells and

allows them to extravasate into the tissue. Finally, survival factors

such as BAFF (B-cell activating factor) and IL-7 play roles in

promoting the survival and maturation of B and T lymphocytes,

which are critical for maintaining functional immune responses. In

SLOs, the origins of LTo subsets are usually fixed. FDCs and

fibroblasts are the most effective LTo cells (26). However, the

number and type of LTo cells in TA-TLSs may vary by tumor

types. Currently, immune cells and stromal cells such as Th cells

(28) and fibroblasts (29) in breast cancer, fibroblasts in melanoma

(30), CD8+ T cells (31), DCs (32) in lung cancer, and macrophages
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(33), CD4+ T cells, and DCs (17) in ovarian cancer have all been

reported as potential LTo cells that secrete homeostatic chemokines.

The classic LT/LTR dependent TLS formation pathway has been

meticulously illustrated in Figure 1, showcasing the intricate

processes and interactions involved in this well-established

mechanism, which plays a crucial role in the understanding of

cellular responses and adaptations.

Our understanding of TLS formation primarily stems from

studies of autoimmune diseases and chronic inflammation.

Although these studies offer valuable insights, they also highlight

important knowledge gaps. Overall, the formation mechanism of

TA-TLS still remains ambiguous. For instance, it is uncertain

whether LTi and LTo cells are crucial for TA-TLS formation.

Additionally, the specific cells responsible for these critical

functions within the complex tumor microenvironment remain

unidentified. This uncertainty presents researchers with numerous

unanswered questions and avenues for further investigation.
2.2 The role TA-TLSs played in
ovarian cancer

Traditionally, an efficient adaptive immune response against

cancer that occurs in SLOs has been extensively documented and

broadly accepted (34). However, studies on the tumor
Frontiers in Immunology 03
microenvironment further revealed that tumor-associated TA-

TLSs are important immune response sites in situ and have been

proven to exacerbate the local immune response in tumors and help

promote an efficacious immune contexture (35). In patients with

ovarian cancer, TA-TLS is associated with good prognosis,

regardless of the presence or absence of vascular thrombosis and

lymph node metastasis (3).

With T cells as the target, ICB therapy such as PD-1/PD-L1

antibody has been the most successful immunotherapy for

decades. TA-TLSs have been proven to improve favorable

prognosis and improve ICB outcomes in several solid tumors

(36, 37). This improvement may result from promoted tumor-

targeting effector and memory T-cell responses, along with

facilitated coordinated antitumor responses of T cells and B cells

aggregating in TLS (38, 39). Unlike the so-called “hot tumors,”

such as non-small cell lung cancer (NSCLC) or melanoma, most

ovarian cancers do not respond to ICB therapy most likely due to

indolent anticancer immunity and active immunosuppression

(40). In High-grade serous ovarian cancer (HGSOC), the most

common and deadly type of ovarian cancer, several studies have

shown a correlation between the presence of TA-TLSs and

improved prognosis as well as a favorable response to ICB

therapy (5, 6). Nevertheless, the molecular mechanism by which

TA-TLS improves ICB outcomes in HGSOC is still not

well understood.
FIGURE 1

Potential pathways for TLS formation. Firstly, inflammatory chemokines like CXCL13 and IL-7 attract surrogate LTi cells to the site of inflammation
within the inflammatory microenvironment. The surrogate LTi cells then activate potential LTo cells, which are primarily composed of stromal or
immune cells, through either the LTa/TNF receptor-dependent (LT/LTR) or independent (IL-17) signaling pathways. Activated LTo cells subsequently
produce a variety of lymphoid chemokines, including CCL19, CCL21, CXCL10, and CXCL13, as well as adhesion molecules such as VCAM-1, ICAM-1,
MAdCAM-1, and PNAd. They also produce lymphocyte survival factors like BAFF and IL-7 to recruit lymphocytes and facilitate subsequent TLS
formation. LT/LTR, lymphotoxin/lymphotoxin receptor; LTi, lymphoid tissue inducer cell (LTi); LTo, lymphoid tissue organizer cell; CCL19, CC-
chemokine ligands 19; CCL21,CC-chemokine ligands21; CXCL10, CXC-chemokine ligands 10; CXCL13, CXC-chemokine ligands 13; VCAM-1,vascular
cell-adhesion molecule 1; ICAM-1, intercellular adhesion molecule 1; MAdCAM-1,mucosal addressing cell-adhesion molecule 1; PNAd, peripheral
node addressin; BAFF, B-cell activating factor; IL-7, interleukin 7; IL-17, interleukin 17.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1465516
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Sun and Liu 10.3389/fimmu.2024.1465516
As recent studies have shown that a high tumor mutation

burden (TMB) predicts better ICB responsiveness in lung tumor

patients (41). Kasikova et al. observed a greater abundance of TA-

TLS in HGSOC with a higher TMB than in those with a lower TMB

(42). Their further study indicated that the insensitivity of HGSOC

to ICB therapy was linked to the limited number of mature TA-

TLSs (mTLS) and ICB-sensitive TCF1+PD1+ CD8+ T cells. Thus,

the low-to-intermediate TMB in ovarian cancer (43) and the

resulting decrease frequent and development of TA-TLSs (42)

may contribute to their poor response to ICB. These findings

suggest that the targeted induction of TA-TLS holds significant

promise in enhancing the efficacy of ICB therapy specifically in

HGSOC, potentially leading to improved patient outcomes and a

more robust therapeutic response.

TA-TLSs predominantly govern antitumor immunity through

their cellular and molecular constituents. Although the specific

composition of TA-TLSs may vary among cancer types, CD20+ B

cells and CD3+ T cells make up the majority of TLSs (22). B cells

and T cells are recruited to the tumor site by specific chemokines,

where they organize into distinct zones within the TLS, similar to

the architecture of secondary lymphoid organs. The core part of

TLSs is the B-cell follicle, within which germinal centers (GCs)

provide B cells with the ability to undergo somatic hypermutation,

affinity maturation, and class switching, resulting in the generation

of high-affinity antibodies. Disruption of GC formation may impair

the prognostic value of TA-TLS (44). An increasing number of

clinical studies have demonstrated that a high density of TA-TLSs

and B cells, as well as the antitumor antigens they secrete, is

associated with favorable disease outcomes not only in primary

and metastatic OC (38, 45–47).

Around B-cell follicles, there is a T-cell zone that is involved in

the activation and regulation of T-cell responses within TLSs.

Several studies have confirmed that OC patients with greater T-

cell infiltration in tumors experience significantly better overall

survival (OS) (48, 49). However, recent research has suggested that
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the prognostic benefit of T cells in OC patients only exists in the

presence of other cells in TLSs (38). Moreover, compared to the

infiltration of T cells, the presence of TA-TLSs was associated with

increased survival rates in patients with ovarian cancer (5, 6). This

may be due to the ability of TA-TLS to infiltrate and expand T and

B-cell lineages and enhance antitumoral immune responses by

improving the interplay between cellular and humoral immunity.

Furthermore, as complex aggregates of leukocytes and

specialized stromal cells, TLSs are not encapsulated and lack an

independent vascular network requiring a stromal cell network to

anchor them to chronically inflamed tissue sites (50). High

endothelial venules (HEVs) formed by peripheral node addressin

(PNAd)-positive endothelial cells (51) control the rate and type of

lymphocytes recruited to TLSs (52). In the next part of this review,

we will further elaborate on the roles of the cellular components of

TA-TLSs in ovarian cancer.
3 Detection and evaluation of TA-TLSs
in ovarian cancer

3.1 Traditional and innovative
quantification method

Ranging from loose T-cell–B-cell clusters to highly organized

structures with distinct T-cell zones and B-cell follicles containing

GCs, the heterogeneity of TLSs in terms of their cellular composition

and spatial organization adds another layer of complexity, making it

challenging to standardize their evaluation. As illustrated in Figure 2,

the morphological and compositional heterogeneous of TA-TLS in

OC underscores the intricate nature of these structures within the

tumor microenvironment, revealing their diverse characteristics and

functions. Furthermore, the role of TA-TLSs is not static, it fluctuates

dynamically both within individual and across different cancers,

reflecting the intricate interplay of immune responses (6, 53, 54).
FIGURE 2

Morphological and compositional heterogeneous of TA-TLS in OC. Ranging from loose T-cell–B-cell clusters (lymphocyte aggregates) to highly
organized mature TLS, TA-TLSs in OC are heterogeneous morphologically and compositionally. Lymphocyte aggregates typically refer to loose and
disorganized clusters of T-cell–B-cells. Immature TLS usually refers to larger clusters of T/B lymphocyte aggregates that are anchored in
inflammatory sites by fibroblasts and other stromal cells. Immature TLSs usually have B cell zone which generally located at the center of the TLS
and surrounding T cell zone, but lacking CD21+ FDCs and GCs. Immature TLS can develop into mature TLS, which are generally larger
morphologically. Mature TLS have prominent T/B cell zones, with the B cell zone containing GCs which characterized by Ki67+ proliferating B cells
and an FDC network. As the specialized vasculature facilitates the entry of lymphocytes from the bloodstream into TLSs, HEVs can be observed in
both immature and matured TLSs. TLSs, tertiary lymphoid structures; GCs, germinal centers; FDCs, follicular DCs; HEVs, high endothelial venules.
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These discrepancies in the understanding and assessment of TLSs

may arise from variations in how researchers define and detect these

structures, leading to inconsistencies in the literature and

complicating comparative studies across different research efforts.

In most previous studies, the quantification of TLSs was based

on the morphological scale. The most straightforward morphology

approach for identifying TLSs is pathological section counting with

HE staining (22). In most cases, TLSs were defined as lymphoid

aggregates according to HE staining without size limitations.

However, in some TA-TLS-associated studies, lymphoid

aggregates that were too small were defined as aggregates

(AGGs). Currently, distinguishing between TLSs and small AGGs

remains challenging (55). Thus, in some TA-TLS-associated studies,

lymphocyte aggregates that were too small or had fewer than 200

cells were excluded to rule out AGGs (56, 57). Moreover, the

identification of TLSs in HE-stained sections relies heavily on the

experience of pathologists. The potential subjective differences may

have led to the large differences in the study results. For instance,

Kasikova et al. defined TLSs as lymphocyte aggregates via HE

staining and observed TLSs in 155/209 (74%) HGSOC tumor

specimens (42). However, with the same identification method,

HE staining, Zhang et al. (39%, 29/74) (5) and Hou et al. (36.67%,

31/60) (6) revealed a significantly lower proportion of TA-TLSs in

OC samples. Differences in cohort size may be one of the significant

factors that results in discrepancies, but the influence of

pathologists’ individual experience cannot be ruled out. Therefore,

while HE-based TLS identification may appear straightforward, it is

still too labor intensive and can be used for practical purposes (58).

For this purpose, several automated computational workflows have

been developed to quantify TLS density with HE-stained slides

which could steer clinical trials in precision medicine by enhancing

patient stratification (59–61).

To improve evidence, immunohistochemistry (IHC) and

immunofluorescence (IF) are usually used for TLS screening and

maturity detection, which makes biomarkers of TLS detection and

maturation crucial. Although the specific composition of TA-TLSs

may vary among cancer types, biomarkers such as CD20, CD3,

CD8, PNAd, and LAMP are common across different tumors (22).

Different TLS criteria and detection methods may lead to varying

results within the same tumor type. For example, based on both

typical lymphocyte aggregation with HE staining and CD20+ B-cell

accumulation inside the aggregation with IHC staining, TLSs in

ovarian tumors were observed by Ukita et al. in 94% of patients

(17). Using LAMP+ DC and CD20+ B cells as TLS biomarkers,

Truxova et al. reported less frequent TA-TLSs in OC, with a rate of

19% (14/81) (62). Lymphoid aggregates composed of B cells and T

cells were observed by Kroeger and colleagues in 17 of 30 (56.67%)

OC samples. However, only aggregates with prominent B-cell

follicles and discrete T-cell zones were detected as fully developed

TLSs (23.33%, 7/30) (38). Although IHC can largely minimize the

interference caused by differences in pathologists’ experience,

factors such as sample size, detection criteria, and markers used

can still lead to varying results within the same type of tumor.

Based on these labor-intensive traditional quantification

methods, Artificial Intelligence (AI) based image analysis
Frontiers in Immunology 05
techniques, including machine learning and deep learning, build

on traditional quantification methods and are recognized for their

potential to significantly improve the accuracy and efficiency of TLS

evaluation in histopathological specimens. Recently, a plethora of

deep learning algorithms have been created for the automated

segmentation of TLSs across diverse malignancies, demonstrating

a remarkable ability to replicate histopathologists’ evaluations with

high accuracy. For example, Wang et al. broadened the applicability

of these models by evaluating TLS density within lung

adenocarcinoma specimens, further exploring its prognostic

significance (59). Barmpoutis et al. demonstrated the successful

implementation of automated TLS identification in HE stained

sections through the integration of the Deep Lab v3+ architecture,

active contour models, and lymphocyte segmentation techniques

(60). Kushnarev et al. developed a BostonGene digital imaging

analysis (DIA) platform that identifies TLS in lung cancer,

demonstrating enhanced reproducibility and sensitivity compared

to earlier techniques (61).Furthermore, Rijthoven et al. introduced a

deep learning model called HookNet-TLS to enable the

quantification of TLSs in digital pathology slides stained with HE

(63). They further utilized these metrics as prognostic indicators

across three distinct cancer types (clear cell renal cell carcinoma,

muscle-invasive bladder cancer, and lung squamous cell

carcinoma), thereby underscoring the adaptabil i ty of

computational models in various oncological scenarios (64).

Besides, in contrast to the studies that depended solely on the

manual annotations of TLSs by pathologists with the assistance of

multiplex IHC, Chen et al. developed a deep learning model for

automated segmentation of TLSs with mIHC markers to precisely

identify TLSs, thereby alleviating the potential biases linked to

subjective human interpretation (65).Unfortunately, these

innovative approaches have not yet been applied to ovarian

cancer, despite their potential and technological advancements,

resulting in significant gaps in research and application.

Nevertheless, these advancements are vital in deepening our

comprehension and application of TLSs in clinical practice.

Additionally, RNA sequencing (RNA-seq) has become an

invaluable tool for the functional characterization of TLS within

various tumor microenvironments. By providing a comprehensive

and unbiased transcriptomic profile, RNA-seq enables the

identification of key immune cell populations and signaling pathways

that are active within TLS. This technology allows for the quantification

of gene expression at the single-cell level, which is particularly useful in

unraveling the heterogeneity of immune cells, including T cells, B cells,

and dendritic cells, that orchestrate TLS function.

Due to the significant role of chemokines in TLS formation,

numerous chemokine-related genes have been proposed as genetic

markers for TLSs. Currently, chemokine signatures (CCL2, CCL3,

CCL4, CCL5, CCL8, CCL18, CCL19, CCL21, CXCL9, CXCL10,

CXCL11, and CXCL13) have been shown to accurately assess the

presence of TLSs in multiple types of human tissues, including

melanoma, colorectal breast cancer, and bladder cancer (66). In

ovarian cancer, several genes were considered TLS-associated gene

signatures. However, even with the same sequencing dataset,

differences in data analysis methods and approaches might lead
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to differences in TLS gene signatures. For instance, using the same

sequencing (TCGA-OV) and microarray data (GSE140082), Zhang

and Hou obtained different OC-related TLS gene signatures. Based

on transcriptome features between the TLS-high and TLS-low

groups in the TCGA, Zhang et al. developed an unsupervised

consensus clustering method comprising 12 chemokines to assess

the relative abundance of TLSs in OC samples (5). By analyzing the

TCGA-OV dataset via univariate regression, Hou et al. detected a

TLS gene signature with prognostic value for ovarian cancer that

included 8 genes (ETP, CCR7, SELL, LAMP3, CCL19, CXCL9,

CXCL10, CXCL11, and CXCL13) (6).

Furthermore, the combination of spatial transcriptomics and

immunohistochemistry can effectively characterize immune cell

phenotypes at the gene and protein levels, both inside and outside

TLS (67). Moreover, recent developments in highly multiplexed

tissue technologies along with sophisticated image analysis tools,

have significantly enhanced our ability to conduct more detailed

and nuanced investigations of TA-TLSs at an unprecedented single-

cell resolution, allowing researchers to unravel the complex cellular

interactions and microenvironments that characterize these

structures. Sarkkinen et al. created a comprehensive single-cell

spatial atlas of TLSs in ovarian cancer by extracting spatial

topology information from in situ highly multiplexed cellular

imaging using tissue cyclic immunofluorescence, offering new

insights into the spatial biology of TLSs (68). The traditional and

innovative quantification technologies used in TLS evaluation

mentioned above were summarized in Figure 3.
Frontiers in Immunology 06
3.2 Maturity evaluation of TA-TLSs in
ovarian cancer

The maturity of TA-TLSs varies dynamically within and between

cancers, leading to controversy regarding the role of TA-TLSs in

cancer (6, 53, 54). The presence of visible GCs on HE slides has been

considered the best marker of mature TA-TLSs (44, 56, 69). As the

backbone cells of the GC, FDCs are often considered biomarkers for

TLSs. On this basis, a three-stage maturation classification of TA-

TLSs was established for NSCLC (44), hepatocellular carcinoma

(HCC) (70) and colorectal cancer (CRC) (71). Briefly, 1) AGGs are

the least-organized stage and consist of ill-defined clusters

of lymphocytes with neither FDCs nor segregated T and B-cell

zones. 2) Primary follicle-like TLSs, which contain FDCs but

without GCs, and 3) fully matured, secondary follicle-like TLSs,

which should have active GCs with FDCs.

In recent studies, AGGs that had no characteristic bona fide

TLSs were excluded (56, 57). The binary classification of TLSs into

immature TLSs (iTLSs)/early TLSs (eTLSs) and mature TLSs

(mTLSs) has been widely applied. In an OC pan-cancer study,

AGGs containing more than 50 cells were detected as TLSs.

However, only TLSs containing FDCs with a dendritic

morphology and that were CD23+ were classified as mTLS.

Notably, mature TLSs displayed prominent GCs on HE staining,

which was systematically confirmed with CD23 staining (56). Based

on these studies, Vanhersecke et al. proposed an algorithm suitable

for screening the presence and maturity of TLSs in a variety of
FIGURE 3

Traditional and innovative quantification technologies used in TLS evaluation. The most straightforward technology for TLSs evaluation is
morphology approach-HE staining, which relies heavily on the experience of pathologists. making it labor-intensive. Immunohistochemistry (IHC)
and immunofluorescence (IF) are used to achieve more solid evidence for evaluation, which makes TLS biomarkers such as CD20, CD3, CD21,
PNAd, and LAMP more crucial. Based on these tranditional technologies, Artificial Intelligence (AI) based image analysis techniques, including
machine learning and deep learning, are recognized for their potential to significantly improve the accuracy and efficiency of TLS evaluation in
histopathological specimens. with the development of sequencing technology, innovative quantification technologies have emerged. With the
extensive use of RNA-Seq and spatial transcriptome, several genes have been characterized as TLS-associated gene signatures in ovarian cancer.
Furthermore, comprehensive single-cell spatial atlas of TLSs in ovarian cancer can be created by extracting spatial topology information from in situ
highly multiplexed cellular imaging using tissue cyclic immunofluorescence, offering new insights into the spatial biology of TLSs. TLSs, tertiary
lymphoid structures; IHC, Immunohistochemistry; IF, immune fluorescence; RNA-Seq, RNA sequencing.
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tumors (69). In this proposal, CD20+ B cells were the first marker of

TLSs. TLSs were defined as lymphoid aggregates containing 50

nuclei of immune cells (including B cells and T cells) according to

the corresponding HE staining and CD20+ according to the

IHC staining.

Based on these pan-cancer studies of ovarian cancer, Ukita et al.

classified TA-TLSs in HGSOC tissues into two types: 1) early TLSs

(eTLSs), in which lymphocytes aggregate diffusely and CD21+ cells

are scarce, and 2) follicle-formed mature TLSs, in which the

follicular morphology of SLOs and CD21+ follicular DCs (FDCs)

are distributed in a reticular pattern (17). Mature TLSs (mTLSs)

with GCs and DCs reportedly represent privileged sites for local

antigen presentation and contribute to the generation of tumor-

targeting effector T cells and B cells (12).

Mature TA-TLSs have been reported to impact prognosis in

several cancers, but immature TLSs play little role in antitumor

immunity (53, 54). However, Hou and colleagues reported that the

presence of TA-TLSs was associated with superior 5-year overall

survival and progression free survival. No significant difference was
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observed between HGSOC patients with immature and mature TA-

TLSs (6). The difference in prognosis may be due to differences in

the criteria used for TA-TLS maturation. In Hou’s study, GCs and

FDCs were not considered biomarkers of maturity. The evaluation

of maturation relies heavily on morphological results. Small and

loose aggregates of B and T cells were defined as immature TA-

TLSs. The TA-TLSs with separate B-cell follicles and T-cell zones

were detected as mature TLSs. GC and FDCs are not considered

biomarkers of maturity (6).

Overall, the methods utilized for the detection and evaluation of

TA-TLSs are primarily confined to HE and IHC, both of which have

been comprehensively summarized in Table 1. The cellular and

molecular markers that are employed to assess TA-TLSs varied

widely across current studies and resulted in a broad spectrum in

the reported proportion of TA-TLSs in OC (from 19%-94%). In

addition to these traditional methods, several innovative technologies,

such as RNA-seq, highly multiplexed tissue technologies and image

analysis tools, all of which have been employed in TLS studies,

offering fresh and valuable s insights into TA-TLSs of ovarian cancer.
TABLE 1 Methods for Detection and evaluation of TLSs in human ovarian cancer samples.

Sample source Definition of TLS TLS rate subtypes of TLS Ref

HE IHC

HGSOC without chemotherapy lymphocyte aggregates
more than 50 cells

CD20
CD23
CD21

74%
(155/209)

eTLS: aggregates of T/B cells with minimum size
of 250mM, in the absence of CD21+ and CD23+
positivity FDCs (122/209 58%);
mTLS: with follicles contain CD21+or CD21
+CD23+ follicular DCs (33/209 16%);

(42)

HGSOC without chemotherapy lymphocyte aggregates CD20
CD3
CD21
PNAd

23.33%
(7/30)

Type I: small lymphoid aggregate (20–50 cells),
contain T cells, B cells, and occasional DCs;
Type II: larger lymphoid aggregate (100-1000
cells) contain T cells, B cells, and occasional DCs
diffuse but lack of discrete zones or follicles;
Type III: fully developed TLS, had prominent B-
cell follicles with GC-like structures (with CD21+
FDC) and discrete T-cell zones, DCs, and PNAd
+ HEV

(38)

HGSOC lymphocyte aggregates CD20
CD3

36.67%
(31/60)

iTLS: intra-tumoral loose aggregates of B and T
cells (12/31 38.71%);
mTLS: located in the tumor margin, with
separate B cells follicles and T cells zone (19/
31 61.29%);

(6)

HGSOC cases in TCGA with
available H&E-stained sections

lymphocyte aggregates CD20
CD3
DC-LAMP

39%
(29/74)

iTLS: visible aggregates of immune cells in HE
staining with segregated B and T cell zones;
mTLS: composed of FDC, a T cell zone, and B
cell follicles with a germinal center

(5)

An OC contained pan-
caner cohort

lymphocyte aggregates CD20
CD23

– iTLS: TLS without CD23+ FDCs
mTLS: TLS with CD23+ FDCs in GC;

(56)

HGSOC lymphocyte aggregates CD20
CD21

– early TLS: lymphocytes aggregate diffusely with
scarce CD21+ FDCs
Follicle-formed TLS: follicular morphology
lymphocytes aggregate with CD21+ FDCs

(17)

HGSOC omental metastases – CD20
CD3
MECA79

– – (46)

HGSOC lymphocyte aggregates LAMP
CD20

19% – (62)
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4 Cellular components of TA-TLSs
and their immuno-roles in OC

4.1 The multifaceted roles of TLS
associated B cells played

Although TLSs range from small, diffuse clusters to large, well-

organized lymphoid-like structures in tumors, B cells are always

integral to these structures. Several studies have suggested that in

human primary tumors, B cells are mostly located in TLSs, and the

presence of TLS-associated B cells is associated with a favorable

prognosis in several types of cancer (22, 72–74). Tumor-infiltrating

B cells bolster the antitumoral immune response in various ways,

including antibody production as antibody-secreting cells (ASCs)

(75) and antigen presentation to T cells as antigen-presenting cells

(APCs) (76). The presence of TLS-associated B cells in ovarian

cancer has been linked to a favorable prognosis (38, 46, 72) and a

significant survival benefit from ICB therapy by enhancing both

cellular and humoral antitumor immunity (42).

4.1.1 Antibody secretion
In TA-TLSs, B cells with increased antigen affinity are selected

and further transformed into memory B cells or antibody-

producing plasma cells (PCs) in GCs, which are characterized as

the bulk of Ki67+ proliferating B cells (46, 72, 77). PCs are often

regarded as factories for antibodies and are primarily recognized for

their role in humoral immunity. Some tumor-associated PCs can

produce tumor-specific antibodies that bind to tumor cells.

Antibodies can inhibit the activity of specific target proteins on

tumor cells, activate the complement system, and enhance both

antibody-dependent cellular cytotoxicity (ADCC) and antibody-

dependent cellular phagocytosis (ADCP) (78).

The infiltration of PCs in ovarian cancer has a significant impact

on tumor progression and prognosis (79). In HGSOCs, dense PCs,

which comprise the bulk of the tumor stroma and are associated with

the infiltration of CD8+ CTL cells, are frequently observed in the

periphery of TLSs (38, 77). Kroeger et al. noted that the presence of

PCs promoted the prognostic benefits of CD8+ CTLs in HGSOC

patients. Consequently, they proposed that the coordinated

antitumor responses observed in TLSs might be attributed to the

synergy between cytolytic T cells and antibody-producing B cells (38).

Interestingly, compared to B cells from peripheral blood, tumor-

associated B cells exhibited greater levels of somatic hypermutations

(SHMs), which typically occur in GCs within TA-TLSs or tumor-

draining lymph nodes. Mazor et al. proved that SHMs within TLS-

associated GCs enhanced the antibody response targeting surface

autoantigens in HGSOC, thus bolstering antitumor reactivity.

Furthermore, taking TLS-associated GCs as differentiation sites,

PCs in TA-TLSs were also shown to correlate with a greater CTL

response and favorable prognosis in OC patients (77).

In metastatic OC, Montfort et al. reported that the B cells in

omental metastasis HGSOC samples were mainly located in TLSs.

Compared with peripheral healthy B cells, the majority of these

omental B cells had a “classical” (CD27+IgM+ and CD27+IgM−) or

“atypical” (CD27−IgM−) memory phenotype and displayed a
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restricted clonal repertoire in accordance with an increased

percentage of SHMs. Furthermore, in omental metastatic TLS-

GC, B cells differentiate into PCs and produce tumor-targeting

immunoglobulins (Igs) (46).

In ovarian cancer, infiltrating B cells frequently secrete IgG

antibodies, which play a crucial role in mediating antitumor

immune responses. Interestingly, with three cohorts containing 534

HGSOC patients, Anadon and colleagues found that the strong and

protective humoral responses in the TME are predominantly driven

by PCs producing polyclonal IgA but not by PCs producing IgG by

binding to polymeric IgA receptors on ovarian cancer cells (47).

4.1.2 Antigen presentation
The presence of professional APCs helps to sustain T-cell

responses in the tumor environment. In addition to producing

antibodies and an antibody-mediated memory response against

pathogens, B cells can also generate cell-mediated immunity as

APCs. Within TLSs, B cells can activate T cells through antigen-

specific (BCR-dependent) and nonspecific (BCR-independent)

pathways, significantly influencing immune responses in cancer

(80). B cells in TA-TLSs were shown to promote the cytolytic

activity of T cells and improve the survival of OC patients (22).

It has been well documented that activated B cells can present

antigens to T cells (81, 82). Tumor-activated B-cell transfer has been

shown to induce tumor-specific T-cell immunity in murine tumor

models (83). Cabrita and colleagues showed that with highly

expressed MHC I and II molecules, B cells within melanoma

TLSs are generally capable of antigen presentation (73). A pan-

cancer study with 237 patients demonstrated that CD21-CD86+ B

cells can act as antigen-presenting B cells (BAPCs). These BAPCs

are mostly found in the follicles, especially GCs, of TLSs and are

important for the preservation of ICB-sensitive TCF1+PD1+CD8+

T cells in OC (84). Nielsen et al. discovered that typical markers of

antigen-presenting cells, such as MHC class I/II, CD40, CD80, and

CD86, were expressed on TLS-associated B cells in HGSOC. As

these TLS-associated B cells are disconnected from serum

autoantibodies and colocalize with CD8+ T cells, Nielsen et al.

suggested that instead of producing antibodies, the predominant

function of TLS-associated B cells in HGSOC is to present antigens

to CD8+ T cells (45). Moreover, the degree of B-cell clonality

Nielsen et al. assessed in HGSOC patients is different with that in

breast cancer and germ cell tumors. In brief, 11 to 14 distinct B-cell

clones were detected in HGSOC, whereas 6 to 13 clones in germ cell

tumors (85), and 3 to 6 clones in breast cancer (86, 87). Similarly,

the proportion of clonally derived sequences in HGSOC ranged

from 58% to 66%, in comparison to 18% to 79% in germ cell tumors

and 30% to 69% in breast cancer. Although these figures likely

represent conservative estimates, as there may exist additional, less

dominant clones that were not identified in any of these

investigations. These findings still suggested that TLS associated B

cells in HGSOC may exhibit a greater propensity to differentiate

into APCs than other B cell subtypes. In addition, B cells can

improve the CTL response in the TME by activating professional

APCs such as DCs or by directly activating T cells as APCs

themselves. For instance, B cells in HGSOC omental metastatic
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TLSs can recruit DCs by producing CXCL8 and further promote the

CTL response through DC priming (46).

Generally, B cells located within TLS can play a crucial role in

fostering anti-tumor immunity in ovarian cancer by not only

secreting a variety of antibodies that target tumor cells but also by

effectively presenting antigens to T cells, thereby enhancing the

overall immune response against the malignancy.
4.2 T cells mediated antitumor response in
TA-TLSs

In addition to B cells, T cells are also important components of

TA-TLSs and are mostly located in the T zone of TLSs. Within the T

zone, CD4+ T follicular helper (TFH) cells often constitute the

dominant subset, and CD8+ cytotoxic T cells, CD4+ T helper 1

(TH1) cells, and regulatory T cells (Tregs) can also be observed (28).

Tumor-infiltrating lymphocytes (TILs) are key mediators of

antitumor immunity in high-grade serous ovarian cancer (45).

However, Kroeger and colleagues reported that the prognostic

benefit of CD8(+) TILs in patients with ovarian cancer was

limited and was only achieved in the presence of PCs, CD20+

TILs and CD4+ TILs (38). In addition, the presence of CXCL13+

CD103+ CD8+ T cells in OC was correlated with B-cell recruitment

and TLS formation (88). These findings suggested that the T-cell-

mediated antitumor response may require the combined actions of

other lymphocyte subsets in TLSs.

Although, B cells have been proven to determine clinically

relevant T-cell phenotypes in ovarian cancer. Additional studies

have shown that T cells in ovarian cancer can influence the

recruitment of B cells through the secretion of CXCL13, an

important B-cell chemoattractant (89, 90). In TA-TLSs, the origin

of CXCL13 depends on the type of cancer. T cells are the most

common source of CXCL13 in TA-TLSs (88, 91). Administration of

recombinant CXCL13 was reported to induce TA-TLSs and

enhance survival in mouse ovarian cancer models (17, 33). In

ovarian cancer, both CD8+ T cells and CD4+ T cells were

observed to be the origin of CXCL13 and play important roles in

mediating B-cell recruitment and TLS formation in human tumors

(17, 88). Workel et al. reported that TGFb-dependent CXCL13

secretion occurs in CD8+ T cells isolated from several human

cancers, including OC (88). However, whether CXCL13 is involved

in the formation of TA-TLSs and the underlying molecular

mechanism are still unclear. In another study, Ukita et al.

reported that CXCL13 was expressed by both T cells and DCs in

human ovarian cancer. In the early stage of TLS formation, CXCL13

is predominantly expressed by CD4+ T cells. During TLS

maturation, the secretion of CXCL13 transitioned from CD4+ T

cells to CD21+ follicular DCs (17). However, in a study with an

ovarian cancer mouse model, Ricardo et al. suggested that while the

TLS-induced antitumor response is dependent on CD4+ T cells and

CXCL13, CXCL13-producing T follicular helper (TFH) cells, rather

than CD4+ T cells, are likely responsible for the formation of TLSs

(92). The variations in these findings could be attributed to the

differences in the models they used. Several studies have suggested

that, unlike human CD4+ T cells, murine CD4+ T cells do not
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secrete CXCL13 (90, 93), which may account for the difference in

these findings. In summary, these discoveries indicate that T cells in

ovarian cancer, whether CD4+ or CD8+ T cells, exhibit an

extraordinary capacity to activate the formation of TLS through

the release of the chemokine CXCL13 and coordinate the anti-

tumor immune response, thereby potentially strengthening the

body’s defense mechanisms against cancer. This may present a

promising therapeutic target for TLS-targeted induction therapy.

Other TME Components influencing TA-TLS function.
4.3 The crosstalk of TLS with other cell
components in TME

TLS is visually described as a T/B lymphoid aggregate that is

anchored by fibroblasts and other stromal cells in sites of inflammatory

microenvironment. It is crucial to recognize the importance of the

interactions between these lymphoid and other TME components. In

addition to T and B cells, OC-associated TA-TLSs contain myeloid

cells, including DCs and macrophages. DCs are efficient antigen-

presenting cells capable of capturing, processing, and presenting

antigens to T cells, playing a critical role in antigen presentation and

the activation of T cells, thereby enhancing the immune response

within TLSs. In SLO, DCs control lymphocyte homing by producing

lymphotoxin and homeostatic chemokines (94, 95). In human solid

tumors, DCs are usually observed in the tumor stroma and in TLSs

(96) and play a key role in TA-TLS organization by producing LT and

homeostatic chemokines (97). In primary ovarian cancers, CD83+

mature DCs, which are also known as DC-LAMPs, are predominantly

localized in the T-cell zone of TA-TLSs and are correlated with CD8+

T-cell infiltration, antitumor cytotoxicity and survival (62, 98). CD21+

FDCs, which are observed in B-cell follicles of TA-TLSs, are the

backbone of GCs and are usually used as biomarkers of TLS

maturation in OC (17, 56). Furthermore, FDCs play a key role in

GC formation by producing CXCL13 (C-X-Cmotif chemokine ligand)

and BAFF (B-Cell Activating Factor) (94, 99), both of which are

dispensable for B-cell survival and function. In ovarian cancer, CD21+

FDCs are the main CXCL13 source for late-stage TA-TLS maturation

and play a crucial role in the organization and maintenance of

GCs (17).

Macrophages make up the largest portion of the myeloid

infiltrate in most solid malignancies, including ovarian cancers

(100). However, within the TME, macrophages typically present a

cancer-promoting M2 phenotype, which can facilitate OC

development (101). The macrophages in SLOs reportedly act as

scavengers that are responsible for apoptotic cell clearance (102).

Although scattered macrophages are also observed in OC-

associated TA-TLSs, their exact role remains unclear. Previous

studies have confirmed that macrophages can act as lymphoid

tissue inducer cells or lymphoid tissue organizer cells to help

inflammatory diseases associated with TLS formation (103–105).

In the context of TA-TLS neogenesis, macrophages have been

shown to secrete homeostatic chemokines, including CCL21 and

CXCL13 (17, 106). In ovarian cancer, M1-type macrophages, but

not M2-type macrophages, are one of the sources of CXCL13, which

is important for TLS formation (33).
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In addition to immune cells, stromal cells which are abundant

and play an important role in TLSs. By providing structural

support and recruiting lymphocytes, the necessity of fibroblasts

in lymphoid tissue development has been extensively documented

(107). Fibroblasts with LTo molecular signatures, such as VCAM-

1, ICAM-1, LbR, and TNFRs I and II, can support TLS

development in inflammatory diseases and tumors by expressing

CCL21 or CXCL13 (29, 108). Stromal cell-biocompatible scaffolds

seeded into the renal subcapsular space in mice can successfully

form lymphoid tissue-like structures (109).The specialized

vasculature of HEVs facilitates the entry of lymphocytes from

the bloodstream into TLSs, ensuring a continuous supply of

immune cells to sustain the antitumor response (51). The

coordinated interaction of these cellular components is essential

for the effective formation and function of TLSs in the ovarian

cancer microenvironment. Fibroblasts are important supporting

cells of HEVs (52). Fibroblastic stromal cells can drive tissue-

specific maturation of the endothelium and support HEV

angiogenesis by regulating lymphocyte recruitment and

homeostasis (110, 111).
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Overall, there is still limited research on the crosstalk between

OC-associated TA-TLSs and other TME components. We

concluded the antitumor immune responses of TA-TLSs cellular

components mediated in ovarian cancer in Figure 4. These TME

components collectively contribute to the antitumor immune

response in TA-TLSs. However, the heterogeneity and

complexity of TLS cellular composition make standardized

evaluation challenging. In particular, the flexibility of myeloid

cells and the overlapping marker expression in myeloid cell and

DC populations make it challenging to interpret the data. Further

analysis of stromal innate immune cells such as monocytes/

macrophages and DCs as initiators of cancer-associated TLSs is

therefore warranted.
5 Induction of TA-TLSs in ovarian
cancer therapy

As they serve as intra-tumoral sites where tumor-associated

antigens can be consistently processed and presented (35), TA-TLSs
FIGURE 4

The antitumor immune responses of TA-TLSs cellular components mediated in ovarian cancer. In the B-cell region of TLSs, B cells can recruit and
prime DCs through CXCL8. Meanwhile, DCs and FDCs can secrete cytokines including BAFF and CXCL13 and present tumor antigens to bolster B
cell recruitment, survival, and activation. exhibited greater levels of SHMs and acquired more diverse antibody phenotypes, Activated B cells
differentiate into memory B cells and PCs in GC. The PCs move to tumor nest and produce high-affinity antitumor antibodies including IgG and IgA
to participate in antitumor immunity. Additionally, specialized BAPCs highly expressing typical markers of antigen-presenting cells such as MHC class
I/II, CD40, CD80, and CD86, were mostly found in the follicles, especially GCs of TLSs. These non-professional APCs, BAPCs, can present tumor
antigens to T cells in the TLS, just like professional APCs DCs. In the T-cell region, CD4+ T cells are one of the main sources of CXCL13 especially in
early TLSs in ovarian cancer. CD8+ T cells in the TLS can be active by the antigen presentation from both DCs and BAPCs, then migrate to the
tumor nest and mediate antitumor cytolytic activity. TLSs, tertiary lymphoid structures; GCs, germinal centers; FDCs, follicular DCs; BAPCs, antigen-
presenting B cells; PC, plasma cells; APCs, antigen-presenting cells; DCs, dendritic cells; SHMs, somatic hypermutations, BAFF, B-Cell Activating
Factor; CCL8, C-C motif Chemokine Ligand 8; CXCL13, C-X-C motif chemokine ligand 13.
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have been described as a remarkable “antitumor school” for

lymphocytes (112, 113). The evident advantages of TA-TLSs in

antitumor immunology have sparked interest in exploring their

possible therapeutic applications. The induction of functional TA-

TLSs might be a widely applicable antitumor immunotherapy,

either on their own or in combination with adoptive transfer-

based cell therapies (22, 114).Although TA-TLSs can amplify local

immune responses, the appearance of TLSs in untreated mice was

random and required long-term inflammatory exposure (115, 116).

In untreated OC patients, the presence of TA-TLSs is primarily

influenced by genetic characteristics such as low-to-intermediate

TMB (42), chr4q loss and DCAF15 amplification (117).

A variety of therapeutic approaches have been identified to

initiate or enhance the formation of TA-TLS. For example, neo-

adjuvant chemotherapy (NACT) has been demonstrated to

facilitate the emergence of de novo TLS in NSCLC (118) and

hepatoblastoma (119). In ovarian cancer, Tereza Lanickova and

colleagues harnessed a diverse array of transcriptomic, spatial, and

functional assays to explore the differential impacts of NACT on

the progression and maturation of TA-TLS in HGSOC. Their

discoveries suggest that NACT-induced endoplasmic reticulum

stress, coupled with the exposure of calreticulin in metastatic

HGSOC lesions, may facilitate the formation and maturation of

TA-TLS and effectively maintaining an intratumoral ICI-sensitive

T-cell phenotype (120). However, due to the uncertainty of

therapeutically induced TA-TLSs, relevant clinical practice is

still lacking. Therefore, to better leverage TLSs for therapeutic

purposes, great efforts have been made in mouse models. The

experimental induction of TA-TLSs in a mouse model can provide

reliable preclinical data for exploring novel therapeutic

mechanisms of new drugs, for example, the CDK4/6 inhibitor

Abemaciclib, which has already been approved by the FDA for the

treatment of breast cancer. In a mouse ovarian cancer model,

Abemaciclib was reported to promote the development of TA-

TLSs (121) by reducing SCD1, thereby inhibiting ATF3 and

upregulating CCL4 (122). The combination of FAK knocking

down and a TIGIT-blocking antibody significantly elevated

CXCL13 production and the formation of TLS which lead to

reduced tumor burden and increased survival in mice KMF

ovarian tumor model (123).

Tumor-specific vaccines were shown to promote TA-TLS

formation in cervical intraepithelial neoplasia (CIN2/3) lesions (124)

and pancreatic cancer (125). However, clinical data on ovarian cancer

vaccines are still limited. CpG and Mn2+ strongly stimulate LT-a and

CCL21 expression in DCs to induce HEV (126, 127). Wen et al.

presented a nanovaccine containing a tumor-specific antigen with CpG

and Mn2+ as immunologic adjuvants. The application of this

nanovaccine in a mouse tumor model successfully induced the

formation of TA-TLSs and elevated local antitumor immunity (128).

The alternativable tumor-specific antigen in this nanovaccine suggested

its potential applications e in ovarian cancer treatment.

Since the presence of TLSs relies heavily on the expression of

homeostatic chemokines such as CCL19, CCL21, and CXCL13 (129).
Frontiers in Immunology 11
These chemokines have been shown to initiate TLS formation even in

the absence of LTi cells (130, 131). In mouse HM-1 ovarian cancer

models, the administration of recombinant CXCL13 was shown to

induce TA-TLSs in both abdominal metastases and subcutaneous

tumor, resulting in prolonged survival (17, 33). However, different

microenvironment the tumor cells seeding may result in different

function of TLS. For instance, the CXCL13 induced synergy effect in

anti-PD-1 therapy was observed only in subcutaneous ovarian cancer

mouse model (33). It suggested that the heterogeneity of TME

may significantly influences the function of TA-TLS, as evidenced

by the differences in study results caused by varying tumor

implantation locations.

Due to the inherent instability of recombinant cytokines, the

transplantation of cells expressing homeostatic chemokines has

emerged as a critical focus in research on TLS induction. As a

natural source of homeostatic chemokines in TLSs, transplanted

LTo-like cells have attracted increasing amounts of attention.

Engraftment of tumor-derived or artificially induced LTo cells has

been proven to induce TLS in vivo (29, 115, 132). A recent study

utilizing stromal cells derived from lymph nodes successfully

established TLO in vivo and demonstrated that TLO induces an

antitumor immune response to suppress MC38 tumor growth

(115). However, the scarcity of self-stromal cells isolated from

lymph nodes makes it impossible for these cells to be applied in

clinical cancer treatment. Fortunately, a new study revealed an

abundant and easy-to-obtain alternative. Jin et al. suggested that

under the stimulation of LTa1b2 and soluble TNF-a, murine

neonatal dermal fibroblasts can acquire LTO-like activity,

resulting in TLS induction in vivo (132).

Bioengineering strategies for the fabrication of artificial LTo

cells or micro-TILs in vitro, aiming to enhance the adaptive

immune response, will offer promising therapeutic applications in

cancer immunotherapy. Intrapulmonary administration of CCL21

gene-modified DCs has been shown to effectively induce TA-TLSs

and reduce the tumor burden in spontaneous murine

bronchoalveolar cell carcinoma (133). Moreover, Sachiko and

colleagues engineered LTa overexpressed TEL-2 thymic stromal

cells (TEL-2-LTa). After transplanting TEL-2-LTa into the renal

subcapsular space in mice using collagen scaffolds, typic TLS (109),

and secondary immune responses in vivo were obseved (134).

Adipose stromal vascular fraction cells (SVFs) which have

phenotypes and functions similar to fibroblastic in SLO were 3D

spheroid cultured. then Lee et al. cocultured the SVF 3D spheroid

with DCs spiked with antigen-loaded Fe3O4–ZnO Core-Shell NPs

to form a cell loaded scaffold which offered a distinct niche for DCs

to promote T cell recruitment and the subsequent TLS

establishment in situ (135). Furthermore, Wang et al. reported a

tissue bioengineering approach to rapidly synthesize human HEV

organoids (HEVOs) using human induced pluripotent stem cells

(hiPSCs) with the instructions of FRCs but not DCs (111). The

implantation of these HEVOs successfully induced TLS formation

and an adaptive immune response in a mouse tumor model (111).

While these innovative initiatives have yet to be implemented in
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OC, they also offer a potential approach for the investigation of TLS

induction therapy in OC.
6 Discussion

In the setting of cancer, TLSs are receiving increased

attention because they have been associated with favorable

prognosis in several solid tumors, including ovarian cancer.

The correlation between TLS presence and improved clinical

outcome in patients with OC suggested that the TA-TLS could

serve as a valuable prognostic marker, offering insights into

patient outcomes and guiding therapeutic decisions. The

formation of TLSs in ovarian cancer is orchestrated by a

complex interplay of chemokines, cytokines, and various

cellular components influenced by genetic and epigenetic

factors, which underscores the dynamic nature of the tumor

microenvironment. From a therapeutic standpoint, targeting

TLSs to enhance antitumor immunity represents a promising

avenue. Modulating TLS formation and function with

administration of chemokines (17, 33), chemotherapy or

immunotherapy agents (121, 123) have significantly amplify

the immune response and survival outcomes in mice HGSOC

model and offering a novel strategy to complement existing

therapies. The integration of TLS-targeting approaches with

convent ional treatments , such as chemotherapy and

immunotherapy, could lead to synergistic effects, improving

overall treatment efficacy.

However, Researches have indicated that the composition and

function of TLS were differ between various tumors and even within a

single tumor (136). Conducting comprehensive analyses that

compare ovarian cancer-associated TLSs with those in other cancer

types is very important, as it may allow for a thorough evaluation of

TLS heterogeneity. While TA-TLS has been recognized and studied

in nearly all tumor types, it is important to note that much of the

existing data comes from studies that use inconsistent markers to

define TLS. Until now, comprehensive analyses using a uniform set of

parameters have been absent. In a previous study, Kasikova et al.

compared the TA-TLSs in immunologically “cold” tumors HGSOC

with immunologically “hot” tumors NSCLC using uniform TLS

biomarkers (42). Their evidence indicated that TLSs in HGSOC are

not only less frequent but also less developed than NSCLC.

Specifically, TLSs in HGSOC have a significantly lower density of

CD4+ T cells, GZMB+CD4+ T cells, GZMB+CD8+ T cells, CD4

+CXCR5+PD1+FoxP3− TFH cells, and especially follicular DCs.

Furthermore, while the frequency of TIM3+PD1+CD8+ T cells was

similar in HGSOC and NSCLC samples, PD1+CD8+ T cells in

NSCLC were more likely to polarize into an ICB-sensitive TCF1

+PD1+ phenotype with effector functions. In contrast, the density of

CD68+ TAMs and PD1−FoxP3+CD4+ regulatory T (Tregs) cells was

similar in the mTLSs of both HGSOC and NSCLC samples. In

conclusion, they conducted a thorough comparison of TA-TLSs in
Frontiers in Immunology 12
HGSOC and NSCLC with a same detailed molecular panel. These

findings enhance our understanding of the complex roles of TLS in

both cancers and pave the way for future research and

potential therapies.

Furthermore, Sarkkinen and colleagues show that the immune

function especially active adaptive immunity in TLSs varies

among the clinical and molecular subtypes of HGSOC, based on

analyses of TLSs using single-cell techniques (68). This

underscores the importance of examining the diversity within

ovarian cancer. Compared to HGSOC, other subtype of ovarian

cancer, such as mucinous ovarian cancer, which is deficiency

immunogenically ‘cold’ (137) and with low mismatch repair

(138), have been reported to differ significantly in their immune

microenvironment. As a result, TA-TLS may vary significantly

among the various subtypes of ovarian cancer. However, TA-TLSs

in ovarian cancer are most frequntly doumcumented in HGSOC.

This emphasis on HGSOC creates a significant gap in our

understanding of TLS in other types of ovarian cancers, leaving

a crucial area of research unexplored.

Moreover, the intricate journey toward harnessing TLSs in

ovarian cancer is fraught with numerous challenges. While the

induction of TLSs holds significant promise for enhancing

antitumor immunity and potentially improving patient outcomes,

it also poses potential risks and side effects. One major concern is

the possibility of inducing autoimmunity or exacerbating existing

autoimmune conditions in patients who may already be vulnerable.

Since TLSs can form in response to chronic inflammation, their

induction in noncancerous tissues could lead to unintended

immune activation against self-antigens, thereby triggering

autoimmune responses. Although limited data exist on the role of

TLSs in immune-related adverse events, an association between TLS

formation and autoimmune myopathy upon PD-1 blockade has

been reported (139). Moreover, systemic administration of

chemokines and cytokines to promote TLS formation could result

in off-target effects, causing inflammation and damage to healthy

tissues, which could complicate the clinical picture. Another

potential side effect is the alteration of the tumor vasculature,

which could impact the delivery and efficacy of other therapeutic

agents. Thus, while the induction or enhancement of TLSs may

boost antitumor responses, and offer new avenues for treatment, it

could also expand autoreactive T and B cells, necessitating a careful

evaluation of the risk–benefit ratio of such approaches.

In conclusion, the intricate and complex role of TLSs in the

context of ovarian cancer presents both significant opportunities for

research and considerable challenges in advancing our

comprehensive understanding and effective treatment of this

malignancy. This review underscores the multifaceted nature of

TLSs, highlighting their formation mechanisms, and the intricate

processes involved but also their profound impact on tumor

progression and patient prognosis, as well as their promising

potential for therapeutic applications that could revolutionize

current treatment strategies.
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