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LC-MS/MS analysis reveals
plasma protein signatures
associated with lymph node
metastasis in colorectal cancer
Chunsong Pang †, Fang Xu †, Yingwei Lin †, WeiPing Han †,
Nianzhu Zhang* and Lifen Zhao*

Department of Laboratory Medicine, The Second Hospital of Dalian Medical University, Dalian,
Liaoning, China
Objectives: Colorectal cancer (CRC) is a major global health concern, ranking as

the third most common cancer and the fourth leading cause of cancer-related

deaths worldwide. Currently, the diagnostic accuracy of Lymph node metastasis

(LNM) is currently unsatisfactory. Therefore, there is an urgent need to develop a

reliable tool that can accurately predict lymph node metastasis (LNM) in patients

diagnosed with CRC.

Methods: We conducted an extensive proteomics investigation aimed at

examining lymph node metastasis (LNM) in individuals diagnosed with

colorectal cancer (CRC). In the discovery stage, employing a mass

spectrometry-based proteomic approach, we analyzed a cohort of 60

colorectal cancer patients (NM=30, LNM=30), identifying distinct molecular

profiles that differentiate patients with and without lymph node metastasis

(LNM). Subsequently, we validated the protein classifier associated with lymph

node metastasis.

Results: We elucidated a combinatorial predictive protein biomarker that can

distinguish patients with and without lymph node metastasis by LC-MS/MS. The

classifier achieved an area under the curve (AUC) of 0.892 (95% CI, 0.842-0.941),

while in the testing cohort, it attained an AUC of 0.929 (95% CI, 0.824-1.000).

Furthermore, the four protein markers demonstrated an AUC of 0.84 (95% CI,

0.783–0.890) in the validation cohort. Additionally, we categorized patients into

three types based on immunophenotyping. Type 1 primarily consisted of patients

with negative lymph node metastasis (NM), characterized by immune cells such

as NK cells, CD4 T effector memory cells, and memory B cells. Type 2 mainly

included patients with positive lymph node metastasis (LNM), characterized by

immune cells such as mesangial cells, epithelial cells, and mononuclear cells. In

Type 1, a prominent upregulation observed in immune inflammation, as well as in

glucose and lipid metabolism. In Type 2, significant upregulation was evident in

pathways such as pyrimidine metabolism and cell cycle regulation. The findings

of this study suggest that immune mechanisms may exert a pivotal role in the

process of lymph node metastasis in CRC.
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Conclusions: Here, we present plasma protein signatures associated with lymph

node metastasis in colorectal cancer (CRC). However, further validation across

multiple centers is necessary to generalize these findings.
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Introduction

Colorectal cancer (CRC) is the third most commonly diagnosed

cancer and the second leading cause of cancer-related deaths (1),

with almost 900,000 deaths annually (2). It is estimated that by

2030, there will be over 2.2 million new cases and 1.1 million deaths

due to CRC worldwide.

Lymph node metastasis (LNM) is the primary form of metastasis

in colorectal cancer (CRC) and a significant contributor to

postoperative recurrence and mortality. Accurate preoperative

prediction of lymph node status in CRC is crucial for making

appropriate therapeutic decisions. This includes the use of

neoadjuvant and/or adjuvant chemotherapy for patients with LNM,

or the implementation of a more conservative approach to minimize

bowel resection for patients without LNM (3, 4).

Several histopathological findings, including lymphatic

invasion, tumor depth, poor tumor differentiation, and tumor

budding, are recognized as predictors of lymph node (LN)

metastasis (5). However, these findings are only available

postoperatively. Additionally, imaging techniques are

recommended for monitoring LN metastasis in colorectal cancer

(CRC) (6). Computed tomography (CT) and magnetic resonance

imaging (MRI), which are commonly employed for the assessment

of LN metastases, largely depend on the radiologist’s training and

experience, as well as the quality of the imaging equipment (7).

These mainstream imaging modalities lack precision for certain

assessment and diagnosis of LNs, often leading surgeons to perform

major resection, which involves removing large parts of the

intestines and healthy surrounding LNs, to avoid recurrence of

the disease (8). Additionally, they are inappropriate for patients

with implants or impaired renal function (9). Thus, the search for

more precise and noninvasive biomarkers to predict LN metastasis

in patients with CRC continues to be crucial. Accurate identification

of lymph node (LN) involvement in patients with CRC is crucial for

prognosis and treatment strategy decisions (10). Although several

histopathologic findings, such as lymphatic invasion and tumor

differentiation, are known to be predictors of LN metastasis, they

are only available postoperatively (5). Preoperative knowledge of

LNmetastasis can provide valuable information for determining the

need for adjuvant therapy and the adequacy of surgical resection,

thus aiding in pretreatment decision making (11). Therefore, there

is an urgent need to develop a tool capable of accurately predicting

lymph node metastasis (LNM) in patients diagnosed with CRC.
02
Proteins, as executors of biological functions, received increasing

attention from researchers. Recent proteomic investigations of CRC

identified novel protein signatures, molecular subtypes, and

metastasis markers as well as differences in carcinogenesis between

right- and left-sided CRC (12–14). In fact, several studies have

focused on accurately predicting lymph node metastasis in CRC.

Koichiro et al. performed proteomic analysis using isobaric tags for

relative and absolute quantification (iTRAQ). The methodology led

to the identification of heat shock protein 47 (HSP47) as a novel

predictor of CRC lymph node metastasis (15). Cheng et al., used two-

dimensional difference gel electrophoresis MS/MS in colorectal cells

(CRC), identified GSN and PRDX4 were lymph node metastasis

(LNM)-associated proteins (16). Chao et al., characterized the

immune infiltration landscape of CRC samples from The Cancer

Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO)

databases, indicated FSTL3 is a potential immunotherapeutic target

to block LNM for CRC (17). These studies unraveled a new paradigm

for assessment and identification the LN metastasis in patients with

CRC. However, these studies focused on CRC clinical tissue samples.

Most recently, Yulin et al. developed urinary protein signatures for

the diagnosis and metastatic risk stratification of colorectal cancer

(CRC) (18). Circulating protein biomarkers have garnered increasing

attention due to their ease of collection, cost-effectiveness, and

suitability for repeated sampling (19). Extensive research has been

conducted to identify blood-based biomarkers for the early detection

and prognosis of CRC (20).

In the present study, we assembled two cohorts of patients with

or without LNM and evaluated the changed plasma proteomics. We

developed a high-performance predictive model that demonstrated

superior diagnostic accuracy for predicting LNM in patients

suffering from this aggressive malignancy.
Methods

Study design and patients

The objective of this study was to systematically identify and

validate plasma biomarkers for lymph node metastasis in colorectal

cancer. The comprehensive workflow is depicted in Figure 1A. A

total of 236 patients diagnosed with colorectal cancer were enrolled

at the Second Affiliated Hospital of Dalian Medical University

between January 2023 and March 2024. Pathological confirmation
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1465374
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Pang et al. 10.3389/fimmu.2024.1465374
was obtained from two experienced pathologists, and plasma

samples were collected prior to surgical intervention or initiation

of radiotherapy and chemotherapy. In all enrolled patients, the

inclusion criteria were as follows: age between 18 and 80 years old;

having undergone curative surgical resection; and confirmed

pathologically as colorectal adenocarcinoma, mucinous

adenocarcinoma, or signet ring cell carcinoma according to the
Frontiers in Immunology 03
AJCC/UICC 8th edition TNM staging system. Exclusion criteria

included patients who only received endoscopic treatment, were

diagnosed with familial adenomatous polyposis, Lynch syndrome,

or a history of inflammatory bowel disease, underwent transanal

endoscopic microsurgery, had simultaneous infiltrating cancer, or

had missing data. Patients who received chemotherapy or

radiotherapy before surgery are also excluded.
FIGURE 1

Experimental design and proteomic characteristics of CRC with or without lymph node metastasis were investigated. (A) CRC patients were stratified
into two cohorts: a discovery cohort (N=60) and a validation cohort (N=176). A two-stage workflow, comprising LC-MS/MS and ELISA, was
employed to establish a comprehensive and high-throughput plasma-based cancer biomarker method. (B) The clinical features of the discovery
cohort patients. (C) The number of identified proteins in plasma samples from 30 patients with non-metastatic colorectal cancer (CRC NM) and 30
patients with metastatic colorectal cancer (CRC LNM) in the discovery cohort. (D) Venn diagram illustrates the intersection of significantly altered
proteins in CRC NM and CRC LNM samples in the discovery cohort. (F) Volcano plot of LNM versus NM proteins. (E, G) Heat map of the molecular
expression of proteins in the feature pathways of two sets of data.
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Sample collection

After obtaining patient consent, peripheral venous blood was

collected and transferred into vacutainers containing sodium citrate

as an anticoagulant. The samples were centrifuged at 2000g for 10

minutes after 30 min of collection. Subsequently, the resulting

plasma was rapidly frozen using liquid nitrogen and stored at

-80°C until further analysis.
Plasma protein extraction and
trypsin digestion

The plasma sample to be tested was melted at 4°C. Plasma

samples were mixed with 100 mL 50 mM ammonium bicarbonate

(ABC) buffer, and the proteins were inactivated at 95°C for 3 min.

The samples were cooled to room temperature, digested using

trypsin for 16 h in a 37°C incubator, then extracted, lyophilized

and followed by desalinated. Finally, the collected peptides were

added with 100 mL 0.1% FA for LC-MS/MS analysis.
Mass spectrometry analysis

The plasma samples were subjected to LC-MS/MS, consisting of

an EASY-nLC 1200 ultra-high-pressure system (Thermo Fisher

Scientific) coupled via a nano-electrospray ion source to a Q

Exactive HF-X Hybrid Quadrupole-Orbitrap mass spectrometer

(all Thermo Fisher Scientific). Mobile phases A and B were 99.9/

0.1% water/FA (v/v) and 80/20/0.1% ACN/water/FA (v/v/v). MS

spectra were acquired with a Data-Independent Acquisition (DIA)

method. The DIA-MS method consisted of an MS1 scan from 300

to 1400 m/z range (AGC target of 4 × 105, maximum injection time

of 50 ms) at a resolution of 60,000 and 30 DIA segments (AGC

target of 5 × 104, maximum injection time of 22 ms) at a resolution

of 15,000.
Peptide identification and
protein quantification

All data were processed using “Firmiana” (a one-stop proteomic

cloud platform, https://phenomics.fudan.edu.cn/firmiana/). The

data were search against UniProt human protein database

(updated on 2019.12.17, 20406 entries) using FragPipe (v12.1)

with MSFragger (2.2) (DIA data) and Mascot search engine

(DDA data). The mass tolerances were: 20 ppm for precursor and

50 mmu for product ions collected by Q Exactive HF-X. Up to two

missed cleavages were allowed. The database searching considered

cysteine carbamidomethylation as a fixed modifcation, and N-

acetylat ion, and oxidation of methionine as variable

modifications. Precursor ion score charges were limited to +2, +3,

and +4. For the quality control of protein identification, the target-

decoy-based strategy was applied to confirm the FDR of both

peptide and protein, which was lower than 1%. Quantification of

ident ified pept ides was calculated as the average of
Frontiers in Immunology 04
chromatographic fragment ion peak areas across all reference

spectra libraries. Label-free protein quantifications were

performed as previously reported with the iBAQ algorithm. The

peak area values as parts of corresponding proteins were calculated.

The fraction of total (FOT), defined as a protein’s iBAQ divided by

the total iBAQ of all identified proteins within one sample, was used

to represent the normalized abundance of a particular protein

across samples. the FOT values were further multiplied by 105 for

ease of presentation, and missing values were replaced by the

minimal value.
Differential protein analysis

The Student’s t-test was used to examine whether proteins were

differentially expressed between NM and LNM. Upregulated or

downregulated proteins are defined as proteins differentially

expressed in one group compared with the other group (p < 0.05,

Fold change >2 or <0.5).
Pathway enrichment analysis

The differentially expressed proteins were subjected to

enrichment analysis in Gene Ontology and KEGG pathways using

DAVID (https://david.ncifcrf.gov/) and ConsensusPathwayDB

(http://cpdb.molgen.mpg.de/), with a false discovery rate (FDR)

threshold of less than 0.05. Pathways were determined by utilizing

gene sets from the KEGG, Reactome, and GO database.
Weighted gene correlation
network analysis

To identify gene modules exhibiting differential co-expression, we

employed Weighted Gene Correlation Network Analysis (WGCNA)

on the proteins expressed in patient samples. The analysis was

conducted using the WGCNA package in R. Module eigenproteins

were determined by calculating the first principal components of co-

expressed genes within each module. The eigengenes were

subsequently utilized to assess the association between a gene

module and clinical information. The degree of correlation between

a gene and other members within its respective gene module was

quantified using eigengene-based connectivity (kME).
Enzyme-linked immunosorbent
assay (ELISA)

ACTR1B levels were determined using enzyme-linked

immunosorbent assays (ELISAs) (abx385606, Abbexa Ltd.,

Cambridge, United Kingdom). KIF5B (ELK0377), NAXE

(ELK4941), and RBM3 (ELK4844) levels were determined using

ELISA kit (ELK Biotechnology, China). All assays strictly adhered

to the manufacturers’ instructions. Each sample was measured

twice, and in all measurements, the intra-assay coefficient of
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variation remained below the threshold specified by the

manufacturers. The standard curve was generated using Curve

Expert 1.4 software, while sample concentrations were determined

through data analysis in Microsoft Excel.
Statistical analysis

The statistical analysis was performed using GraphPad Prism

8.0 (San Diego, CA, USA) and R software. Proteins that met the

criteria of p-values < 0.05 and fold changes > 1.5, or other specified

thresholds, were visualized using the heatmaps package in R.

Between-group comparisons of proteins were conducted using

paired two-class comparison in R with a false discovery rate

(FDR) threshold of 0.05. Pathway enrichment analysis was

conducted to identify pathway alterations using the Reactome

database. Differential analysis was conducted between samples

with lymph node metastasis (LNM) and without lymph node

metastasis (NM) using Fisher’s exact t-tests for protein

comparisons. Correlation analysis was conducted using the

Spearman rank test, while quantitative results from ELISA data

were analyzed by the Mann-Whitney rank test in GraphPad Prism

8.0 software. n.s means not significant. *, **, **** and **** represent

p-value less than 0.05, 0.01, 0.001 and 0.0001, respectively.
Results

Cohort characteristics and research design

To identify the mechanisms of lymph node metastasis (LNM)

and the associated protein signatures in colorectal cancer (CRC), we

conducted mass spectrometry (MS)-based proteomics to analyze

plasma samples from patients with lymph node metastasis negative

(NM) and lymph node metastasis positive (LNM) CRC. The

discovery cohort comprised 60 patients, while the validation

cohort included 176 patients. The overall workflow of this study

is presented in Figure 1A (Supplementary Figure 3A). The

clinicopathologic characteristics of the participants (discovery

cohort) are summarized in Figure 1B. LNM is closely associated

with N stage (p < 0.001, Pearson’s chi-squared test), nerve

infiltration (p < 0.001, Pearson’s chi-squared test), vascular tumor

thrombus (p < 0.001, Pearson’s chi-squared test), and gender (p <

0.05, Pearson’s chi-squared test). Detailed P-value results are

presented in Supplementary Table 1. In agreement with previous

reports, LNM patients were most staged in N1 and N2 stages.

However, no significant correlation was observed between LNM

and histological type, tumor differentiation, gene mutations, or

tumor location. It has been reported that LNM is correlated with

tumor location and poor differentiation degree in CRC FFPE tissues

(21). However, no significant correlation was observed between

LNM and histological type, tumor differentiation, gene mutations,

or tumor location in our study. The occurrence of this phenomenon

may be linked to the specific type of specimen being investigated

and the geographical region in which it is found.
Frontiers in Immunology 05
Discovery of differential plasma proteins
using LC-MS/MS approach

First, plasma protein candidates were discovered by high-

resolution LC-MS/MS on a Q Exactive HF-X mass spectrometer.

Overall, more than 7000 protein groups were identified by using the

criteria of a 1% false discovery rate (FDR) at both the peptide and

protein levels, with a range 1700 to 2100 protein groups per NM

and LNM plasma samples (Figures 1C). Proteome quantification

was carried out utilizing the intensity-based absolute quantification

(iBAQ) algorithm. The abundance of the identified proteins varied

widely, spanning approximately about eight orders of magnitude

(Supplementary Figures 1A, B). In addition, the consistency of the

of the samples within the group was assessed using Spearman

correlation coefficients. The Pearson’s correlation coefficient,

calculated for NM and LNM samples, was more than 0.89 and

0.82, respectively, indicating that the MS data were of high quality

(Supplementary Figures 1C, D). Intersection analysis with a Venn

diagram of all proteins associated with LNM and NM exhibited

5300 shared proteins (Figure 1D). Meanwhile, 1131 proteins

specifically expressed in LNM group and 922 proteins specifically

expressed in NM group. Further filtered the data, we found 300

proteins were significantly upregulated, whereas 309 proteins were

downregulated expressed in LNM patients (with a log2-fold change

[log2FC]>1 or <-1 and p<0.05, Student’s t-test) (Figure 1F). GSVA

analysis was performed to analyze the underlying pathways

associated with LNM. G1 S DNA damage checkpoints, tRNA

processing, Purine catabolism, Pyrimidine metabolism,

Nucleobase catabolism and Metabolism of polyamines pathways

were found to be enriched in the LNM group (Figure 1E).

Metabolism of polyamines pathway related proteins (AGMAT,

PSMA1, PSMA5 et al) and Nucleobase catabolism pathway

related proteins (DNPH1, GDA, NT5C et al) were up-regulated

in the LNM group (Figure 1E). On the other hand,

glycosphingolipid metabolism, signaling by Wnt in cancer,

interferon gamma signaling, biological oxidations, and

sphingolipid metabolism were enriched in the NM group.

Proteins related to the glycosphingolipid metabolism pathway

(ASAH1, GLB1, GM2A, etc.) and proteins related to the

interferon gamma signaling pathway (B2M, CD44, GBP2, etc.)

were up-regulated in the NM group (Figure 1G). These results

suggest that various signaling and metabolic pathways may

contribute to lymph node metastasis in colorectal cancer.
Inter-group differences in pathway
representation and clinical features
associated with proteomic profiles

Consensus Cluster Plus analysis (Figure 2A) of the proteins

identified two distinct patient clusters: Cluster 1 and Cluster 2.

Cluster 1 primarily consisted of samples from NM patients, while

Cluster 2 predominantly comprised samples from LNM patients.

The analysis revealed that clinical features, including group

classification, lymph node metastasis, N stage, nerve infiltration,
frontiersin.org
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and vascular tumor thrombus, were significantly associated with

protein classification. The percentage bar chart (Figures 2B–F)

showed the proportion of Cluster 2 in LNM group was high,

while the proportion of Cluster 1 in NM group was high. The

proportion of Cluster 2 was significantly higher in patients with

Lymph Node Metastasis, Vascular tumor thrombus or Nerve

infiltration positive compared with negative patients. The ratio of
Frontiers in Immunology 06
cluster 1 in N0 stage patients was high, while the ratio of Cluster 2 in

N1/N2 stage was high. Moreover, Cluster 1 was chiefly enriched for

proteins with glycolipid metabolism, glycolysis, WNT signaling,

antigen processing and presentation, Intestinal immune network.

Cluster 2 was enriched for proteins with nuclear pore complex npc

disassembly, RNA polymerase, G1 and S phase checkpoint, tRNA

processing, translation.
FIGURE 2

Protein molecular subtypes and their clinicopathological features. (A) Identification of protein subtypes (k=2), clinical pathological characteristics,
and enriched pathways was conducted through consensus clustering analysis in the discovery cohort. (B–F) The percentage bar chart illustrated the
clinical features and metrics that exhibited significant correlation with the protein subtypes.
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WGCNA and clinical correlation analysis

The proteins and continuous clinical variables were used to

perform weighted gene correlation network analysis (WGCNA)

(Methods), which was an unsupervised manner to identify groups

of co-regulated proteins and the association with clinical variables.

Nine modules were identified. The analysis of module-trait

relationships revealed that nerve infiltration, group, lymph node

metastasis, and N stage were significantly positively correlated with

the blue module (Figure 3A). Additionally, both group and lymph

node metastasis exhibited a positive correlation with the green

module. Gender demonstrated a significant positive correlation

with the turquoise module, while the differentiation stage was

significantly positively correlated with the pink module.

Furthermore, the pathways enriched in the modules are presented

in Figure 3C. The patient samples associated with the blue and

green modules primarily consisted of LNM patients (Figure 3B).

The proteins in the blue module were predominantly involved in

pyrimidine metabolism, purine metabolism, Fc gamma receptor-

mediated phagocytosis, and lysosomal function. In contrast, the

proteins in the green module were mainly engaged in
Frontiers in Immunology 07
transcriptional regulation. The proteins in the pink module were

enriched in spliceosome activity, chemical carcinogenesis, and

coffee metabolism. Additionally, the proteins in the turquoise

module were enriched in ribosomal function and Hippo signaling

pathways (Figure 3C). Moreover, the heat map (Figure 3D) was

utilized to visually represent the expression of significantly different

proteins across the tumor budding groups BD1, BD2, and BD3. The

pathways associated with tight junctions, focal adhesion, platelet

activation, and extracellular matrix (ECM) receptor interactions

were significantly enriched in the BD1 group (Figure 3E). The

bacterial invasion of epithelial cells pathway was particularly

enriched in the BD2 group. Additionally, the ERBB signaling,

endometrial cancer, and axon guidance pathways were

significantly enriched in the BD3 group.
Protein tissue origin discovery

To better analyze the reactions of various human organs,

proteomic traceability was conducted. The tissue tracing method

involves the use of individual cell data from academic literature and
FIGURE 3

Identification of protein modules with high correlation using WGCNA and evaluation of their associations with clinical variables. (A) Correlation
between module eigenvalues and diverse phenotypic traits. (B) Correlation between module eigenvalues and diverse samples. (C) Enrichment
analysis of WGCNA module pathway. (D) Heat map illustrating the proteins significantly associated with tumor budding. (E) The radar diagram
illustrating the categorization of pathways. The length of the line at each point position represents the number of pathways in
corresponding categories.
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a database of human tissue-specific proteins (tissue enhanced

proteins, HPA) to compile a set of proteins specific to different

organs in the human body. This collection is subsequently

employed to determine the significance of particular proteins in

organ cells across diverse patient cohorts, yielding a metric for the

state of the organ cells. This metric may serve as an indicator of the

degree of cellular impairment within the patient’s organs. As shown

in Figure 4A, the tissue traceability analysis revealed the impact of

Lymph Node Metastasis (LNM) and Non-Metastasis (NM) on
Frontiers in Immunology 08
various organs including the brain, lung, stomach, intestine, liver,

and bone marrow of the patients. In the LNM group, the

functionality of nerves in the brain, neuroendocrine cells in the

lungs, progenitor cells in the stomach, and stem cells in the

intestines was impaired. Conversely, in the NM group, damage

was observed in red blood cells in the liver, CD8 T cells in the bone

marrow, stromal cells in the kidneys, and lymph node cells in the

small intestine. According to the objective of the study, which is to

determine lymph node metastasis in colorectal cancer, we selected
FIGURE 4

Analysis of tissue traceability. (A) Display of cellular damage across diverse organs. (B) The diagram of the network illustrating pathway interactions
elucidates the interplay between various cellular pathways within the intestinal context.
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gut-related cells that could be damaged in lymph node metastatic

colorectal cancer and non-metastatic colorectal cancer. We used the

highly expressed proteins from these cells to enrich the

characteristic pathways and further demonstrated the interaction

pathways of these enriched characteristic pathways. This suggests

which characteristic pathways may promote cancer in colorectal

cancer patients with and without lymph node metastasis. The

pathway interaction network diagram (Figure 4B) illustrated the

interactions between pathways in different types of cells in the

intestine. In the LNM group, the interaction between major

pathways of progenitor cells and stem cells in the intestine is

primarily demonstrated. In the NM group, mutual regulation of

major pathways in intestinal lymphocytes was primarily

demonstrated, corresponding to the apparent activation of

immunity in NM patients in the immune subtype mentioned below.
Frontiers in Immunology 09
Analysis of the correlation between
immune phenotypes and
clinical characteristics

As illustrated in Figure 5A, all patients are categorized into three

types based on immune classification, with the immune

characteristics of each type clearly depicted. Type 1 primarily

includes patients with NM patients, characterized by a

predominance of immune cells such as natural killer (NK) cells,

CD4+ effector memory T (Tem) cells, and memory B cells. Type 2

predominantly corresponds to LNM patients, where the immune

cell composition mainly consists of mesangial cells, epithelial cells,

and monocytes. Type 3 encompasses both NM and LNM patients,

whose immune cell profiles are primarily composed of CD4+ T

cells, mast cells, and fibroblasts. Notably, the clinical features that
FIGURE 5

Analysis of immune phenotyping (A) Patients were categorized into three types based on their immunological profiles. (B) The percentage bar chart
illustrates the clinical features and metrics that exhibited significant correlation with the protein classification.
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show significant correlations with immune typing include group

classification, mismatch repair (MMR) immunohistochemistry

(IHC), microsatellite instability (MSI), the presence of vascular

tumor thrombus, nerve infiltration, lymph node metastasis, and N

stage. The percentage bar chart (Figure 5B) displayed clinical

features and indicators that are significantly correlated with

protein typing. They included group, lymph node metastasis, N

stage, nerve infiltration, vascular tumor thrombus, MMR IHC, and

MSI. For example, the proportion of immunotype 2 was the highest

in the LNM group, while the proportion of immunotype 3 was the

highest in the NM group. Scatter plots (Supplementary Figure 2)

illustrated the pathways that are significantly correlated with the

immune cells of the three immunophenotype types, which are listed

from top to bottom as Type 1, Type 2, and Type 3. The red dots

indicated pathways that exhibit significant correlations. Each dot on

the left represented a negatively correlated pathway, highlighting

the inhibitory effect of the immune microenvironment on the

cellular function of that pathway. Conversely, each dot on the

right represented a positively correlated pathway, suggesting that

the immune microenvironment enhances the cellular function of

the corresponding pathway. The heatmap illustrates the pathways

that exhibit significant positive correlations with Type 1, Type 2,

and Type 3, along with the expression levels of specific molecules

within these pathways. The intensity of color on the heatmap

corresponds to the expression level of the respective molecule

depicted on the right side. A deeper red color indicates higher

expression levels, while a deeper blue color signifies lower

expression levels or absence of expression for the molecule. The

analysis of overall molecular expression changes within the

pathways revealed a notable upregulation in Type 1, particularly

in pathways associated with immune inflammation, as well as

glucose and lipid metabolism. In Type 2, significant upregulation

was observed in pathways such as pyrimidine metabolism and the

cell cycle. For Type 3, the pathways that exhibited significant

upregulation included immune response, DNA replication, and

glucose and lipid metabolism.
Machine learning–based selection of
combinatorial biomarkers for classification
of CRC with LNM

To identify protein markers that can predict lymph node

metastasis in patients with colorectal cancer (CRC), we developed

a classifier that effectively distinguishes between LNM and non-

LNM patients, thereby enhancing clinical decision-making for CRC

management. Candidate biomarkers were selected from proteins

that exhibited significant differential expression (|log2(FC)| > log2

(1.5)). The 60 patients were divided into a training cohort (LNM

N=18, NM N=18) and a test cohort (LNM N=12, NM N=12). The

Least Absolute Shrinkage and Selection Operator (LASSO) logistic

regression was employed to assess feature importance (significance

of the predictive features). The LNM status was used to evaluate

the discriminative power of each signature. This process generated

a classifier, including ACTR1B, KIF5B, NAXE, and RBM3

(Supplementary Tables 2–4), which facilitated accurate
Frontiers in Immunology 10
discrimination between LNM and NM patients with CRC. The

mass spectrometry results for these four proteins were present in

Supplementary Figure 3B. Through fivefold cross-validation, the

classifier in the training cohort achieved an AUC of 0.892 (95% CI,

0.842-0.941) (Figure 6A), while in the testing cohort, the classifier

achieved an AUC of 0.929 (95% CI, 0.824-1.000), which indicated

the classifier is an effective predictor for lymph node metastases in

CRC. To further assess the predictive power of the proteomic

classifier in the clinic, a validation cohort consisting of 176

patients (LNM n=77, NM n=99) was utilized (Figure 6B). The

plasma concentrations of the four proteins were measured using

ELISA. Consistent with the proteomics findings, the plasma

concentrations of ACTR1B (P<0.05), KIF5B (P<0.05), and NAXE

(P<0.05) showed a general increase in LNM patients (Student’s t-

test) (Figures 6C–E). Conversely, RBM3 (P<0.05) (Figure 6F)

exhibited a significant increase in NM patients according to the

ELISA data (Student’s t-test). Moreover, the four-protein classifier

effectively distinguished between LNM and NM patients, achieving

an AUC of 0.84 (95% CI, 0.783–0.890). In addition, the AUC values

for the four proteins demonstrate robust performance

(Supplementary Figure 3D). Furthermore, we performed decision

curve analysis (DCA) to evaluate the clinical utility of our

established protein classifier by estimating net benefits across

various threshold probabilities. The DCA curves demonstrated

that the probability of net benefit varied between 0% and 80%

within the validation cohort, indicating that our model possesses

significant potential to improve predictions of lymph node

metastasis in CRC (Supplementary Figure 3C).

In summary, our plasma four-protein classifier can more

accurately differentiate between LNM and NM CRC patients,

providing better guidance for clinical decision-making.
Discussion

CRC is a significant global health concern, ranking as the third

most common cancer and the fourth leading cause of cancer-related

deaths worldwide (22). Lymph node metastasis (LNM) plays a

crucial role in the spread of CRC, influencing treatment decisions,

chemotherapy plans, and patient survival rates (23). Accurate

assessment of lymph node status is essential in CRC to customize

personalized treatment strategies, known as precision medicine, and

improve individualized patient care. Diagnostic imaging is essential

for the diagnosis, staging, and monitoring of treatment in

individuals with CRC. Currently, computed tomography (CT)

and magnetic resonance imaging (MRI) are primarily used for

diagnosing lymph node metastasis based on the size, shape, and

structure of lymph nodes. However, the diagnostic accuracy of

LNM is currently unsatisfactory (24). For diagnosing LNM,

preoperative invasive lymph node biopsy and pathology were the

conventional gold standard (40). However, there are several

drawbacks, such as invasiveness, high cost, inter-observer

variation, and susceptibility to sampling errors (25).

Liquid biopsy assays are gaining momentum in the field of

cancer patient management, primarily for improved and earlier

disease detection, monitoring disease progression after treatment, as
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well as for expedited drug development (26). Liquid biopsy, which

initially focused on plasma proteins, has now expanded to

encompass a diverse array of molecules and circulating cells.

Although early challenges were encountered in cancer diagnostics

using protein assays, recent advancements have significantly

improved our understanding of the protein profiles associated

with various cell types in the body. This knowledge has facilitated

the identification of specific proteins that show promise as

diagnostic targets (27). Moreover, technological advancements in

protein assays are enhancing their performance, raising

expectations for their potential use in screening for cancer and

monitoring therapy responses in common malignancies. The

significance of improved cancer diagnostics through protein

assays is substantial. Early detection can prevent metastasis,

potentially saving lives, reducing healthcare expenses, extending

productive years, and fostering growth in the diagnostic testing

industries (28).

In this study, we conducted a comprehensive proteomic

investigation aimed at examining lymph node metastasis (LNM) in

individuals diagnosed with CRC. During the discovery stage, we
Frontiers in Immunology 11
employed a mass spectrometry-based proteomic approach to analyze

a cohort of 60 colorectal cancer patients, identifying distinct

molecular profiles that differentiate those with lymph node

metastasis from those without. Furthermore, we elucidated a

combinatorial predictive protein biomarker capable of

distinguishing between patients with and without lymph node

metastasis. Based on the CRC proteomics dataset, we developed

and validated a protein signature model consisting of four proteins.

The classifier achieved an AUC of 0.892 (95% CI, 0.842-0.941), while

in the testing cohort, the classifier achieved an AUC of 0.929 (95% CI,

0.824-1.000). Moreover, the four-protein markers achieved an AUC

of 0.84 (95% CI, 0.783–0.890) in the validation cohort. Intriguingly,

the protein ACTR1B has been identified as a human brain protein

associated with the perception of bitter or sweet beverages (29).

Activin A regulates fibroblast-mediated collagen gel contraction by

binding to a cell-surface receptor complex comprising two distinct

types of receptors, namely activin type I receptor (specifically ActR-

IB) and type II receptor (ActR-II) (30, 31). KIF5B, a member of the

Kinesin-1 family, has been extensively investigated and found to play

crucial roles in diverse biological processes, including myogenesis,
FIGURE 6

Screening protein biomarkers for lymph node metastasis of colorectal cancer using machine learning techniques. (A) Receiver operating
characteristic (ROC) curve for the classification model in the discovery cohort (train cohort and test cohort). Classification confusion matrix of the
classifier in the test cohort. (B) ROC curve for the classification model in the validation cohort. Classification confusion matrix of the classifier in the
validation cohort. (C-F) The plasma concentrations of ACTR1, KIF5B, NAXE, and RBM3 by ELISA. **** represent p-value less than 0.0001.
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nuclear transport, kidney development, chondrocyte differentiation,

viral replication, and tumor progression (32–35). Recently, KIF5B has

been identified as a promising early biomarker in the advanced stage

of pancreatic cancer. RBM3 was able to perfectly discriminate human

high-grade astrocytomas/glioblastomas and control tissues (36). In

addition, the downregulation of RBM3 has been documented to

induce synaptic loss (37), leading to neurodegeneration and thus

representing a promising therapeutic target for Lewy body dementia

(LBD) (38). The present study identified these four proteins as the

most crucial indicators for distinguishing between LNM and NM,

demonstrating exceptional specificity and sensitivity. Recent research

has demonstrated a strong association between pyrimidine synthesis

and cancer (39, 40). The rapid proliferation of CRC cells necessitates

heightened nucleotide biosynthesis to support cell growth (41).

Inhibiting pyrimidine biosynthetic genes at the molecular and

pharmacological levels has been shown to impede liver metastatic

colonization in CRC (42). Consequently, proteins involved in

nucleotide metabolism represent promising targets for the

treatment of CRC (43). Recently, an increasing body of research

has revealed that transfer RNA (tRNA) can undergo enzymatic

cleavage, leading to the generation of tRNA-derived fragments

(tRFs). These fragments participate in cell apoptosis (44), tumor

growth, and M2 macrophage polarization (45) in CRC.

In this study, intergroup comparative analysis revealed that, at

the protein level, the characteristic pathways of the LNM group

primarily included the G1/S cell cycle, tRNA processing, and purine

and pyrimidine metabolism pathways. Kevin Brennan discovered

that the initiation of LNM in head and neck cancer is triggered by

the absence of p53-DREAM-mediated suppression of G1/S phase

cell cycle genes during the early stages of tumor development (46).

Additionally, TEFM was found to enhance the growth and spread of

hepatocellular carcinoma (HCC) by facilitating the transition from

the G1 to S phase (47). Furthermore, SLC12A5 was shown to

significantly promote the G1/S cell cycle transition and enhance

lung metastasis in colorectal cancer (48).

While our findings demonstrate promising potential, it is

crucial to acknowledge certain limitations. Firstly, the traditional

diagnostic biomarkers serum carcinoembryonic antigen (CEA),

glycoconjugate antigen (CA) 19-9 and CA72-4 levels were not

included in the study. Previous studies have demonstrated a

potential correlation between these factors and the presence of

lymph node metastasis in stage T1 colorectal cancer (49). We have

noticed this issue. Unfortunately, the patient cohorts analyzed in

our study had limited availability of tumor marker data. In future

investigations, we will integrate these serologic tumor markers with

our blood proteome signature to further investigate their potential

in enhancing the predictive accuracy of lymph node metastasis.

Second, our study included patients with T1-T4 stage. In recent

studies, there has been a greater emphasis on investigating the T1

and T2 stage. In view of this fact, we will collect more T1 stage

plasma samples for further research. Third, the clinical cohorts

examined for biomarker training and validation in this study were

relatively small. Therefore, it may be imperative to conduct a

future prospective study involving larger patient cohorts from

multiple centers to substantiate the clinical significance of the

identified biomarkers.
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In conclusion, we present plasma protein signatures associated

with lymph node metastasis in CRC, although further validation

across multiple centers is necessary to generalize these findings.
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SUPPLEMENTARY FIGURE 1

Protein abundance and correlation analysis among samples. (A) Cumulative
protein identification counts across all samples. (B) Protein Quantitative

Abundance Density Distribution Chart. (C) Correlation analysis among the
LNM group samples. (D) Correlation analysis among the NM group samples.

SUPPLEMENTARY FIGURE 2

Pathways significantly associated with immune subtyping characteristics. (A–C)
Scatter plots depict the pathways exhibiting significant correlations with immune
cells in immunophenotyping (A cluster 1, B cluster 2, and C cluster 3) (left). The

heatmap revealed significant positive correlations between immunophenotyping
and the expression of specific molecules within the pathways (right).

SUPPLEMENTARY FIGURE 3

(A) Flow chart of the study. (B) The mass spectrometry results for these four

proteins. (C) DCA for assessing the clinical utility of our established protein
classifier. (D) The ROC curve analysis for the four proteins detected using ELISA.
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Pedraza-Arévalo S, L-López F, et al. Splicing machinery dysregulation drives
glioblastoma development/aggressiveness: oncogenic role of SRSF3. Brain. (2020)
143:3273–93. doi: 10.1093/brain/awaa273

37. Peretti D, Bastide A, Radford H, Verity N, Molloy C, Martin MG, et al. RBM3
mediates structural plasticity and protective effects of cooling in neurodegeneration.
Nature. (2015) 518:236–9. doi: 10.1038/nature14142
Frontiers in Immunology 14
38. Rajkumar AP, Bidkhori G, Shoaie S, Clarke E, Morrin H, Hye A, et al.
Postmortem cortical transcriptomics of lewy body dementia reveal mitochondrial
dysfunction and lack of neuroinflammation. Am J Geriatr Psychiatry. (2020) 28:75–
86. doi: 10.1016/j.jagp.2019.06.007

39. Bajzikova M, Kovarova J, Coelho AR, Boukalova S, Oh S, Rohlenova K, et al.
Reactivation of dihydroorotate dehydrogenase-driven pyrimidine biosynthesis restores
tumor growth of respiration-deficient cancer cells. Cell Metab. (2019) 29:399–416.e10.
doi: 10.1016/j.cmet.2018.10.014

40. Wang X, Yang K, Wu Q, Kim LJY, Morton AR, Gimple RC, et al. Targeting
pyrimidine synthesis accentuates molecular therapy response in glioblastoma stem
cells. Sci Transl Med. (2019) 11. doi: 10.1126/scitranslmed.aau4972

41. Vander Heiden MG, DeBerardinis RJ. Understanding the intersections between
metabolism and cancer biology. Cell. (2017) 168:657–69. doi: 10.1016/j.cell.2016.12.039

42. Yamaguchi N, Weinberg EM, Nguyen A, Liberti MV, Goodarzi H, Janjigian YY,
et al. PCK1 and DHODH drive colorectal cancer liver metastatic colonization and
hypoxic growth by promoting nucleotide synthesis. Elife. (2019) 8. doi: 10.7554/
eLife.52135

43. Boutin R, Lee HF, Guan TL, Nguyen TT, Huang XF, Waller DD, et al. Discovery
and evaluation of C6-substituted pyrazolopyrimidine-based bisphosphonate inhibitors of
the human geranylgeranyl pyrophosphate synthase and evaluation of their antitumor
efficacy in multiple myeloma, pancreatic ductal adenocarcinoma, and colorectal cancer. J
Med Chem. (2023) 66:15776–800. doi: 10.1021/acs.jmedchem.3c01271

44. Tao EW, Wang HL, Cheng WY, Liu QQ, Chen YX, Gao QY. A specific tRNA
half, 5’tiRNA-His-GTG, responds to hypoxia via the HIF1a/ANG axis and promotes
colorectal cancer progression by regulating LATS2. J Exp Clin Cancer Res. (2021) 40:67.
doi: 10.1186/s13046-021-01836-7

45. Lu S, Wei X, Tao L, Dong D, Hu W, Zhang Q, et al. A novel tRNA-derived
fragment tRF-3022b modulates cell apoptosis and M2 macrophage polarization via
binding to cytokines in colorectal cancer. J Hematol Oncol. (2022) 15:176. doi: 10.1186/
s13045-022-01388-z
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