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Immunosenescence impacts both the innate and adaptive immune systems,

predominantly affecting certain immune cell types. A notable manifestation of

immunosenescence is the diminished efficacy of adaptive immunity. The

excessive senescence of immune cells, particularly T cells, leads to marked

immune deficiency, consequently escalating the risk of infections, tumors, and

age-associated disorders. Lymphocytes, especially T cells, are subject to both

replicative and premature senescence. Telomerase reverse transcriptase (TERT)

and telomerase have multifaceted roles in regulating cellular behavior, possessing

the ability to counteract both replicative and premature senescence in

lymphocytes. This review encapsulates recent advancements in understanding

immunosenescence, with a focus on T cell senescence, and the regulatory

mechanisms involving TERT/telomerase. Additionally, it comprehensively

discusses strategies aimed at inhibiting immunosenescence by augmenting TERT/

telomerase activity.
KEYWORDS

immunosenescence, telomerase reverse transcriptase (TERT), telomerase, CD28,
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1 Introduction

Immunosenescence refers to the progressive alterations within various facets of the

immune system, culminating in deficiencies of both adaptive and innate immunity (1). Key

immune alterations during immunosenescence encompass a decline in the population of

circulating naïve and effective T cells, an expansion of memory T cells, and elevated levels of

pro-inflammatory cytokines such as TNFa and IL-6 (2). These changes collectively

heighten the risk of infections, tumors, and age-related ailments, including

cardiovascular, neurodegenerative, and metabolic diseases (3–5).
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Cells undergoing senescence are typified by halted cell cycles,

diminished proliferation, altered morphology, and a reduced

propensity for apoptosis (6). Cellular senescence bifurcates into

telomere-dependent replication senescence and premature

senescence (7). Telomeres, consisting of repetitive (TTAGGG)n

sequences at chromosome termini, are pivotal for maintaining

robust cell proliferation (8). The “end replication problem” refers

to the gradual loss of approximately 200 base pairs per telomere in

each cell division due to incomplete lagging strand synthesis during

DNA replication (9). This progressive telomere attrition eventually

triggers a critical chromosomal length threshold, ushering cells into a

state termed “replicative senescence” (10). On the other hand,

premature senescence (PS) represents a telomere-independent,

stress-induced senescence, commonly activated by damaging agents

like oxidative stress (11). Oxidative stress can inflict various DNA

damages, including single-strand breaks (SSBs) and double-strand

breaks (DSBs), precipitating non-telomeric DNA damage responses

and senescence (12, 13). Lymphocytes, particularly T cells, may enter

replicative senescence following numerous divisions and proliferation

cycles due to natural senescence or persistent antigen exposure.

Conversely, lymphocytes may succumb to premature senescence

resulted from oxidative damage under detrimental conditions, such

as infection and stress.

Immunosenescence is associated with a chronic, low-grade

inflammatory state termed “inflammaging” (14). Studies indicate that

T cells are predominantly responsible for this age-related inflammatory

milieu (15, 16). Certain cytokines secreted by senescent T cells can

promote the senescence of nearby and distant cells (15). Granzyme K

(GZMK), mainly released by T cells, intensifies the senescence-

associated secretory phenotype (SASP) of senescent cells, further

amplifying pro-inflammatory factor production (16). GZMK is a

member of the granzyme family which induces proinflammatory

phenotypes (17). Mogilenko et al. found that, in mouse 3T3

fibroblasts, exogenously added GZMK dramatically boosted IFNg

induced secretion of IL-6 and CCL5, factors of inflammation

increased in aging, they also found that GZMK itself could

significantly increase SASP components such as IL-6, CCL2, and

CXCL1 in fibroblasts. This indicates that GZMK, alone or in

combination with IFNg, has the potential to exacerbate the SASP

and suggests it may be an important regulator of inflammatory

processes in aging (16). Senescent CD4+T cells develop cytotoxic

traits and emit harmful substances that inflict direct tissue damage

(18). As immune cells senesce, irreparably damaged tissue cells persist

and accumulate, exacerbating the inflammatory response (19). Hence,

senescent T lymphocytes are primary contributors to the

manifestations of immunosenescence. Accordingly, this review

concentrates on T cell senescence and its regulation through

telomerase reverse transcriptase (TERT) and telomerase.

Senescent T cells are characterized by telomere shortening, loss of

CD28 expression, and cell cycle arrest. Besides, high expression of

CD57, Tim-3, killer cell lectin like receptor subfamily G member 1

(KLRG-1) are regarded to be associated with T cell senescence (1). T

cell senescence is easy to confuse with other dysfunctional T cell states

such as exhaustion and anergy. T cell exhaustion is described as

effector T cells with attenuated effector function and cytokine

expression, and decreased ability of reactivation. Typically, B7-H1/
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PD-1 signaling pathway is regarded to mediate CD8+ T cell

functional exhaustion, and PD-1 is proposed to be a marker for

exhausted T cells. Notably, exhausted T cells may also highly

express”inhibitory”receptors such as CD244, CD160, CTLA-4,

BTLA, LAG-3 and Tim-3 (20). T cell anergy is commonly

described as the hyporesponsive state with incomplete activation

and decreased IL-2 production, as well as cell cycle arrest at the G1/S

phase. It is generally regarded that T cells which are presented antigen

along with low CD28 co-stimulation and/or high co-inhibition lead

to anergic phenotypes (20). T-cell exhaustion and anergy share some

overlapping molecular hallmarks and functional features with

senescence; However, they have unique developmental signatures

and specific regulatory mechanisms respectively, which has been

thoroughly discussed and can be referred in the previously published

reviews (1, 20).
2 Canonical and non-canonical roles
of TERT/telomerase

TERT/telomerase functions in both canonical and non-

canonical capacities to modulate cellular behavior (21). Its

primary and canonical role involves countering replicative

senescence (22). Telomerase composes TERT, the telomerase

RNA component (TERC), and associated proteins (23). It

primarily functions through its crucial catalytic subunit, TERT.

TERT exhibits reverse transcriptase activity, facilitating the

synthesis of linear chromosomal end (TTAGGG)n sequences and

preserving telomere length and genomic integrity, thereby

circumventing replicative senescence (24).

Beyond its canonical role, TERT/telomerase orchestrates a

spectrum of non-canonical functions. These include the

modulation of non-telomeric DNA damage responses,

enhancement of cellular growth and proliferation, acceleration of

cell cycle progression, and preservation of mitochondrial integrity

under oxidative stress (25). TERT within the nucleus can safeguard

cells from apoptosis following DNA damage, irrespective of its

telomere-maintenance function (26). It also plays pivotal roles in

shaping chromatin structure and regulating gene transcription

(27–29) and has been implicated in generating siRNAs through a

Dicer-dependent mechanism to modulate gene expression (30).

Moreover, TERT within the cytoplasm is instrumental in

protecting mitochondria from oxidative stress-induced mtDNA

damage and in maintaining mitochondrial integrity (31).

Collectively, these non-canonical actions provide comprehensive

cellular protection, potentially aiding in the mitigation of

premature senescence.

There is substantial evidence supporting TERT/telomerase’s

regulatory influence on immune-related gene expression,

epitomizing its non-canonical utility (32). TERT modulates gene

expression by influencing chromatin architecture and/or interacting

with transcription or chromatin-altering factors (33, 34). Notably,

TERT associates with transcription factors like NF-kB and b-
catenin, vital for cell proliferation and initiating immune

responses (35). Within lymphocytes, TNF-a induces the nuclear

translocation of TERT, a process facilitated by the PI3K-Akt-NF-kB
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signaling pathway (36). Once in the nucleus, TERT binds to the NF-

kB p65 subunit, localizes to specific NF-kB promoter sites, and

stimulates the expression of NF-kB-dependent genes, including IL-
6 and TNF-a (33). TERT also collaborates with b-catenin as a co-

activator within the b-catenin transcriptional complex, thereby

influencing gene expression and cellular dynamics (33).

Furthermore, the Wnt/b-catenin pathway, in which TERT is

implicated, is known to regulate several immunological processes,

such as sustaining regular T cell development, maintaining memory

CD8+T cells, and directing CD4+Th2 differentiation (37, 38). These

insights underscore TERT/telomerase’s critical role in regulating

immune functions and immunosenescence by regulating key

immune-related transcription factors.

It is worth noting that in addition to TERT, the production of

immune regulatory factors is also influenced by multiple issues. For

example, Parish et al. observed that sustained CD28 expression

greatly reduced the secretion of IL-6 and TNF-a, while increased

expression of IFN-g and IL-2, thus was involved in the maintenance

of a”more youthful”cytokine secretion pattern (39). Under

circumstance of immunosenescence, although diminished TERT

might attenuate the expression of IL-6 and TNF-a, reduced CD28

might facilitate their expression, hence the comprehensive effect is

reflected as elevated levels of IL-6 and TNF-a.
3 TERT/telomerase regulating
immunosenescence especially
T cell senescence

Immunosenescence impairs both the innate and adaptive

immune systems, particularly affecting certain immune cell types

(40). A notable aspect of immunosenescence is the compromised

adaptive immunity (41). Excessive senescence of immune cells,

especially T cells, results in marked immune deficiency (42). While

most somatic cells lack TERT expression and telomerase activity (43),

T cells inherently express TERT and demonstrate telomerase activity,

tightly regulated throughout T cell development and activation (44).

Antigen stimulation triggers rapid TERT activation in both CD8+

and CD4+ T cells. Although TERT activity markedly increases after

initial stimulation, its expression dwindles in subsequent stimulation

cycles. TERT expression becomes nearly undetectable as cells

approach senescence (45, 46), signifying stringent regulation of

TERT expression and telomerase activity in T cells.

Typically, in an immune response, a naïve cell proliferates into a

million activated effector cell clones through 15-20 cell divisions

(47). Persistent cell division induces telomere attrition and

replicative senescence. Memory CD8+ T cells, compared to their

naive counterparts, and memory CD4+ T cells, in relation to naive

CD4+ T lymphocytes, exhibit shorter telomeres (48, 49). This

illustrates that T lymphocyte differentiation from naïve to

memory cells involves telomere depletion and shortening. During

persistent T cell activation by certain pathogens, like HIV,

diminished TERT activity contributes significantly to telomere

shortening and the gradual decline of antigen-specific T cell

replication capacity (46).
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Upregulation of telomerase requires T cell stimulation through

the antigen receptor (TCR) and costimulatory receptors, among the

costimulatory receptors, CD28 is the most important one (50). As

naïve T cells differentiate into memory T cells, a reduction in TERT

activity usually coincides with diminished CD28 co-stimulatory

molecule presence (51). Similarly, the frequency of CD28+ cells

decrease with senescence (52). Senescent CD28- T cells,

characterized by low telomerase activity and shorter telomeres (53),

reveal that excessive antigen exposure leads to reduced CD28

expression in T cells, coinciding with decreased telomerase activity

and an increased number of senescent T cells, hence underscoring the

necessity of CD28 expression for telomerase (54, 55). Inhibiting

CD28 binding to its receptors B7-1 and B7-2 on APCs significantly

lowers telomerase activity during antigen stimulation, underscoring

CD28’s role in telomerase regulation (56). After in vitro activation,

CD28+ T cells sorted from a broader T cell population display

heightened telomerase activity (57). Additionally, CD28− T cells

have shorter telomeres than CD28+ cells from the same donor

(58). A study using retroviral vectors to increase CD28 expression

in T cells revealed that, compared to control T cells transfected with

an empty vector, T cells with heightened CD28 expression exhibited

augmented telomerase activity and telomere elongation (39).

Collectively, these studies robustly suggest that CD28 signaling is

crucial in promoting TERT expression and telomerase activity, thus

preserving telomere length in T cells. Intriguingly, TNFa, typically
released by senescent non-immune somatic cells or activated

lymphocytes, has been observed to suppress CD28 gene

transcription, indicating that senescent or inflamed cells contribute

to T cell senescence by secreting this cytokine (59). Furthermore,

studies indicate that in senescent or persistently activated

macrophages, cyclooxygenase-2 activity rises, enhancing the

catalytic generation of prostaglandin E2 (PGE2). Under PGE2

influence, T cells exhibit a senescent phenotype characterized by

decreased CD28 protein expression, telomerase activity, and T cell

proliferation, substantially impairing their tumor surveillance and

elimination capabilities (60). There is no direct evidence to show how

PGE2 regulates the expression of CD28 and TERT in T cells. Apart

from transcriptional regulation of CD28 gene expression, there exists

post-translation modification mechanisms of CD28 protein. Parish

et al. found that CTLA-4 message increased with culture age of

human CD8 T lymphocytes, and CTLA-4 enhanced loss of CD28

protein through a post-translational modification mechanism,

probably accelerating its degradation (39). Furthermore, Sajiki

found that PGE2 exerted its immunosuppressive effects through

inducing CTLA-4 expression in T cells in a paratuberculosis animal

model (61). Taken together, these findings suggest that PGE2

might induce CTLA-4 expression in T cells, which in turn

accelerate CD28 protein loss, finally attenuate TERT expression

and telomerase activation.

Specifically, T cell senescence can be triggered by viral infections

such as human immunodeficiency virus (HIV), cytomegalovirus

(CMV), hepatitis B/C/D virus (HBV/HCV/HDV), human

herpesvirus 8 (HHV-8), and so on (62). Studies have documented

alterations in T cell telomerase activity following exposure to these

viruses. For instance, in HIV-1 viremic individuals, virus-specific

CD8+ T cells from spontaneously controlling subjects demonstrate
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enhanced telomerase activity and extended telomere lengths

compared to virus-specific CD8+ T cells from patients

experiencing HIV-1 progression (63). Additionally, a rise in CMV

IgG levels in CMV serum-positive individuals correlates with

reduced telomerase activity (64). Moreover, patients with HBV/

HCV exhibit lower hTERT mRNA levels in PBMCs compared to

healthy individuals (65). Similarly, individuals initially infected with

EB virus show high telomerase activity and lengthy telomeres in

virus-specific T cells; however, these specific T cells later display

diminished telomerase activity and shortened telomere lengths (66).

Mechanistically, chronic viral infection can prompt dendritic cells

to release IFN-a, which can inhibit both the transcription and

translation of TERT, resulting in decreased telomerase activity in T

cells (67). Figure 1 illustrates the primary mechanism through

which TERT/telomerase regulates T-cell immunosenescence.

There exists distinct paths other than TERT/telomerase to

regulate T cell senescence. It has been reported that a mutation in

tripeptidyl peptidase II (TPP2) or in phosphoinositide 3-kinase

(PI3K), leads to TPP2 deficiency or activated PI3K, finally results in

premature senescence of T cells and immunodeficiencies (68–70).

Activated PI3 kinase delta syndrome (APDS) has received extensive

research. APDS patients carry heterozygous gain-of-function

mutations in PIK3CD (APDS1) or loss-of-function mutations in

PIK3R1 (APDS2), resulting in enhanced PI3K and activated

downstream Akt/mTOR signaling. Sustained hyperactivity of Akt/

mTOR drives T cells to differentiate into terminal effector T cells,

with accumulation of senescent CD57+CD8+ T cells which

proliferate poorly. However, there was much less pronounced

telomere loss during the transition from the naive state to the

CD57+ differentiation state (70). Previous studies have revealed that

hyperactive Akt/mTOR signaling led to telomerase activation

(54, 70, 71), which might be the reason contributing to the

limited telomere shortening of senescent T cells in APDS patients.

Apart from the conventional view that T lymphocytes delay

senescence by activating telomerase, another study suggests that some

T cells (mainly naïve and central memory cells) acquire telomere

vesicles from antigen-presenting cells (APCs) independently of
Frontiers in Immunology 04
telomerase activity, thereby extending their telomeres (72). These

telomeric vesicles contain the Rad51 recombination factor, enabling

telomere fusion to the ends of T-cell chromosomes and resulting in

an average extension of approximately 3000 base pairs. T cells that

receive telomeres are safeguarded against senescence prior to the

onset of clonal division.

Analogous to T cells, B cells experience age-related telomere

shortening, albeit at a slower pace than T cells (73). Telomerase is

not present in resting B cells but is swiftly activated upon antigen

stimulation (74). Notably, there is no significant telomere length

discrepancy between naïve and memory B cells, nor does telomere

length diminish during the transition from naïve to memory B cells

(75). It was hypothesized that the preservation of telomeres in B

cells depends primarily on the telomerase expression as it does not

occur in telomerase deficient animals (76). Moreover, moderate

levels of telomerase were detected in terminally differentiated B cells

(77), further confirming this hypothesis.

Similar to adaptive immunity cells, innate immunity cells undergo

telomere shortening during senescence (78). While myeloid progenitor

cells express telomerase, mature granulocytes, monocytes, and mast

cells do not, and they do not undergo cell division. Therefore, the

telomere lengths in these cells reflect the telomere attrition in myeloid

progenitor cells (78). Contrasting with mature granulocytes,

monocytes, and mast cells, NK cells can proliferate following antigen

stimulation. Therefore, telomerase activity in mature NK cells

diminishes with senescence, leading to significantly shorter telomeres

in mature NK cells compared to their immature counterparts (79).
4 T cell-related phenotypes/
pathogenesis in telomere
biology disorders

Germline mutations of TERT or other telomerase-relevant genes

are associated with a set of tissue-failure diseases characterized by

very short telomeres. These diseases are known as telomere biology
FIGURE 1

Primary Mechanism of TERT/Telomerase Regulation in T Cell Immunosenescence. Some factors such as TNFa, PGE2 and IFN-a released by
senescent, activated or infected non-immune somatic cells or immune cells down-regulate CD28 protein expression, attenuate TERT expression
and telomerase activation in T cells, thereby weakening the resistance of TERT and telomerase to premature and replicative senescence of T cells,
resulting in reduce of effector T cells, increase of memory T cells, and enhancement of inflammaging.
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disorders (TBDs). The classic TBD was initially defined as

dyskeratosis congenita (DC), which is a systemic disease

characterized by abnormal skin pigmentation, dystrophic nails,

bone marrow failure, as well as predisposition to specific cancers.

DC is genetically heterogeneous and patients have mutations in genes

that encode components of the telomerase complex (TERC, TERT,

PARN, DKC1, RTEL1, NOP10 and NHP2), and telomere shelterin

complex (TINF2), both important for telomere maintenance (23).

Knudson et al. have described 10 DC patients with mutations in

the gene encoding human telomerase RNA (TERC), resulting in

telomere shortening. In studying the immunologic consequences of

TERCmutations, T cells were found to overexpress senescent markers,

including CD57 and Fas receptor, and were moderately reduced in cell

number. Furthermore, DC lymphocytes displayed a markedly reduced

proliferative capacity and increased apoptotic rate. The observed

immunodeficiency in DC is probably due to the replicative failure

and premature senescence of lymphocytes, supporting a role of

telomerase in regulating immune homeostasis (80).

Zeng et al. summarized the clinical data of two juvenile patients

with DC. Gene sequencing showed Patient 1 had a compound

heterozygous mutation (c.204G > T) in PARN and Patient 2 had a

novel mutation in DKC1 (c.1051A > G). Short telomere lengths,

increased CD57 expression, and an expansion of CD8 effector

memory T cells re-expressing CD45RA (TEMRA) were found in

both patients. They concluded that unique immunologic

abnormalities, CD8 T-cell senescence, and shortened telomere

together as a hallmark occur in young DC patients (48).

Kirwan et al. transduced primary T lymphocytes and B

lymphocyte lines established from DC patients carrying TERC

and DKC1 mutations with wild type TERC-bearing lentiviral

vectors. They found that transduction with exogenous TERC

alone was capable of increasing telomerase activity in mutant T

lymphocytes and B lymphocyte lines and improved their survival.

Telomeres in TERC-treated lines were longer than that in the

untreated cultures, indicating that extending the telomere length

of lymphocytes in DC patients can reverse immune deficiency (81).

Patients with TBDs are predisposed to developing cancer, which

was regarded to be resulted from chromosome instability in

neoplastic cells previously. Schratz et al. carried out a detailed study

of the immune status of patients with TBDs, which revealed a striking

T cell immunodeficiency at the time of cancer diagnosis. A similar

immunodeficiency that impaired tumor surveillance was also found

in mice with short telomere, indicating that TBDs patients’

predisposition to solid cancers is due to T cell deficiency rather

than autonomous defects in the neoplastic cells themselves (82).

Patients with inherited CARMIL2 or CD28 deficiency have

defective T cell CD28 signaling, characterized by dysfunction in

naive T-cell activation, proliferation, differentiation, and effector

function (83). Recently, Zhu et al. reported a 9-year-old female

patient with a novel pathogenic variant in CARMIL2 (c.2063C > G)

who presented with various symptoms of primary immunodeficiencies.

The missense mutation leading to insufficient CARMIL2 protein

expression, reduced absolute T-cell and NK cell counts, and defective

maturation of T cells and B cells (84). There is no direct report in the

existing literature on the role of TERT in CARMIL2 or CD28

deficiency. Given the importance of CD28 in TERT/telomerase
Frontiers in Immunology 05
induction, we speculate that CARMIL2 or CD28 deficiency might

dampen TERT expression and telomerase activation, thus facilitate T

cell senescence.
5 Targeting TERT/telomerase to
mitigate immunosenescence

In vitro studies involving cultured cells have demonstrated that

enhanced expression of TERT/Telomerase can thwart cell senescence

and foster cell proliferation (85, 86). Alongside endothelial cells and

fibroblasts (87, 88), lymphocytes are also amenable to TERT/

telomerase manipulation. Elevating TERT levels significantly

extends the replication longevity of antigen-specific T cell lines and

clones, preserving their inherent T cell attributes (89). Consequently,

T cells immortalized via TERT overexpression are anticipated to

serve as potent instruments for adoptive transfer immunotherapy.

Experiments utilizing mouse tumor models reveal that TERT-

augmented tumor-active T cells retain robust antitumor responses.

The human melanoma cell line melAKR, modified to express

influenza virus epitopes via retrovirus transfection, formed ectopic

tumors upon mouse implantation. An influenza virus-specific human

CTL clone, modified with TERT, was employed in adoptive transfer

therapy, effectively curbing the growth ofmelAKR Flu tumors inmice

and prompting their regression (90). This suggests that TERT-

modified T cells preserve antigen-specific and comprehensive

immune responses in vivo, hinting at their potential to combat

tumors through adoptive immunotherapy. Moreover, TERT

overexpression shields T cells from apoptosis. Compared to their

unaltered counterparts, TERT-enhanced T cells exhibit higher levels

of the anti-apoptotic protein Bcl2, reduced caspase-3 activity, and

bolstered resilience against oxidative stress stemming from telomere

DNA damage (91, 92). Thus, TERT overexpression not only

safeguards T cells from replicative senescence but also fortifies their

resistance to apoptosis, enhancing T cell survival. The underlying

mechanism of immune system deterioration in AIDS is linked to the

premature senescence of HIV-1 specific T cells and the diminished

expression of related effector molecules, such as granzyme and

perforin. This premature senescence and the consequent decline in

immune responsiveness of HIV-1 specific T cells can be mitigated by

transfecting T cells with TERT expression vectors (93). A recent

investigation revealed that artificially inducing TERT expression in

NK cells amplifies their activation, proliferation, and longevity,

suggesting that telomerase replenishment in NK cells might be a

viable strategy for NK cell-based cancer therapies (79).

In addition to genetic manipulation of the TERT gene,

pharmacological strategies can also activate TERT. Following

exposure to the plant-derived telomerase activator TAT2 in cell

culture, CD8+ T cells from HIV-infected individuals demonstrated

increased telomerase activity, delayed telomere attrition, enhanced

proliferation potential, and a boosted production of functional

cytokines and chemokines, contributing to HIV resistance (94).

The introduction of specific telomerase inhibitors alongside TAT2

into the culture medium negates these effects entirely (94). A more

nuanced investigation into human T lymphocytes revealed that a

particular dosage of atorvastatin temporarily boosts telomerase
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activity, with a more pronounced effect in CD4+T cells compared to

the CD8+ subset (95). Moreover, the upsurge in telomerase activity in

CD4+T cells coincides with increased cell proliferation and a

slowdown in inflammatory responses within arterial vessel walls,

thereby decelerating atherosclerosis progression (95). Another study

highlighted that IL-15 significantly promotes TERT enhancement in

NK, NKT-like cells, and CD8 T cells, marking it as a valuable asset for

adoptive cell therapies. Further analysis using signaling pathway

inhibitors pinpointed that the JAK/STAT and PI3K/AKT pathways

are crucial for IL-15’s role in augmenting TERT expression in NK

and NKT cells, while CD8 T cell TERT expression is mediated

through the JAK-STAT, PI3K-AKT, and Ras-MAPK pathways (96).

A recent double-blind randomized controlled trial evaluated the

impact of TA-65, a telomerase activator derived from Astragalus

membranaceus, on mitigating immune cell senescence post-

myocardial infarction (MI) (97). MI is known to expedite

immunosenescence, characterized by lymphopenia, proliferation of

terminally differentiated CD8+ T lymphocytes (CD8+ TEMRA), and

inflammation. Ninety MI patients aged 65 and above were randomly

allocated to either the TA-65 (16 mg/day) or placebo group for a year.

After this period, the TA-65 group exhibited a significant rise in the

average total lymphocyte count, predominantly due to increases in

CD3+, CD4+, CD8+T lymphocytes, B lymphocytes, and NK cells,

relative to baseline. No lymphocyte increase was observed in the

placebo group. After 12 months, a crucial inflammatory marker,

high-sensitivity C-reactive protein, saw a 62% reduction in the TA-65

group compared to the placebo group, and the TA-65 group faced

significantly fewer adverse events (97). Exploring the

immunomodulatory properties of metformin on T cells, another

study discovered that metformin elevates T cell telomerase activity,

reduces the population of senescent CD8+ T cells, and curtails their
Frontiers in Immunology 06
SASP (98). Specifically, metformin suppresses IFN-g secretion in

aging CD8+ T cells and the production of the pro-inflammatory

cytokine IL-6. While metformin exerts minimal influence on the

secretion of granzyme B in aging T cells, it enhances TNF-a
production. RNA-seq results indicated that metformin fosters the

expression of genes linked to stemness and telomerase activity while

repressing the expression of DNA damage-associated genes. This

study posits that metformin holds promise as an agent for countering

immune senescence and age-related diseases (98).

Additionally, TERT/telomerase activity in peripheral lymphocytes

has been observed to be influenced by natural physiological

factors, including diet and physical exercise. A recent randomized

single-blind controlled crossover study involving twenty-two healthy

participants assessed the impact of a short-term, five-day intervention

using raw or cooked Brassica vegetable leaves. The intervention with

both types of preparations led to a slight increase in telomerase activity

in CD4+ cells. Notably, in CD8+ cells, telomerase activity significantly

rose following the consumption of cooked vegetable samples. This

enhancement in telomerase activity in T cells is believed to bolster cell-

mediated immune responses (99). Furthermore, a meta-analysis

examining the influence of both single sessions and long-term

exercise training on TERT expression and telomerase activity

revealed that exercise, regardless of duration, can elevate TERT and

telomerase activity in non-cancerous cells of both humans and rodents.

Endurance athletes, in comparison to their inactive counterparts,

exhibited heightened TERT and telomerase activity in white blood

cells, signifying that exercise training can positively modulate

lymphocyte TERT expression and telomerase activity, conferring

health benefits (100). These strategies for augmenting TERT

expression and stimulating telomerase in lymphocytes are

consolidated in Table 1.
TABLE 1 Strategies to Enhance TERT Expression and Telomerase Activation in Lymphocytes.

Cell type Manipulation Effects References

T cell Transfection with TERT gene Preserves antigen-specific and holistic immune response in vivo, inhibits the growth of
human melanoma xenografts in mice.

(90)

T cell Transfection with TERT gene Mitigates premature senescence and preserves immune reactivity of HIV-1 specific
T cells.

(93)

NK cell Transfection with TERT gene Augments NK cell activation and proliferation, prolongs lifespan, enhances efficacy in
NK cell-based cancer therapies.

(79)

T cell Exposure to TAT2 Increases telomerase activity, decelerates telomere shortening, boosts proliferation
potential, enhances functional cytokine and chemokine production to counteract HIV.

(94)

T cell Exposure to atorvastatin Boosts T cell proliferation, delays inflammatory response in arterial vessel walls, slows
atherosclerosis progression.

(95)

NK, NKT-like and
T cell

Exposure to IL-15 Promotes TERT upregulation, advantageous for adoptive cell therapies. (96)

Lymphocytes Exposure to TA-65 Elevates counts of CD3+, CD4+, CD8+ T lymphocytes, B lymphocytes, NK cells, reduces
high-sensitivity C-reactive protein levels.

(97)

T cell Exposure to metformin Elevates T cell telomerase activity, diminishes CD8+ senescent T cell population, curtails
their SASP.

(98)

T cell Short-term (five days)
intervention with Brassica
vegetable leaves

Amplifies T cell telomerase activity, bolsters cell-mediated immune responses. (99)

White blood cell Physical exercise Enhances TERT and telomerase activity in lymphocytes, confers health benefits. (100)
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In conclusion, the strategic enhancement of telomerase activity

through genetic interventions, small-molecule manipulation, and

dietary or physical exercise presents a viable method for improving

lymphocyte functionality. The modulation of TERT and telomerase

in lymphocytes is multi-faceted, with numerous transcription

factor-binding sites within the TERT promoter suggesting its

association with various cellular pathways. This association might

uncover novel preventive targets for regulating TERT/telomerase

expression and activity.
6 Future perspectives

This reviewencapsulates recent advancements in immunosenescence

research, particularly focusing on T-cell senescence and the modulatory

effects of TERT/telomerase. It is noteworthy that telomerase expression

levels and enzymatic activity do not consistently correlate with telomere

length or the senescence status of cells (101). Further investigation is

imperative to thoroughly understand these intricate dynamics in

human lymphocytes.

Earlier research indicated that the early regression of the thymus,

responsible for producing naïve T cells, results in a post-puberty

reduction in T cell production, diminishing the population of

circulating naïve T cells. Subsequent studies, however, revealed that

even in young adults, most T cells are derived from peripheral T cell

proliferation rather than thymic output. The thymus’s contribution

to T cell generation is estimated to decrease from about 16% to less

than 1% in adulthood, a deficit potentially compensated by adjusted

homeostatic proliferation (102, 103). Consequently, thymic

involution is not the predominant factor in immunosenescence.

Instead, the prolonged division of lymphocytes induced by long-

term antigen exposure is identified as the primary cause of

immunosenescence. It is also important to note that most data on

immunosenescence are derived from mouse models, including those

using genetically modified TERC/TERT knockout mice, partially

mimicking the biological characteristics of human telomeres in

various inflammatory responses (101). Due to the significantly

shorter lifespan of mice compared to humans and their telomeres

being 10 times longer than human counterparts, mouse telomere/

telomerase characteristics do not fully replicate human cell behavior

(104). Therefore, comprehensive research into telomere/telomerase

dynamics in human lymphocyte during immunosenescence and

inflammatory processes is crucial for confidently translating

telomerase modification strategies into clinical treatments.

It is critical to acknowledge that upregulating TERT or

activating telomerase might induce malignant cell transformation

(85, 105), and such approaches should be avoided in therapeutic

contexts. The design of small-molecule telomerase activators, like
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TAT2 and TA-65, targeting immune cells specifically, holds

promise in preserving specific immune cell functions while

minimizing potential adverse effects. Recent studies have

highlighted that enhancing mitochondrial function and reducing

oxidative stress through the overexpression of mitochondria-

targeted TERT, delivered by adeno-associated virus serotype 9

with a TERT-encoding sequence fused to a mitochondrial

targeting sequence, can improve cardiac function. This approach

of targeting mitochondria avoids telomerase activation and the

associated risk of malignant transformation due to TERT

expression in the nucleus (106, 107). Moreover, future research

should explore other regulatory strategies, such as stabilizing

telomere caps and preserving cell-surface CD28, to potentially

delay immunosenescence and treat age-related diseases.
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